organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7-[(Morpholin-4-yl)(phen­yl)meth­yl]quinolin-8-ol

aDepartment of Physics, Idhaya College for Women, Kumbakonam-1, India, bDepartment of Physics, Kunthavai Naachiar Govt. Arts College (W) (Autonomous), Thanjavur-7, India, cDepartment of Chemistry, Urumu Dhanalakshmi College, Tiruchirappalli-19, India, dFribourg Center for Nanomaterials, FriMat, University of Fribourg, Switzerland, and eDepartment of Chemistry, University of Fribourg, Switzerland
*Correspondence e-mail: vasuki.arasi@yahoo.com

(Received 19 November 2012; accepted 30 November 2012; online 8 December 2012)

In the title compound, C20H20N2O2, the quinoline ring system makes dihedral angles of 81.05 (4) and 61.16 (5)° with the mean planes of the benzene and morpholine rings, respectively; the mean planes of the latter two rings make a dihedral angle of 83.59 (4)°. In the crystal, pairs of O—H⋯N hydrogen bonds link neighbouring mol­ecules related by a twofold rotation axis, generating R22(10) motifs.

Related literature

For the biological activity of quinoline derivatives, see: Thakur et al. (2010[Thakur, A. S., Jha, A. K., Verma, P., Deshmukh, R., Devangan, D. & Chandy, A. (2010). Int. J. Compr. Pharm. 1, 1-4.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C20H20N2O2

  • Mr = 320.38

  • Orthorhombic, A b a 2

  • a = 13.1537 (6) Å

  • b = 31.0875 (13) Å

  • c = 8.3175 (3) Å

  • V = 3401.2 (2) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.65 mm−1

  • T = 200 K

  • 0.60 × 0.32 × 0.17 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-SHAPE: Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.696, Tmax = 0.898

  • 12678 measured reflections

  • 2776 independent reflections

  • 2696 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.074

  • S = 1.06

  • 2776 reflections

  • 218 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.14 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1273 Friedel pairs

  • Flack parameter: −0.05 (18)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1i 0.85 (2) 2.01 (2) 2.7668 (14) 148 (18)
Symmetry code: (i) -x, -y+1, z.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Quinoline analogues have been reported to display promising biological activities such as antimicrobial, anti–inflammatoty, antileishmanial, antituberculosis, antimalarial, cytotoxicity and HIV–1 integrase inhibitors (Thakur et al., 2010). In continuation of our efforts to develop quinoline derivatives with a new structure–activity relationalship, herein, we report the synthesis and structure determination of the title compound.

In the title molecule (Fig.1), the benzene(C11—C16) and morpholine (N2/O2/C17—C20) rings make dihedral angles of 81.05 (4)° and 61.16 (5)° with the quinoline ring system, respectively. The dihedral angle between the benzene and morpholine rings is 83.59 (4)°. The title molecule is chiral with a chiral centre at C10. The morpholine ring adopts an almost perfect normal chair conformation having total puckering amplitude, QT of 0.5876 (15) Å, θ = 3.34 (14)° and φ = 176 (3)° (Cremer & Pople, 1975). The sum of the bond angles around N2 [329.13 (32)°] indicates a pyramidal geometry. The N2 atom deviates by 0.2613 (10) Å from the least–squares plane passing through atoms C17—C20.

In the crystal packing (Fig. 2), intermolecular O—H···N hydrogen bonds (Table 1) link the neighbouring molecules and generate an R22(10) motif (Bernstein et al., 1995).

At x=0.0, y= 0.0, z= 0.321 the crystal contains small void with the solvent accessible volume of 33 Å3.

Related literature top

For the biological activity of quinoline derivatives, see: Thakur et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

8-Hydroxyquinoline (14.5 g; 0.1 mol) was dissolved in 25 ml of acetone and placed in a 250 ml beaker with constant stirring at 305 K for 1/2 h, then benzaldehyde (10.6 g; 0.1 mol) followed by morpholine (8.71 g; 0.1 mol) was added and the mixture was stirred well. The reaction mixture was left for 48 h and the resulting precipitate was collected by filtration and washed with cold water to give pale brown solid (m.p. 338 K) was obtained (yield: 70%). Single crystals suitable for X-ray diffraction were obtained from ethanol.

Refinement top

H1A of the OH group was located in an electron difference map and refined freely. Remaining H atoms were positioned geomentrically and allowed to ride on their parent atoms, with C—H = 0.95–1.00 Å and Uiso(H) = 1.2 times Ueq(C).

Structure description top

Quinoline analogues have been reported to display promising biological activities such as antimicrobial, anti–inflammatoty, antileishmanial, antituberculosis, antimalarial, cytotoxicity and HIV–1 integrase inhibitors (Thakur et al., 2010). In continuation of our efforts to develop quinoline derivatives with a new structure–activity relationalship, herein, we report the synthesis and structure determination of the title compound.

In the title molecule (Fig.1), the benzene(C11—C16) and morpholine (N2/O2/C17—C20) rings make dihedral angles of 81.05 (4)° and 61.16 (5)° with the quinoline ring system, respectively. The dihedral angle between the benzene and morpholine rings is 83.59 (4)°. The title molecule is chiral with a chiral centre at C10. The morpholine ring adopts an almost perfect normal chair conformation having total puckering amplitude, QT of 0.5876 (15) Å, θ = 3.34 (14)° and φ = 176 (3)° (Cremer & Pople, 1975). The sum of the bond angles around N2 [329.13 (32)°] indicates a pyramidal geometry. The N2 atom deviates by 0.2613 (10) Å from the least–squares plane passing through atoms C17—C20.

In the crystal packing (Fig. 2), intermolecular O—H···N hydrogen bonds (Table 1) link the neighbouring molecules and generate an R22(10) motif (Bernstein et al., 1995).

At x=0.0, y= 0.0, z= 0.321 the crystal contains small void with the solvent accessible volume of 33 Å3.

For the biological activity of quinoline derivatives, see: Thakur et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995). For puckering parameters, see: Cremer & Pople (1975).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed down the c axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.
7-[(Morpholin-4-yl)(phenyl)methyl]quinolin-8-ol top
Crystal data top
C20H20N2O2F(000) = 1360
Mr = 320.38Dx = 1.251 Mg m3
Orthorhombic, Aba2Cu Kα radiation, λ = 1.54186 Å
Hall symbol: A 2 -2acCell parameters from 29594 reflections
a = 13.1537 (6) Åθ = 3.4–67.3°
b = 31.0875 (13) ŵ = 0.65 mm1
c = 8.3175 (3) ÅT = 200 K
V = 3401.2 (2) Å3Block, brown
Z = 80.60 × 0.32 × 0.17 mm
Data collection top
Stoe IPDS 2
diffractometer
2776 independent reflections
Radiation source: fine-focus sealed tube2696 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
Detector resolution: 6.67 pixels mm-1θmax = 64.9°, θmin = 4.4°
rotation method scansh = 1515
Absorption correction: integration
(X-SHAPE: Stoe & Cie, 2002)
k = 3434
Tmin = 0.696, Tmax = 0.898l = 99
12678 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0315P)2 + 1.0277P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2776 reflectionsΔρmax = 0.16 e Å3
218 parametersΔρmin = 0.14 e Å3
1 restraintAbsolute structure: Flack (1983), 1273 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (18)
Crystal data top
C20H20N2O2V = 3401.2 (2) Å3
Mr = 320.38Z = 8
Orthorhombic, Aba2Cu Kα radiation
a = 13.1537 (6) ŵ = 0.65 mm1
b = 31.0875 (13) ÅT = 200 K
c = 8.3175 (3) Å0.60 × 0.32 × 0.17 mm
Data collection top
Stoe IPDS 2
diffractometer
2776 independent reflections
Absorption correction: integration
(X-SHAPE: Stoe & Cie, 2002)
2696 reflections with I > 2σ(I)
Tmin = 0.696, Tmax = 0.898Rint = 0.074
12678 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.074Δρmax = 0.16 e Å3
S = 1.06Δρmin = 0.14 e Å3
2776 reflectionsAbsolute structure: Flack (1983), 1273 Friedel pairs
218 parametersAbsolute structure parameter: 0.05 (18)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H1A0.0489 (15)0.4676 (7)0.270 (3)0.055 (6)*
O10.05418 (7)0.44234 (3)0.30675 (14)0.0289 (2)
O20.17007 (9)0.23324 (3)0.25602 (15)0.0419 (3)
N10.11876 (8)0.47965 (3)0.18343 (15)0.0273 (3)
N20.07402 (8)0.30989 (3)0.37537 (14)0.0238 (2)
C10.20163 (10)0.49659 (4)0.1212 (2)0.0329 (3)
H10.20050.52630.09420.040*
C20.29128 (11)0.47365 (5)0.0923 (2)0.0371 (4)
H20.34880.48750.04640.045*
C30.29459 (11)0.43097 (5)0.1313 (2)0.0357 (3)
H30.35490.41480.11370.043*
C40.20791 (10)0.41094 (4)0.19806 (18)0.0272 (3)
C50.20411 (10)0.36710 (4)0.24473 (19)0.0319 (3)
H50.26220.34930.23110.038*
C60.11734 (10)0.35043 (4)0.30904 (18)0.0285 (3)
H60.11660.32110.34120.034*
C70.02833 (10)0.37537 (4)0.32952 (16)0.0225 (3)
C80.03074 (9)0.41828 (4)0.28592 (16)0.0214 (3)
C90.12057 (10)0.43685 (4)0.22082 (16)0.0230 (3)
C100.06862 (9)0.35690 (4)0.40229 (17)0.0224 (3)
H100.12800.37050.34720.027*
C110.07299 (9)0.36868 (4)0.57945 (16)0.0234 (3)
C120.00026 (10)0.35446 (4)0.68860 (19)0.0284 (3)
H120.05240.33550.65330.034*
C130.00197 (11)0.36756 (5)0.8477 (2)0.0364 (3)
H130.04820.35750.92060.044*
C140.07713 (9)0.39534 (4)0.90078 (15)0.0433 (4)
H140.07840.40461.00960.052*
C150.15029 (9)0.40941 (4)0.79385 (15)0.0460 (4)
H150.20250.42820.82960.055*
C160.14802 (12)0.39625 (5)0.6350 (2)0.0356 (4)
H160.19870.40630.56280.043*
C170.08639 (12)0.30128 (5)0.20274 (19)0.0326 (3)
H17A0.15050.31430.16400.039*
H17B0.02940.31430.14230.039*
C180.08844 (13)0.25335 (5)0.1737 (2)0.0419 (4)
H18A0.02340.24060.21030.050*
H18B0.09510.24780.05700.050*
C190.16175 (12)0.24197 (5)0.4233 (2)0.0374 (4)
H19A0.21970.22860.48030.045*
H19B0.09840.22890.46500.045*
C200.16062 (10)0.28999 (5)0.45816 (19)0.0305 (3)
H20A0.15490.29490.57540.037*
H20B0.22480.30320.42050.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0244 (4)0.0184 (5)0.0438 (6)0.0052 (3)0.0056 (4)0.0051 (4)
O20.0467 (6)0.0311 (5)0.0478 (7)0.0138 (5)0.0028 (5)0.0093 (5)
N10.0302 (6)0.0186 (5)0.0330 (6)0.0001 (4)0.0026 (5)0.0014 (5)
N20.0266 (5)0.0184 (5)0.0264 (6)0.0027 (4)0.0018 (4)0.0012 (4)
C10.0367 (7)0.0213 (7)0.0408 (8)0.0016 (6)0.0069 (7)0.0043 (6)
C20.0339 (7)0.0315 (8)0.0461 (10)0.0042 (6)0.0145 (7)0.0012 (7)
C30.0294 (7)0.0309 (7)0.0467 (9)0.0037 (6)0.0110 (6)0.0011 (7)
C40.0261 (6)0.0235 (6)0.0318 (7)0.0024 (5)0.0038 (6)0.0012 (6)
C50.0251 (6)0.0236 (7)0.0471 (10)0.0068 (5)0.0065 (6)0.0010 (6)
C60.0288 (7)0.0189 (6)0.0377 (8)0.0030 (5)0.0013 (6)0.0038 (6)
C70.0246 (6)0.0198 (6)0.0230 (6)0.0003 (5)0.0012 (5)0.0006 (5)
C80.0230 (6)0.0178 (6)0.0235 (6)0.0032 (5)0.0012 (5)0.0014 (5)
C90.0265 (6)0.0178 (6)0.0246 (7)0.0013 (5)0.0000 (5)0.0022 (5)
C100.0224 (6)0.0180 (6)0.0269 (7)0.0010 (5)0.0019 (5)0.0000 (5)
C110.0248 (6)0.0188 (6)0.0265 (7)0.0028 (5)0.0005 (5)0.0016 (5)
C120.0264 (6)0.0256 (7)0.0333 (7)0.0013 (5)0.0014 (6)0.0029 (6)
C130.0398 (8)0.0382 (8)0.0313 (8)0.0021 (6)0.0080 (7)0.0062 (7)
C140.0573 (10)0.0468 (9)0.0258 (8)0.0023 (8)0.0003 (7)0.0043 (7)
C150.0552 (9)0.0495 (10)0.0331 (9)0.0194 (8)0.0039 (8)0.0075 (8)
C160.0390 (8)0.0402 (8)0.0276 (8)0.0141 (6)0.0005 (6)0.0010 (7)
C170.0399 (7)0.0281 (7)0.0298 (8)0.0045 (6)0.0026 (6)0.0033 (6)
C180.0494 (9)0.0336 (8)0.0428 (9)0.0096 (7)0.0097 (8)0.0104 (7)
C190.0392 (8)0.0282 (7)0.0449 (9)0.0111 (6)0.0039 (7)0.0006 (7)
C200.0278 (7)0.0290 (7)0.0346 (8)0.0066 (6)0.0040 (6)0.0004 (6)
Geometric parameters (Å, º) top
O1—C81.3554 (15)C10—C111.5195 (18)
O1—H1A0.85 (2)C10—H101.0000
O2—C181.4185 (19)C11—C161.386 (2)
O2—C191.422 (2)C11—C121.3957 (19)
N1—C11.3165 (18)C12—C131.385 (2)
N1—C91.3668 (17)C12—H120.9500
N2—C201.4680 (17)C13—C141.385 (2)
N2—C171.4696 (19)C13—H130.9500
N2—C101.4802 (16)C14—C151.3815
C1—C21.399 (2)C14—H140.9500
C1—H10.9500C15—C161.383 (2)
C2—C31.367 (2)C15—H150.9500
C2—H20.9500C16—H160.9500
C3—C41.4125 (19)C17—C181.510 (2)
C3—H30.9500C17—H17A0.9900
C4—C91.4157 (18)C17—H17B0.9900
C4—C51.418 (2)C18—H18A0.9900
C5—C61.363 (2)C18—H18B0.9900
C5—H50.9500C19—C201.521 (2)
C6—C71.4145 (18)C19—H19A0.9900
C6—H60.9500C19—H19B0.9900
C7—C81.3829 (17)C20—H20A0.9900
C7—C101.5238 (18)C20—H20B0.9900
C8—C91.4221 (18)
C8—O1—H1A113.6 (14)C12—C11—C10121.89 (12)
C18—O2—C19109.25 (12)C13—C12—C11120.92 (13)
C1—N1—C9117.67 (11)C13—C12—H12119.5
C20—N2—C17107.19 (11)C11—C12—H12119.5
C20—N2—C10112.49 (10)C12—C13—C14120.22 (13)
C17—N2—C10109.45 (11)C12—C13—H13119.9
N1—C1—C2124.18 (12)C14—C13—H13119.9
N1—C1—H1117.9C15—C14—C13119.30 (8)
C2—C1—H1117.9C15—C14—H14120.4
C3—C2—C1118.74 (13)C13—C14—H14120.4
C3—C2—H2120.6C14—C15—C16120.40 (8)
C1—C2—H2120.6C14—C15—H15119.8
C2—C3—C4119.70 (13)C16—C15—H15119.8
C2—C3—H3120.1C15—C16—C11121.10 (13)
C4—C3—H3120.1C15—C16—H16119.4
C3—C4—C9117.19 (12)C11—C16—H16119.4
C3—C4—C5124.03 (12)N2—C17—C18109.75 (13)
C9—C4—C5118.78 (12)N2—C17—H17A109.7
C6—C5—C4120.16 (12)C18—C17—H17A109.7
C6—C5—H5119.9N2—C17—H17B109.7
C4—C5—H5119.9C18—C17—H17B109.7
C5—C6—C7122.15 (12)H17A—C17—H17B108.2
C5—C6—H6118.9O2—C18—C17111.81 (13)
C7—C6—H6118.9O2—C18—H18A109.3
C8—C7—C6118.56 (11)C17—C18—H18A109.3
C8—C7—C10119.13 (11)O2—C18—H18B109.3
C6—C7—C10122.28 (11)C17—C18—H18B109.3
O1—C8—C7118.68 (11)H18A—C18—H18B107.9
O1—C8—C9120.63 (11)O2—C19—C20112.01 (13)
C7—C8—C9120.69 (11)O2—C19—H19A109.2
N1—C9—C4122.51 (12)C20—C19—H19A109.2
N1—C9—C8117.86 (11)O2—C19—H19B109.2
C4—C9—C8119.63 (11)C20—C19—H19B109.2
N2—C10—C11112.51 (11)H19A—C19—H19B107.9
N2—C10—C7110.61 (10)N2—C20—C19109.38 (12)
C11—C10—C7109.03 (10)N2—C20—H20A109.8
N2—C10—H10108.2C19—C20—H20A109.8
C11—C10—H10108.2N2—C20—H20B109.8
C7—C10—H10108.2C19—C20—H20B109.8
C16—C11—C12118.06 (13)H20A—C20—H20B108.2
C16—C11—C10119.95 (12)
C9—N1—C1—C20.5 (2)C20—N2—C10—C7173.89 (11)
N1—C1—C2—C30.4 (3)C17—N2—C10—C767.06 (14)
C1—C2—C3—C40.6 (3)C8—C7—C10—N2155.26 (12)
C2—C3—C4—C90.1 (2)C6—C7—C10—N226.60 (17)
C2—C3—C4—C5179.03 (16)C8—C7—C10—C1180.52 (15)
C3—C4—C5—C6179.64 (15)C6—C7—C10—C1197.63 (14)
C9—C4—C5—C60.5 (2)N2—C10—C11—C16122.96 (13)
C4—C5—C6—C71.0 (2)C7—C10—C11—C16113.94 (14)
C5—C6—C7—C81.5 (2)N2—C10—C11—C1260.73 (15)
C5—C6—C7—C10179.64 (13)C7—C10—C11—C1262.37 (15)
C6—C7—C8—O1179.42 (12)C16—C11—C12—C130.05 (19)
C10—C7—C8—O11.21 (19)C10—C11—C12—C13176.33 (13)
C6—C7—C8—C90.45 (19)C11—C12—C13—C140.4 (2)
C10—C7—C8—C9178.66 (12)C12—C13—C14—C150.71 (17)
C1—N1—C9—C41.3 (2)C13—C14—C15—C160.63 (11)
C1—N1—C9—C8179.12 (14)C14—C15—C16—C110.20 (18)
C3—C4—C9—N11.1 (2)C12—C11—C16—C150.1 (2)
C5—C4—C9—N1178.08 (14)C10—C11—C16—C15176.31 (13)
C3—C4—C9—C8179.32 (14)C20—N2—C17—C1859.61 (15)
C5—C4—C9—C81.5 (2)C10—N2—C17—C18178.12 (11)
O1—C8—C9—N11.29 (19)C19—O2—C18—C1757.69 (18)
C7—C8—C9—N1178.58 (13)N2—C17—C18—O260.32 (18)
O1—C8—C9—C4179.12 (12)C18—O2—C19—C2057.41 (16)
C7—C8—C9—C41.0 (2)C17—N2—C20—C1958.99 (15)
C20—N2—C10—C1151.69 (15)C10—N2—C20—C19179.34 (12)
C17—N2—C10—C11170.73 (11)O2—C19—C20—N259.55 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N1i0.85 (2)2.01 (2)2.7668 (14)148 (18)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC20H20N2O2
Mr320.38
Crystal system, space groupOrthorhombic, Aba2
Temperature (K)200
a, b, c (Å)13.1537 (6), 31.0875 (13), 8.3175 (3)
V3)3401.2 (2)
Z8
Radiation typeCu Kα
µ (mm1)0.65
Crystal size (mm)0.60 × 0.32 × 0.17
Data collection
DiffractometerStoe IPDS 2
Absorption correctionIntegration
(X-SHAPE: Stoe & Cie, 2002)
Tmin, Tmax0.696, 0.898
No. of measured, independent and
observed [I > 2σ(I)] reflections
12678, 2776, 2696
Rint0.074
(sin θ/λ)max1)0.588
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.074, 1.06
No. of reflections2776
No. of parameters218
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.14
Absolute structureFlack (1983), 1273 Friedel pairs
Absolute structure parameter0.05 (18)

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···N1i0.85 (2)2.01 (2)2.7668 (14)148 (18)
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The authors thank the Fribourg Center for Nanomaterials, FriMat, University of Fribourg, Switzerland, for the data collection.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationThakur, A. S., Jha, A. K., Verma, P., Deshmukh, R., Devangan, D. & Chandy, A. (2010). Int. J. Compr. Pharm. 1, 1–4.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds