organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A second monoclinic polymorph of 4-[(E)-(4-benzyl­oxybenzyl­­idene)amino]-1,5-di­methyl-2-phenyl-1H-pyrazol-3(2H)-one

aX-ray Crystallography Laboratory, Post-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Chemistry, P.A. College of Engineering, Nadupadavu, Mangalore 574 153, India
*Correspondence e-mail: rkvk.paper11@gmail.com

(Received 5 December 2012; accepted 14 December 2012; online 19 December 2012)

In the title compound, C25H23N3O2, the central benzene ring makes dihedral angles of 77.14 (8) and 87.7 (2)° with the terminal benzene rings and an angle of 1.9 (1)° with the pyrazolone ring. The benzene ring and the N atom of the pyrazole ring bearing the phenyl substituent are disordered over two sets of sites with an occupancy ratio of 0.71 (2):0.29 (2). The N atoms of the pyrazole ring have a pyramidal environment, the sums of the valence angles around them being 354.6 (3) and 352.0 (6)/349.5 (15)°. In the crystal, mol­ecules are packed into layers parallel to the ac plane. The other monoclinic polymorphic form was reported recently [Dutkiewicz et al. (2012[Dutkiewicz, G., Shetty, D. N., Narayana, B., Yathirajan, H. S. & Kubicki, M. (2012). Acta Cryst. E68, o1324.]). Acta Cryst. E68, o1324].

Related literature

For potential applications of Schiff bases, see: Patole et al. (2006[Patole, J., Shingnapurkar, D., Padhyea, S. & Ratledge, C. (2006). Bioorg. Med. Chem. Lett. 16, 1514-1517.]); Shi et al.(2007[Shi, L., Ge, H., Tan, S., Li, H., Song, Y., Zhu, H. & Tan, R. (2007). Eur. J. Med. Chem. 42, 558-564.]); Satyanarayana et al. (2008[Satyanarayana, V. S. V., Sreevani, P., Sivakumar, A. & Vijayakumar, V. (2008). Arkivoc, 17, 221-233.]). For related structures, see: Liu et al.(2008[Liu, S.-X., Tian, X., Zhen, X.-L., Li, Z.-C. & Han, J.-R. (2008). Acta Cryst. E64, o2245.]); Hu, (2006[Hu, T.-P. (2006). Acta Cryst. E62, o2270-o2271.]). For the other monoclinic polymorph, see Dutkiewicz et al., (2012[Dutkiewicz, G., Shetty, D. N., Narayana, B., Yathirajan, H. S. & Kubicki, M. (2012). Acta Cryst. E68, o1324.]).

[Scheme 1]

Experimental

Crystal data
  • C25H23N3O2

  • Mr = 397.46

  • Monoclinic, P 21 /n

  • a = 13.0079 (5) Å

  • b = 9.9079 (4) Å

  • c = 17.0469 (9) Å

  • β = 103.674 (4)°

  • V = 2134.75 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.2 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.920, Tmax = 1.000

  • 19519 measured reflections

  • 4162 independent reflections

  • 2399 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.154

  • S = 1.03

  • 4162 reflections

  • 292 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012)[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]; software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff bases are widely used organic compounds and structurally it is a nitrogen analogue of an aldehyde or ketone in which the carbonyl group has been replaced by an imine or azomethine group. They are used as pigments and dyes, catalysts, intermediates in organic synthesis, and polymer stabilisers. Schiff bases have also been shown to exhibit a broad range of biological activities including antimicrobial (Shi et al., 2007; Satyanarayana et al., 2008; antimycobacterial (Patole et al., 2006). In view of the pharmacological importance of schiff base derivatives, the title compound (I) is prepared and its crystal structure is reported.

All bond lengths and angles are normal and correspond to those observed in related structures(Liu et al., 2008; Hu, 2006; Dutkiewicz et al., 2012). The central benzene ring makes dihedral angles of 77.14 (8), 87.7 (2) and 87.1 (6)° with the terminal benzene rings (C24—C29),(C8—C13A)and (C8—C13B) respectively while 1.9 (1)(N2A)/ 1.7 (1)°(N2B) with the pyrazolone ring. The benzene ring (C8—C13) and atom N2 are disordered over two positions with an occupancy ratio of 0.71 (2):0.29 (2). The N atoms of the pyrazole ring have a pyramidal environment, the sums of the valence angles around them being 354.6 (3)(N1) and 352.0 (6)(N2A) / 349.5 (15)(N2B) °. The sums of the valence angles around N-atoms of the pyrazole ring in the polymorph of this compound are 353.5 for N1 and 347.3 ° for N2 (Dutkiewicz et al., 2012). Molecules are packed into layers parallel to the ac-plane (Fig.2).

Related literature top

For potential applications of Schiff bases, see: Patole et al. (2006); Shi et al.(2007); Satyanarayana et al. (2008). For related structures, see: Liu et al.(2008); Hu, (2006). For the other monoclinic polymorph, see Dutkiewicz et al., (2012).

Experimental top

The title compound was synthesized by adding 4-benzyloxybenzaldehyde (0.212 g, 1 mmol) to the solution of 4-aminoantipyrine (0.203 g, 1 mmol) in methanol (30 ml) containing few drops of conc. sulfuric acid. The mixture was refluxed for 3hrs and left stirring overnight at room temperature. The resultant solid obtained was then filtered. Yellow needle-shaped single crystals suitable for X-ray structure determination were formed after slow evaporation of dichloromethane at room temperature (431–433 K).

Refinement top

Atom N2 and the benzene ring (C8—C13) are disordered over two positions with an occupancy ratio of 0.71 (2):0.29 (2). In the refinement process restraints were imposed on C—C [1.38 (1) Å] distances of the disordered molecular fragments and the displacement parameters. All H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H distances of 0.93–0.97 Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Structure description top

Schiff bases are widely used organic compounds and structurally it is a nitrogen analogue of an aldehyde or ketone in which the carbonyl group has been replaced by an imine or azomethine group. They are used as pigments and dyes, catalysts, intermediates in organic synthesis, and polymer stabilisers. Schiff bases have also been shown to exhibit a broad range of biological activities including antimicrobial (Shi et al., 2007; Satyanarayana et al., 2008; antimycobacterial (Patole et al., 2006). In view of the pharmacological importance of schiff base derivatives, the title compound (I) is prepared and its crystal structure is reported.

All bond lengths and angles are normal and correspond to those observed in related structures(Liu et al., 2008; Hu, 2006; Dutkiewicz et al., 2012). The central benzene ring makes dihedral angles of 77.14 (8), 87.7 (2) and 87.1 (6)° with the terminal benzene rings (C24—C29),(C8—C13A)and (C8—C13B) respectively while 1.9 (1)(N2A)/ 1.7 (1)°(N2B) with the pyrazolone ring. The benzene ring (C8—C13) and atom N2 are disordered over two positions with an occupancy ratio of 0.71 (2):0.29 (2). The N atoms of the pyrazole ring have a pyramidal environment, the sums of the valence angles around them being 354.6 (3)(N1) and 352.0 (6)(N2A) / 349.5 (15)(N2B) °. The sums of the valence angles around N-atoms of the pyrazole ring in the polymorph of this compound are 353.5 for N1 and 347.3 ° for N2 (Dutkiewicz et al., 2012). Molecules are packed into layers parallel to the ac-plane (Fig.2).

For potential applications of Schiff bases, see: Patole et al. (2006); Shi et al.(2007); Satyanarayana et al. (2008). For related structures, see: Liu et al.(2008); Hu, (2006). For the other monoclinic polymorph, see Dutkiewicz et al., (2012).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction ,2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP view of the molecule with the atom-labeling scheme. The displacement ellipsoids are drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The packing arrangement of molecules viewed down the b axis. Hydrogen atoms have been omitted for clarity.
4-[(E)-(4-Benzyloxybenzylidene)amino]-1,5-dimethyl-2-phenyl- 1H-pyrazol-3(2H)-one top
Crystal data top
C25H23N3O2F(000) = 840
Mr = 397.46Dx = 1.237 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7057 reflections
a = 13.0079 (5) Åθ = 3.6–29.0°
b = 9.9079 (4) ŵ = 0.08 mm1
c = 17.0469 (9) ÅT = 293 K
β = 103.674 (4)°Plate, white
V = 2134.75 (16) Å30.3 × 0.2 × 0.2 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
4162 independent reflections
Radiation source: fine-focus sealed tube2399 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 16.1049 pixels mm-1θmax = 26.0°, θmin = 3.6°
ω scansh = 1516
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1212
Tmin = 0.920, Tmax = 1.000l = 2121
19519 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.057P)2 + 0.3022P]
where P = (Fo2 + 2Fc2)/3
4162 reflections(Δ/σ)max = 0.001
292 parametersΔρmax = 0.21 e Å3
12 restraintsΔρmin = 0.15 e Å3
Crystal data top
C25H23N3O2V = 2134.75 (16) Å3
Mr = 397.46Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.0079 (5) ŵ = 0.08 mm1
b = 9.9079 (4) ÅT = 293 K
c = 17.0469 (9) Å0.3 × 0.2 × 0.2 mm
β = 103.674 (4)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
4162 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2399 reflections with I > 2σ(I)
Tmin = 0.920, Tmax = 1.000Rint = 0.047
19519 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05512 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.03Δρmax = 0.21 e Å3
4162 reflectionsΔρmin = 0.15 e Å3
292 parameters
Special details top

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.74159 (14)0.03151 (19)0.14892 (13)0.0628 (5)
N2A0.8373 (6)0.0248 (9)0.1606 (6)0.0613 (17)0.707 (17)
C9A0.9286 (11)0.0547 (11)0.2496 (4)0.0742 (16)0.707 (17)
H9A0.88660.00570.28500.089*0.707 (17)
C10A1.0017 (8)0.1332 (10)0.2750 (6)0.091 (2)0.707 (17)
H10A1.00890.12600.32780.109*0.707 (17)
C11A1.0640 (6)0.2218 (8)0.2229 (7)0.083 (3)0.707 (17)
H11A1.11140.27740.24080.100*0.707 (17)
C12A1.0560 (6)0.2277 (9)0.1448 (6)0.092 (3)0.707 (17)
H12A1.10030.28490.10870.110*0.707 (17)
C13A0.9831 (12)0.1502 (15)0.1191 (5)0.080 (2)0.707 (17)
H13A0.97790.15480.06570.096*0.707 (17)
N2B0.8462 (17)0.001 (2)0.1335 (11)0.0613 (17)0.293 (17)
C9B0.940 (3)0.089 (3)0.2461 (10)0.0742 (16)0.293 (17)
H9B0.89940.04730.29190.089*0.293 (17)
C10B1.021 (2)0.173 (3)0.2531 (15)0.091 (2)0.293 (17)
H10B1.03900.18910.30210.109*0.293 (17)
C11B1.074 (2)0.233 (3)0.1820 (14)0.083 (3)0.293 (17)
H11B1.13100.28810.18510.100*0.293 (17)
C12B1.054 (2)0.220 (3)0.1069 (13)0.092 (3)0.293 (17)
H12B1.09000.26790.06220.110*0.293 (17)
C13B0.974 (3)0.129 (4)0.1031 (11)0.080 (2)0.293 (17)
H13B0.95890.11050.05370.096*0.293 (17)
O30.93832 (13)0.21006 (18)0.11143 (13)0.0865 (6)
C30.85441 (18)0.1476 (2)0.12022 (15)0.0626 (7)
C40.75575 (16)0.1790 (2)0.10095 (13)0.0503 (5)
C50.69005 (16)0.0687 (2)0.11997 (14)0.0530 (6)
C60.6960 (2)0.1478 (3)0.1940 (2)0.1129 (13)
H6A0.63830.18050.17310.169*
H6B0.74870.21710.18930.169*
H6C0.67050.12380.24980.169*
C70.57995 (17)0.0514 (3)0.11114 (17)0.0737 (8)
H7A0.53310.04120.16350.111*
H7B0.55960.12940.08490.111*
H7C0.57600.02740.07930.111*
C80.91815 (17)0.0660 (2)0.17219 (15)0.0558 (6)
N140.72512 (13)0.29631 (18)0.06847 (11)0.0517 (5)
C150.78748 (17)0.3983 (2)0.05482 (13)0.0542 (6)
H150.85380.39180.06610.065*
C160.75724 (16)0.5243 (2)0.02202 (13)0.0496 (5)
C170.65779 (17)0.5437 (2)0.00752 (14)0.0601 (6)
H170.60800.47480.01960.072*
C180.63120 (17)0.6619 (2)0.02411 (15)0.0619 (6)
H180.56360.67310.03250.074*
C190.70499 (17)0.7655 (2)0.04375 (13)0.0506 (5)
C200.80368 (18)0.7488 (2)0.02936 (14)0.0573 (6)
H200.85340.81780.04150.069*
C210.82894 (18)0.6293 (2)0.00321 (15)0.0588 (6)
H210.89600.61910.01280.071*
O220.67048 (11)0.87620 (16)0.07728 (10)0.0647 (5)
C230.74356 (17)0.9854 (2)0.10298 (15)0.0583 (6)
H23A0.75781.03190.05660.070*
H23B0.80980.95160.13590.070*
C240.69226 (16)1.0782 (2)0.15077 (14)0.0522 (6)
C250.64419 (18)1.1960 (2)0.11844 (15)0.0642 (7)
H250.64581.22120.06620.077*
C260.5933 (2)1.2772 (3)0.16364 (19)0.0761 (8)
H260.56121.35700.14170.091*
C270.5903 (2)1.2403 (3)0.2406 (2)0.0822 (9)
H270.55511.29410.27050.099*
C280.6390 (2)1.1244 (3)0.27318 (17)0.0788 (8)
H280.63751.09960.32550.095*
C290.68990 (19)1.0448 (3)0.22883 (15)0.0652 (7)
H290.72360.96660.25180.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0479 (11)0.0503 (12)0.0897 (15)0.0096 (9)0.0154 (9)0.0168 (11)
N2A0.0523 (19)0.052 (3)0.085 (5)0.0073 (19)0.026 (3)0.016 (3)
C9A0.095 (4)0.053 (6)0.074 (2)0.014 (4)0.018 (2)0.011 (2)
C10A0.120 (5)0.069 (6)0.094 (5)0.005 (4)0.047 (4)0.019 (3)
C11A0.071 (3)0.061 (3)0.120 (8)0.001 (2)0.027 (5)0.029 (5)
C12A0.082 (3)0.072 (3)0.111 (8)0.010 (2)0.004 (6)0.021 (7)
C13A0.081 (3)0.076 (6)0.085 (3)0.003 (2)0.023 (3)0.012 (4)
N2B0.0523 (19)0.052 (3)0.085 (5)0.0073 (19)0.026 (3)0.016 (3)
C9B0.095 (4)0.053 (6)0.074 (2)0.014 (4)0.018 (2)0.011 (2)
C10B0.120 (5)0.069 (6)0.094 (5)0.005 (4)0.047 (4)0.019 (3)
C11B0.071 (3)0.061 (3)0.120 (8)0.001 (2)0.027 (5)0.029 (5)
C12B0.082 (3)0.072 (3)0.111 (8)0.010 (2)0.004 (6)0.021 (7)
C13B0.081 (3)0.076 (6)0.085 (3)0.003 (2)0.023 (3)0.012 (4)
O30.0631 (10)0.0667 (12)0.1405 (17)0.0236 (9)0.0459 (11)0.0353 (12)
C30.0549 (14)0.0537 (15)0.0823 (17)0.0109 (12)0.0225 (12)0.0157 (13)
C40.0473 (12)0.0464 (13)0.0565 (13)0.0036 (10)0.0109 (10)0.0041 (11)
C50.0475 (12)0.0478 (13)0.0614 (14)0.0043 (10)0.0087 (10)0.0041 (11)
C60.0795 (19)0.093 (2)0.169 (3)0.0320 (17)0.036 (2)0.077 (2)
C70.0510 (14)0.0625 (17)0.107 (2)0.0074 (12)0.0179 (13)0.0091 (15)
C80.0524 (13)0.0467 (13)0.0708 (16)0.0081 (11)0.0198 (11)0.0080 (12)
N140.0528 (10)0.0448 (11)0.0569 (11)0.0055 (9)0.0118 (8)0.0037 (9)
C150.0517 (12)0.0514 (14)0.0620 (15)0.0035 (11)0.0182 (10)0.0038 (11)
C160.0503 (12)0.0436 (12)0.0553 (13)0.0017 (10)0.0133 (10)0.0004 (10)
C170.0502 (13)0.0492 (14)0.0800 (17)0.0103 (11)0.0136 (11)0.0114 (12)
C180.0448 (12)0.0567 (15)0.0838 (17)0.0063 (11)0.0144 (11)0.0148 (13)
C190.0514 (12)0.0436 (13)0.0556 (13)0.0005 (10)0.0104 (10)0.0030 (10)
C200.0576 (14)0.0453 (13)0.0713 (15)0.0138 (11)0.0196 (11)0.0047 (11)
C210.0562 (13)0.0502 (14)0.0758 (16)0.0067 (11)0.0269 (11)0.0055 (12)
O220.0539 (9)0.0510 (10)0.0889 (12)0.0065 (7)0.0160 (8)0.0187 (9)
C230.0579 (13)0.0472 (13)0.0692 (15)0.0103 (11)0.0139 (11)0.0051 (12)
C240.0509 (12)0.0420 (13)0.0609 (15)0.0090 (10)0.0078 (10)0.0097 (11)
C250.0730 (16)0.0533 (15)0.0640 (15)0.0010 (13)0.0114 (12)0.0037 (13)
C260.0736 (17)0.0580 (17)0.092 (2)0.0069 (13)0.0099 (15)0.0164 (16)
C270.0699 (17)0.086 (2)0.093 (2)0.0173 (16)0.0251 (16)0.0460 (19)
C280.094 (2)0.082 (2)0.0629 (17)0.0235 (18)0.0235 (15)0.0181 (16)
C290.0727 (15)0.0585 (16)0.0612 (16)0.0133 (13)0.0093 (12)0.0018 (13)
Geometric parameters (Å, º) top
N1—C51.355 (3)C6—H6A0.9600
N1—N2B1.36 (2)C6—H6B0.9600
N1—N2A1.421 (8)C6—H6C0.9600
N1—C61.434 (3)C7—H7A0.9600
N2A—C31.390 (8)C7—H7B0.9600
N2A—C81.433 (9)C7—H7C0.9600
C9A—C81.363 (5)N14—C151.282 (3)
C9A—C10A1.375 (6)C15—C161.459 (3)
C9A—H9A0.9300C15—H150.9300
C10A—C11A1.369 (6)C16—C211.384 (3)
C10A—H10A0.9300C16—C171.387 (3)
C11A—C12A1.361 (6)C17—C181.367 (3)
C11A—H11A0.9300C17—H170.9300
C12A—C13A1.370 (6)C18—C191.391 (3)
C12A—H12A0.9300C18—H180.9300
C13A—C81.366 (5)C19—O221.361 (2)
C13A—H13A0.9300C19—C201.373 (3)
N2B—C81.43 (2)C20—C211.380 (3)
N2B—C31.47 (2)C20—H200.9300
C9B—C10B1.373 (10)C21—H210.9300
C9B—C81.376 (10)O22—C231.438 (2)
C9B—H9B0.9300C23—C241.487 (3)
C10B—C11B1.377 (10)C23—H23A0.9700
C10B—H10B0.9300C23—H23B0.9700
C11B—C12B1.375 (10)C24—C251.376 (3)
C11B—H11B0.9300C24—C291.379 (3)
C12B—C13B1.377 (10)C25—C261.385 (3)
C12B—H12B0.9300C25—H250.9300
C13B—C81.381 (10)C26—C271.371 (4)
C13B—H13B0.9300C26—H260.9300
O3—C31.233 (2)C27—C281.364 (4)
C3—C41.432 (3)C27—H270.9300
C4—C51.378 (3)C28—C291.367 (4)
C4—N141.386 (3)C28—H280.9300
C5—C71.485 (3)C29—H290.9300
C5—N1—N2B108.1 (10)H7A—C7—H7C109.5
C5—N1—N2A106.8 (4)H7B—C7—H7C109.5
C5—N1—C6127.36 (19)C9A—C8—C13A120.3 (5)
N2B—N1—C6124.3 (10)C13A—C8—C9B106.0 (10)
N2A—N1—C6120.4 (4)C9A—C8—C13B135.1 (12)
C3—N2A—N1108.5 (6)C9B—C8—C13B121.5 (14)
C3—N2A—C8125.5 (6)C9A—C8—N2B129.3 (9)
N1—N2A—C8118.0 (6)C13A—C8—N2B110.4 (10)
C8—C9A—C10A119.5 (7)C9B—C8—N2B143.1 (14)
C8—C9A—H9A120.2C13B—C8—N2B95.2 (14)
C10A—C9A—H9A120.2C9A—C8—N2A109.0 (7)
C11A—C10A—C9A120.4 (7)C13A—C8—N2A130.6 (8)
C11A—C10A—H10A119.8C9B—C8—N2A123.2 (12)
C9A—C10A—H10A119.8C13B—C8—N2A115.2 (12)
C12A—C11A—C10A119.4 (6)C15—N14—C4120.29 (18)
C12A—C11A—H11A120.3N14—C15—C16121.8 (2)
C10A—C11A—H11A120.3N14—C15—H15119.1
C11A—C12A—C13A120.5 (6)C16—C15—H15119.1
C11A—C12A—H12A119.7C21—C16—C17117.4 (2)
C13A—C12A—H12A119.7C21—C16—C15120.27 (19)
C8—C13A—C12A119.7 (7)C17—C16—C15122.3 (2)
C8—C13A—H13A120.1C18—C17—C16121.5 (2)
C12A—C13A—H13A120.1C18—C17—H17119.2
N1—N2B—C8122.0 (16)C16—C17—H17119.2
N1—N2B—C3107.4 (15)C17—C18—C19120.1 (2)
C8—N2B—C3120.1 (14)C17—C18—H18119.9
C10B—C9B—C8120.7 (19)C19—C18—H18119.9
C10B—C9B—H9B119.6O22—C19—C20126.0 (2)
C8—C9B—H9B119.6O22—C19—C18114.73 (19)
C9B—C10B—C11B115 (2)C20—C19—C18119.3 (2)
C9B—C10B—H10B122.6C19—C20—C21119.8 (2)
C11B—C10B—H10B122.6C19—C20—H20120.1
C12B—C11B—C10B128 (2)C21—C20—H20120.1
C12B—C11B—H11B116.2C20—C21—C16121.8 (2)
C10B—C11B—H11B116.2C20—C21—H21119.1
C11B—C12B—C13B115 (2)C16—C21—H21119.1
C11B—C12B—H12B122.6C19—O22—C23118.30 (16)
C13B—C12B—H12B122.6O22—C23—C24106.39 (16)
C12B—C13B—C8120 (2)O22—C23—H23A110.5
C12B—C13B—H13B119.8C24—C23—H23A110.5
C8—C13B—H13B119.8O22—C23—H23B110.5
O3—C3—N2A122.2 (4)C24—C23—H23B110.5
O3—C3—C4132.8 (2)H23A—C23—H23B108.6
N2A—C3—C4104.9 (4)C25—C24—C29118.6 (2)
O3—C3—N2B123.0 (9)C25—C24—C23121.7 (2)
C4—C3—N2B102.3 (9)C29—C24—C23119.7 (2)
C5—C4—N14122.57 (19)C24—C25—C26120.1 (2)
C5—C4—C3108.27 (19)C24—C25—H25120.0
N14—C4—C3129.16 (19)C26—C25—H25120.0
N1—C5—C4109.51 (18)C27—C26—C25120.2 (3)
N1—C5—C7121.67 (19)C27—C26—H26119.9
C4—C5—C7128.8 (2)C25—C26—H26119.9
N1—C6—H6A109.5C28—C27—C26119.9 (3)
N1—C6—H6B109.5C28—C27—H27120.0
H6A—C6—H6B109.5C26—C27—H27120.0
N1—C6—H6C109.5C27—C28—C29119.9 (3)
H6A—C6—H6C109.5C27—C28—H28120.0
H6B—C6—H6C109.5C29—C28—H28120.0
C5—C7—H7A109.5C28—C29—C24121.3 (3)
C5—C7—H7B109.5C28—C29—H29119.3
H7A—C7—H7B109.5C24—C29—H29119.3
C5—C7—H7C109.5
C5—N1—N2A—C314.6 (7)C10B—C9B—C8—C9A152 (12)
N2B—N1—N2A—C382 (4)C10B—C9B—C8—C13A6 (4)
C6—N1—N2A—C3170.3 (4)C10B—C9B—C8—C13B2 (5)
C5—N1—N2A—C8165.2 (5)C10B—C9B—C8—N2B176 (2)
N2B—N1—N2A—C868 (3)C10B—C9B—C8—N2A177 (2)
C6—N1—N2A—C839.1 (9)C12B—C13B—C8—C9A11 (6)
C8—C9A—C10A—C11A0.3 (18)C12B—C13B—C8—C13A12 (7)
C9A—C10A—C11A—C12A2.6 (16)C12B—C13B—C8—C9B1 (6)
C10A—C11A—C12A—C13A2.8 (16)C12B—C13B—C8—N2B175 (4)
C11A—C12A—C13A—C80 (2)C12B—C13B—C8—N2A179 (3)
C5—N1—N2B—C8165.2 (11)N1—N2B—C8—C9A74 (2)
N2A—N1—N2B—C876 (3)C3—N2B—C8—C9A66.3 (19)
C6—N1—N2B—C810.3 (18)N1—N2B—C8—C13A106.7 (16)
C5—N1—N2B—C320.5 (12)C3—N2B—C8—C13A112.8 (14)
N2A—N1—N2B—C369 (3)N1—N2B—C8—C9B63 (4)
C6—N1—N2B—C3155.0 (7)C3—N2B—C8—C9B77 (3)
C8—C9B—C10B—C11B2 (5)N1—N2B—C8—C13B112 (3)
C9B—C10B—C11B—C12B2 (6)C3—N2B—C8—C13B108 (2)
C10B—C11B—C12B—C13B5 (6)N1—N2B—C8—N2A79 (3)
C11B—C12B—C13B—C84 (6)C3—N2B—C8—N2A62 (3)
N1—N2A—C3—O3170.4 (4)C3—N2A—C8—C9A103.3 (10)
C8—N2A—C3—O322.6 (10)N1—N2A—C8—C9A111.6 (10)
N1—N2A—C3—C413.6 (7)C3—N2A—C8—C13A73.6 (14)
C8—N2A—C3—C4161.4 (7)N1—N2A—C8—C13A71.5 (13)
N1—N2A—C3—N2B72 (3)C3—N2A—C8—C9B110 (2)
C8—N2A—C3—N2B76 (3)N1—N2A—C8—C9B104 (2)
N1—N2B—C3—O3173.8 (6)C3—N2A—C8—C13B69 (3)
C8—N2B—C3—O328.3 (18)N1—N2A—C8—C13B76 (3)
N1—N2B—C3—N2A80 (3)C3—N2A—C8—N2B80 (3)
C8—N2B—C3—N2A66 (3)N1—N2A—C8—N2B65 (3)
N1—N2B—C3—C420.1 (12)C5—C4—N14—C15177.2 (2)
C8—N2B—C3—C4165.6 (12)C3—C4—N14—C153.2 (4)
O3—C3—C4—C5176.7 (3)C4—N14—C15—C16178.91 (19)
N2A—C3—C4—C58.0 (5)N14—C15—C16—C21175.9 (2)
N2B—C3—C4—C512.6 (8)N14—C15—C16—C173.4 (3)
O3—C3—C4—N143.0 (5)C21—C16—C17—C180.0 (4)
N2A—C3—C4—N14172.3 (5)C15—C16—C17—C18179.3 (2)
N2B—C3—C4—N14167.1 (8)C16—C17—C18—C191.0 (4)
N2B—N1—C5—C412.4 (8)C17—C18—C19—O22177.9 (2)
N2A—N1—C5—C49.4 (5)C17—C18—C19—C201.5 (4)
C6—N1—C5—C4162.9 (3)O22—C19—C20—C21178.3 (2)
N2B—N1—C5—C7166.7 (8)C18—C19—C20—C210.9 (4)
N2A—N1—C5—C7171.5 (4)C19—C20—C21—C160.1 (4)
C6—N1—C5—C718.0 (4)C17—C16—C21—C200.5 (3)
N14—C4—C5—N1178.8 (2)C15—C16—C21—C20178.7 (2)
C3—C4—C5—N11.0 (3)C20—C19—O22—C232.2 (3)
N14—C4—C5—C70.3 (4)C18—C19—O22—C23177.04 (19)
C3—C4—C5—C7180.0 (2)C19—O22—C23—C24169.24 (18)
C10A—C9A—C8—C13A3.0 (18)O22—C23—C24—C25101.5 (2)
C10A—C9A—C8—C9B22 (8)O22—C23—C24—C2976.8 (2)
C10A—C9A—C8—C13B10 (3)C29—C24—C25—C261.0 (3)
C10A—C9A—C8—N2B178.0 (14)C23—C24—C25—C26177.3 (2)
C10A—C9A—C8—N2A179.7 (10)C24—C25—C26—C270.3 (4)
C12A—C13A—C8—C9A3 (2)C25—C26—C27—C281.1 (4)
C12A—C13A—C8—C9B4 (2)C26—C27—C28—C290.5 (4)
C12A—C13A—C8—C13B164 (12)C27—C28—C29—C240.8 (4)
C12A—C13A—C8—N2B178.0 (15)C25—C24—C29—C281.6 (3)
C12A—C13A—C8—N2A179.5 (9)C23—C24—C29—C28176.8 (2)

Experimental details

Crystal data
Chemical formulaC25H23N3O2
Mr397.46
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)13.0079 (5), 9.9079 (4), 17.0469 (9)
β (°) 103.674 (4)
V3)2134.75 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.920, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
19519, 4162, 2399
Rint0.047
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.154, 1.03
No. of reflections4162
No. of parameters292
No. of restraints12
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.15

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis PRO (Oxford Diffraction ,2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012), PLATON (Spek, 2009).

 

Acknowledgements

RK acknowledges the Department of Science & Technology for access to the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003. BN thanks the UGC for financial assistance through the BSR one-time grant for the purchase of chemicals. PSN thanks Mangalore University for research facilities and the DST–PURSE for financial assistance.

References

First citationDutkiewicz, G., Shetty, D. N., Narayana, B., Yathirajan, H. S. & Kubicki, M. (2012). Acta Cryst. E68, o1324.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHu, T.-P. (2006). Acta Cryst. E62, o2270–o2271.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, S.-X., Tian, X., Zhen, X.-L., Li, Z.-C. & Han, J.-R. (2008). Acta Cryst. E64, o2245.  Web of Science CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPatole, J., Shingnapurkar, D., Padhyea, S. & Ratledge, C. (2006). Bioorg. Med. Chem. Lett. 16, 1514–1517.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSatyanarayana, V. S. V., Sreevani, P., Sivakumar, A. & Vijayakumar, V. (2008). Arkivoc, 17, 221–233.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, L., Ge, H., Tan, S., Li, H., Song, Y., Zhu, H. & Tan, R. (2007). Eur. J. Med. Chem. 42, 558–564.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds