organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl (E)-3-(anthracen-9-yl)prop-2-enoate

aInstitute of Inorganic Chemistry, University of Hamburg, Hamburg, Germany, bDepartment of Chemical Engineering, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates, and cDepartment of Chemistry, United Arab Emirates University, AL Ain, Abu Dhabi, United Arab Emirates
*Correspondence e-mail: thies@uaeu.ac.ae

(Received 9 December 2012; accepted 17 December 2012; online 22 December 2012)

In the asymmetric unit of the title compound, C19H16O2, there are two symmetry-independent mol­ecules (A and B) that differ in the conformation of the ester eth­oxy group. In the crystal, the mol­ecules form inversion dimers via pairs of C—H⋯O inter­actions. Within the dimers, the anthracenyl units have inter­planar distances of 0.528 (2) and 0.479 (2) Å for dimers of mol­ecules A and B, respectively. Another short C—H⋯O contact between symmetry-independent dimers links them into columns parallel to [10-1]. These columns are arranged into (111) layers and there are ππ stacking inter­actions [centroid–centroid distances = 3.6446 (15) and 3.6531 (15) Å] between the anthracenyl units from the neighbouring columns. In addition, there are C—H⋯π inter­actions between the anthracenyl unit of dimers A and dimers B within the same column.

Related literature

For an analogous preparation of the title compound, see: Nguyen & Weizman (2007[Nguyen, K. & Weizman, H. (2007). J. Chem. Educ. 84, 119-121.]). For modeling of the title compound at the B3LYP/6–31G* level, see: Coleman (2007[Coleman, W. F. (2007). J. Chem. Educ. 84, 121-121.]). For crystal structures of photodimerizable aryl­enes, see: Vishnumurthy et al. (2002[Vishnumurthy, K., Guru Row, T. N. & Venkatesan, K. (2002). Photochem. Photobiol. Sci. 1, 427-430.]); Mascitti & Corey (2006[Mascitti, V. & Corey, E. J. (2006). Tetrahedron Lett. 47, 5879-5882.]); Sonoda (2011[Sonoda, Y. (2011). Molecules, 16, 119-148.]); Schmidt (1964[Schmidt, G. M. J. (1964). J. Chem. Soc., pp. 2014-2021.]). For the photodimerization of anthracenes in the crystal, see: Schmidt (1971[Schmidt, G. M. J. (1971). Pure Appl. Chem., 27, 647-678.]); Ihmels et al. (2000[Ihmels, H., Leusser, D., Pfeiffer, M. & Stalke, D. (2000). Tetrahedron, 56, 6867-6875.]).

[Scheme 1]

Experimental

Crystal data
  • C19H16O2

  • Mr = 276.32

  • Triclinic, [P \overline 1]

  • a = 8.8700 (5) Å

  • b = 12.8918 (7) Å

  • c = 13.1062 (7) Å

  • α = 84.389 (4)°

  • β = 84.620 (4)°

  • γ = 70.771 (5)°

  • V = 1405.28 (13) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.66 mm−1

  • T = 291 K

  • 0.22 × 0.11 × 0.09 mm

Data collection
  • Agilent SuperNova Dual Atlas diffractometer

  • Absorption correction: Gaussian (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.889, Tmax = 0.942

  • 11350 measured reflections

  • 4901 independent reflections

  • 4250 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.171

  • S = 1.10

  • 4901 reflections

  • 381 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1A/C2A/C7A–C9A/C14A and C2A—C7A rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C13A—H13A⋯O1Ai 0.93 2.56 3.455 (3) 163
C18B—H18B⋯O2Aii 0.97 2.56 3.422 (3) 148
C3B—H3B⋯O1Biii 0.93 2.57 3.470 (3) 162
C6A—H6A⋯O2Biv 0.93 2.67 3.438 (3) 140
C19A—H19E⋯O1Bv 0.96 2.66 3.409 (3) 135
C6B—H6BCg1vi 0.93 2.81 3.447 (3) 126
C8B—H8BCg2vi 0.93 2.82 3.439 (3) 124
Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) -x+2, -y+1, -z+1; (iii) -x+2, -y, -z+1; (iv) x, y, z+1; (v) x-1, y+1, z; (vi) -x+1, -y+1, -z+2.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

In our endeavor to carry out [2 + 2]-photocycloaddition of ethyl 3(E)-(9-anthracenyl)propenoate in the solid state, the authors grew single crystals of the title compound to identify intermolecular interactions of the molecule in the crystal, which could control the photocycloaddition (Sonoda, 2011; Schmidt, 1964). In the title compound, the alkyl group forms very different torsion angles with the carboxyl group of the ester function (C17—O2—C18—C19) in molecules A and B, respectively, namely of 178.3 (2) ° in molecule A, and of 87.3 (3) ° in molecule B. Pairs of molecules A and B respectively, are formed by C13A—H13A···O1A (Figure 2) close contact for pairs A, and by C3B—H3B···O1B close contact (Table 1) for pairs B, and with the ring planes of the anthracenyl units of the respective pairs in parallel, but at an offset of 0.528 (2) Å for molecules A and 0.479 (2) Å for molecules B. Pairs A and pairs B interact with each other by C18B—H18B···O2A close contact (Figure 2) to for the [10-1] column. Also, C6B—H6B··· π and C8B—H8B···π interactions (Figure 2) are formed between the pairs B and A in the column. Neighboring columns arranged into [111] layer show partial intercalation to form ππ interaction (Table 1) between the parallel anthracenyl units of the same molecules (A—A and B—B).

The double bonds of two molecules in one pair are aligned parallel to each other at a distance of 5.549 (3) Å for A and 5.627 (3) Å for B. This intermolecular distance between the olefinic moieties is larger than in many of those found for aryl-enes that undergo [2 + 2]-photodimerization readily (Vishnumurthy et al. 2002; Mascitti et al. 2006). However, the anthracenyl units are aligned parallel to each other with an interplanar distance (C1-C8) of 3.945 (3) Å for A molecules and 4.031 (3) Å for B molecules. This distance lies within the distance of less than 4.2 Å, reported for anthracenes in the crystal that undergo photodimerisation (Schmidt, 1971; Ihmels et al., 2000).

Related literature top

For an analogous preparation of the title compound, see: Nguyen & Weizman (2007). For modeling of the title compound at the B3LYP/6–31G* level, see: Coleman (2007). For crystal structures of photodimerizable arylenes, see: Vishnumurthy et al. (2002); Mascitti et al. (2006); Sonoda (2011); Schmidt (1964). For the photodimerization of anthracenes in the crystal, see: Schmidt (1971); Ihmels et al. (2000).

Experimental top

A solventless mixture of 9-anthracenylcarbaldehyde (1.00 g, 4.85 mmol) and ethoxycarbonylmethylidenephosphorane (2.70 g, 7.76 mmol) is heated at 130°C for 3 h. Thereafter, an additional amount of phosphorane (1.00 g, 2.87 mmol) is added and the reaction mixture heated for another hour at 135°C. The cooled solution is subjected directly to column chromatography on silica gel (eluent: MtBE/CHCl3/hexane 1:1:7) to give the title compound (1.24 g, 93%) as a yellow solid; (m.p. 353.6 K). IR: (KBr) ν 3049, 2978, 1718, 1632, 1166, 889, 733, 716 cm-1; δH (400 MHz, CDCl3) 1.35 (3H, t, 3J = 7.2 Hz), 4.31 (2H, q, 3J = 7.2 Hz, OCH2), 6.36 (1H, d, 3J = 16.0 Hz), 7.43 (4H, m), 7.95 (2H, m), 8.17 (2H, m), 8.39 (1H, s), 8.57 (1H, d, 3J = 16.0 Hz); δC (100.5 MHz, CDCl3) 14.5, 61.0, 125.2, 125.4, 127.2, 128.2, 128.8, 129.3, 129.4, 131.2, 141.9, 166.5; MS: Found: 299.1040 (C19H16O2+Na)+; Calcd. for C19H16O2Na: 299.1048. Crystals were grown from cold 2-propanol.

Refinement top

All carbon-bound hydrogen atoms were placed in calculated positions with C—H distances of 0.95 - 1.00 Å and refined as riding with Uiso(H) =xUeq(C), where x = 1.5 for methyl and x = 1.2 for all other H-atoms.

Structure description top

In our endeavor to carry out [2 + 2]-photocycloaddition of ethyl 3(E)-(9-anthracenyl)propenoate in the solid state, the authors grew single crystals of the title compound to identify intermolecular interactions of the molecule in the crystal, which could control the photocycloaddition (Sonoda, 2011; Schmidt, 1964). In the title compound, the alkyl group forms very different torsion angles with the carboxyl group of the ester function (C17—O2—C18—C19) in molecules A and B, respectively, namely of 178.3 (2) ° in molecule A, and of 87.3 (3) ° in molecule B. Pairs of molecules A and B respectively, are formed by C13A—H13A···O1A (Figure 2) close contact for pairs A, and by C3B—H3B···O1B close contact (Table 1) for pairs B, and with the ring planes of the anthracenyl units of the respective pairs in parallel, but at an offset of 0.528 (2) Å for molecules A and 0.479 (2) Å for molecules B. Pairs A and pairs B interact with each other by C18B—H18B···O2A close contact (Figure 2) to for the [10-1] column. Also, C6B—H6B··· π and C8B—H8B···π interactions (Figure 2) are formed between the pairs B and A in the column. Neighboring columns arranged into [111] layer show partial intercalation to form ππ interaction (Table 1) between the parallel anthracenyl units of the same molecules (A—A and B—B).

The double bonds of two molecules in one pair are aligned parallel to each other at a distance of 5.549 (3) Å for A and 5.627 (3) Å for B. This intermolecular distance between the olefinic moieties is larger than in many of those found for aryl-enes that undergo [2 + 2]-photodimerization readily (Vishnumurthy et al. 2002; Mascitti et al. 2006). However, the anthracenyl units are aligned parallel to each other with an interplanar distance (C1-C8) of 3.945 (3) Å for A molecules and 4.031 (3) Å for B molecules. This distance lies within the distance of less than 4.2 Å, reported for anthracenes in the crystal that undergo photodimerisation (Schmidt, 1971; Ihmels et al., 2000).

For an analogous preparation of the title compound, see: Nguyen & Weizman (2007). For modeling of the title compound at the B3LYP/6–31G* level, see: Coleman (2007). For crystal structures of photodimerizable arylenes, see: Vishnumurthy et al. (2002); Mascitti et al. (2006); Sonoda (2011); Schmidt (1964). For the photodimerization of anthracenes in the crystal, see: Schmidt (1971); Ihmels et al. (2000).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within OLEX2 (Dolomanov et al., 2009); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of molecules A and B of the title compound with the atom-numbering scheme. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. Intermolecular C—H···O, C—H···π, and ππ contacts between molecules of the title compound. [Symmetry codes: (i) -x,3 - y,1 - z; (ii) 1 - x,2 - y,1 - z; (iii) x,1 + y,z; (iv) 1 - x,2 - y,2 - z; (v) x,y,z; (vi) 2 - x,1 - y,2 - z; (vii) 2 - x,1 - y,1 - z; (viii) 1 + x,y,-1 + z]
[Figure 3] Fig. 3. The crystal packing diagram showing the C—H···O intermolecular interactions (orange colored) and ππ stacking interactions between anthracenyl units of neighbouring [1 0 -1] columns indicated by yellow arrows. The A molecules are shown in blue.
Ethyl (E)-3-(anthracen-9-yl)prop-2-enoate top
Crystal data top
C19H16O2F(000) = 584
Mr = 276.32Dx = 1.306 Mg m3
Triclinic, P1Melting point: 353.6 K
a = 8.8700 (5) ÅCu Kα radiation, λ = 1.5418 Å
b = 12.8918 (7) ÅCell parameters from 4999 reflections
c = 13.1062 (7) Åθ = 3.6–76.1°
α = 84.389 (4)°µ = 0.66 mm1
β = 84.620 (4)°T = 291 K
γ = 70.771 (5)°Block, translucent intense yellow
V = 1405.28 (13) Å30.22 × 0.11 × 0.09 mm
Z = 4
Data collection top
Agilent SuperNova Dual Atlas
diffractometer
4901 independent reflections
Radiation source: SuperNova (Cu) X-ray Source4250 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.025
Detector resolution: 10.4127 pixels mm-1θmax = 66.0°, θmin = 3.6°
ω scansh = 1010
Absorption correction: gaussian
(CrysAlis PRO; Agilent, 2012)
k = 1015
Tmin = 0.889, Tmax = 0.942l = 1515
11350 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0665P)2 + 2.0996P]
where P = (Fo2 + 2Fc2)/3
4901 reflections(Δ/σ)max = 0.001
381 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C19H16O2γ = 70.771 (5)°
Mr = 276.32V = 1405.28 (13) Å3
Triclinic, P1Z = 4
a = 8.8700 (5) ÅCu Kα radiation
b = 12.8918 (7) ŵ = 0.66 mm1
c = 13.1062 (7) ÅT = 291 K
α = 84.389 (4)°0.22 × 0.11 × 0.09 mm
β = 84.620 (4)°
Data collection top
Agilent SuperNova Dual Atlas
diffractometer
4901 independent reflections
Absorption correction: gaussian
(CrysAlis PRO; Agilent, 2012)
4250 reflections with I > 2σ(I)
Tmin = 0.889, Tmax = 0.942Rint = 0.025
11350 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.171H-atom parameters constrained
S = 1.10Δρmax = 0.29 e Å3
4901 reflectionsΔρmin = 0.26 e Å3
381 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10A1.2110 (3)0.6510 (2)1.14911 (19)0.0233 (6)
C10B0.5292 (3)0.5977 (2)0.65022 (19)0.0226 (5)
C11A1.2162 (3)0.7552 (2)1.1299 (2)0.0248 (6)
C11B0.6625 (3)0.6286 (2)0.6358 (2)0.0252 (6)
C12A1.0823 (3)0.8399 (2)1.0900 (2)0.0247 (6)
C12B0.8112 (3)0.5498 (2)0.60494 (19)0.0232 (5)
C13A0.9467 (3)0.8181 (2)1.07279 (19)0.0217 (5)
C13B0.8205 (3)0.4465 (2)0.58699 (18)0.0211 (5)
C14A0.9348 (3)0.7097 (2)1.09399 (18)0.0185 (5)
C14B0.6822 (3)0.4108 (2)0.59782 (18)0.0188 (5)
C15A0.6563 (3)0.7738 (2)1.03919 (19)0.0189 (5)
C15B0.8340 (3)0.2220 (2)0.53924 (19)0.0192 (5)
C16A0.5756 (3)0.7705 (2)0.95986 (19)0.0195 (5)
C16B0.9259 (3)0.2403 (2)0.45797 (19)0.0192 (5)
C17A0.4367 (3)0.8650 (2)0.92781 (19)0.0187 (5)
C17B1.0714 (3)0.1530 (2)0.42227 (19)0.0186 (5)
C18A0.2639 (3)0.9408 (2)0.7928 (2)0.0241 (6)
C18B1.2700 (3)0.1079 (2)0.2833 (2)0.0253 (6)
C19A0.2370 (3)0.9096 (2)0.6907 (2)0.0287 (6)
C19B1.2224 (4)0.0354 (3)0.2187 (2)0.0381 (7)
C1A0.7963 (3)0.6843 (2)1.07686 (18)0.0179 (5)
C1B0.6856 (3)0.3039 (2)0.57936 (18)0.0192 (5)
C2A0.7926 (3)0.5751 (2)1.09581 (18)0.0182 (5)
C2B0.5461 (3)0.2731 (2)0.59795 (18)0.0187 (5)
C3A0.6545 (3)0.5437 (2)1.08596 (18)0.0205 (5)
C3B0.5413 (3)0.1676 (2)0.57712 (19)0.0218 (5)
C4A0.6582 (3)0.4370 (2)1.10317 (19)0.0238 (5)
C4B0.4033 (3)0.1420 (2)0.5929 (2)0.0242 (5)
C5A0.7991 (3)0.3526 (2)1.1330 (2)0.0257 (6)
C5B0.2589 (3)0.2189 (2)0.6321 (2)0.0234 (5)
C6A0.9315 (3)0.3792 (2)1.14713 (19)0.0234 (5)
C6B0.2578 (3)0.3206 (2)0.65261 (19)0.0218 (5)
C7A0.9337 (3)0.4898 (2)1.13063 (18)0.0208 (5)
C7B0.3988 (3)0.3521 (2)0.63505 (18)0.0191 (5)
C8A1.0680 (3)0.5168 (2)1.14721 (18)0.0213 (5)
C8B0.3970 (3)0.4574 (2)0.65117 (19)0.0213 (5)
C9A1.0724 (3)0.6240 (2)1.13095 (18)0.0195 (5)
C9B0.5332 (3)0.4892 (2)0.63321 (18)0.0197 (5)
H10A1.29940.59601.17460.028*
H10B0.43270.64870.67170.027*
H11A1.30710.77131.14280.030*
H11B0.65690.70020.64600.030*
H12A1.08720.91091.07550.030*
H12B0.90330.57000.59700.028*
H13A0.86040.87461.04680.026*
H13B0.91930.39700.56700.025*
H15A0.62180.83801.07390.023*
H15B0.86550.15230.57350.023*
H16A0.60700.70740.92370.023*
H16B0.89810.30950.42290.023*
H18A1.33670.06270.33620.030*
H18B1.33200.14710.24070.030*
H18C0.29291.00760.78450.029*
H18D0.16730.95380.83790.029*
H19A1.14670.08030.17140.057*
H19B1.17470.01120.26220.057*
H19C1.31550.00920.18110.057*
H19D0.33570.89080.64890.043*
H19E0.15880.97050.65720.043*
H19F0.19910.84740.70050.043*
H3A0.55990.59741.06740.025*
H3B0.63420.11530.55230.026*
H4A0.56680.41921.09520.029*
H4B0.40340.07300.57770.029*
H5A0.80090.27981.14280.031*
H5B0.16610.19970.64360.028*
H6A1.02290.32391.16810.028*
H6B0.16350.37060.67850.026*
H8A1.15800.46141.17000.026*
H8B0.30180.50820.67470.026*
O1A0.3710 (2)0.94528 (14)0.97524 (14)0.0244 (4)
O1B1.1304 (2)0.06439 (14)0.46678 (14)0.0241 (4)
O2A0.3930 (2)0.84993 (14)0.83614 (13)0.0209 (4)
O2B1.1301 (2)0.18662 (14)0.33104 (13)0.0225 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10A0.0158 (12)0.0318 (14)0.0185 (12)0.0022 (10)0.0003 (9)0.0036 (10)
C10B0.0230 (13)0.0200 (12)0.0203 (12)0.0012 (10)0.0014 (10)0.0012 (10)
C11A0.0168 (12)0.0328 (14)0.0258 (13)0.0079 (11)0.0003 (10)0.0077 (11)
C11B0.0307 (14)0.0218 (13)0.0236 (13)0.0092 (11)0.0030 (11)0.0001 (10)
C12A0.0240 (13)0.0235 (13)0.0272 (13)0.0084 (11)0.0023 (11)0.0064 (10)
C12B0.0239 (13)0.0269 (13)0.0207 (12)0.0110 (11)0.0018 (10)0.0005 (10)
C13A0.0178 (12)0.0215 (12)0.0227 (12)0.0022 (10)0.0005 (10)0.0030 (10)
C13B0.0191 (12)0.0263 (13)0.0164 (12)0.0057 (10)0.0007 (9)0.0000 (10)
C14A0.0174 (12)0.0194 (12)0.0155 (11)0.0019 (9)0.0009 (9)0.0027 (9)
C14B0.0185 (12)0.0202 (12)0.0149 (11)0.0022 (10)0.0020 (9)0.0010 (9)
C15A0.0156 (11)0.0167 (11)0.0228 (12)0.0040 (9)0.0015 (9)0.0005 (9)
C15B0.0170 (12)0.0186 (12)0.0214 (12)0.0048 (9)0.0025 (9)0.0007 (9)
C16A0.0166 (11)0.0178 (12)0.0231 (12)0.0049 (9)0.0019 (9)0.0025 (9)
C16B0.0170 (12)0.0176 (12)0.0214 (12)0.0035 (9)0.0024 (9)0.0005 (9)
C17A0.0167 (11)0.0187 (12)0.0214 (12)0.0079 (10)0.0006 (9)0.0003 (10)
C17B0.0162 (11)0.0204 (12)0.0202 (12)0.0068 (10)0.0007 (9)0.0031 (10)
C18A0.0193 (12)0.0204 (13)0.0289 (14)0.0016 (10)0.0061 (10)0.0026 (10)
C18B0.0190 (12)0.0261 (13)0.0265 (13)0.0037 (10)0.0081 (10)0.0042 (11)
C19A0.0302 (14)0.0285 (14)0.0266 (14)0.0084 (12)0.0083 (11)0.0044 (11)
C19B0.0404 (17)0.0382 (17)0.0340 (16)0.0102 (14)0.0088 (13)0.0137 (13)
C1A0.0163 (11)0.0180 (12)0.0161 (11)0.0013 (9)0.0014 (9)0.0028 (9)
C1B0.0186 (12)0.0218 (12)0.0144 (11)0.0033 (10)0.0017 (9)0.0010 (9)
C2A0.0181 (12)0.0191 (12)0.0137 (11)0.0016 (10)0.0008 (9)0.0006 (9)
C2B0.0176 (12)0.0210 (12)0.0149 (11)0.0027 (10)0.0016 (9)0.0001 (9)
C3A0.0194 (12)0.0221 (13)0.0176 (12)0.0037 (10)0.0002 (9)0.0011 (9)
C3B0.0189 (12)0.0218 (13)0.0219 (12)0.0035 (10)0.0012 (10)0.0017 (10)
C4A0.0279 (13)0.0266 (13)0.0187 (12)0.0119 (11)0.0018 (10)0.0026 (10)
C4B0.0252 (13)0.0214 (13)0.0257 (13)0.0080 (11)0.0005 (10)0.0005 (10)
C5A0.0322 (14)0.0194 (12)0.0239 (13)0.0075 (11)0.0039 (11)0.0021 (10)
C5B0.0178 (12)0.0277 (13)0.0246 (13)0.0081 (10)0.0006 (10)0.0005 (10)
C6A0.0253 (13)0.0190 (12)0.0198 (12)0.0002 (10)0.0013 (10)0.0009 (10)
C6B0.0168 (12)0.0252 (13)0.0198 (12)0.0027 (10)0.0003 (9)0.0004 (10)
C7A0.0213 (12)0.0213 (12)0.0150 (11)0.0017 (10)0.0029 (9)0.0008 (9)
C7B0.0170 (12)0.0226 (12)0.0145 (11)0.0025 (10)0.0005 (9)0.0003 (9)
C8A0.0175 (12)0.0223 (12)0.0174 (12)0.0020 (10)0.0005 (9)0.0004 (9)
C8B0.0182 (12)0.0215 (12)0.0179 (12)0.0023 (10)0.0003 (9)0.0024 (9)
C9A0.0169 (12)0.0228 (12)0.0158 (11)0.0026 (10)0.0012 (9)0.0022 (9)
C9B0.0200 (12)0.0220 (12)0.0143 (11)0.0028 (10)0.0034 (9)0.0001 (9)
O1A0.0202 (9)0.0223 (9)0.0282 (10)0.0021 (7)0.0034 (7)0.0047 (7)
O1B0.0199 (9)0.0215 (9)0.0264 (9)0.0022 (7)0.0016 (7)0.0017 (7)
O2A0.0182 (8)0.0202 (9)0.0213 (9)0.0021 (7)0.0036 (7)0.0004 (7)
O2B0.0188 (9)0.0225 (9)0.0222 (9)0.0033 (7)0.0046 (7)0.0006 (7)
Geometric parameters (Å, º) top
C10A—C11A1.358 (4)C1A—C15A1.476 (3)
C10A—H10A0.9300C1A—C14A1.414 (4)
C10B—H10B0.9300C1A—C2A1.415 (4)
C11A—H11A0.9300C1B—C15B1.479 (3)
C11B—C10B1.359 (4)C2A—C3A1.432 (4)
C11B—H11B0.9300C2A—C7A1.445 (3)
C12A—C11A1.424 (4)C2B—C3B1.429 (4)
C12A—H12A0.9300C2B—C7B1.443 (3)
C12B—C11B1.426 (4)C2B—C1B1.413 (4)
C12B—C13B1.350 (4)C3A—H3A0.9300
C12B—H12B0.9300C3B—H3B0.9300
C13A—C12A1.364 (4)C4A—C5A1.418 (4)
C13A—H13A0.9300C4A—C3A1.362 (4)
C13B—H13B0.9300C4A—H4A0.9300
C14A—C13A1.434 (4)C4B—C3B1.362 (4)
C14A—C9A1.436 (3)C4B—C5B1.424 (4)
C14B—C13B1.436 (4)C4B—H4B0.9300
C14B—C9B1.442 (3)C5A—H5A0.9300
C14B—C1B1.412 (4)C5B—H5B0.9300
C15A—C16A1.328 (4)C6A—C5A1.360 (4)
C15A—H15A0.9300C6A—H6A0.9300
C15B—H15B0.9300C6B—C5B1.361 (4)
C16A—C17A1.478 (3)C6B—H6B0.9300
C16A—H16A0.9300C7A—C6A1.427 (4)
C16B—C17B1.478 (3)C7B—C8B1.389 (4)
C16B—C15B1.330 (4)C7B—C6B1.429 (4)
C16B—H16B0.9300C8A—C7A1.387 (4)
C18A—C19A1.497 (4)C8A—H8A0.9300
C18A—H18D0.9700C8B—H8B0.9300
C18A—H18C0.9700C9A—C10A1.428 (4)
C18B—C19B1.500 (4)C9A—C8A1.391 (4)
C18B—H18B0.9700C9B—C10B1.427 (4)
C18B—H18A0.9700C9B—C8B1.392 (4)
C19A—H19F0.9600O1A—C17A1.207 (3)
C19A—H19E0.9600O1B—C17B1.205 (3)
C19A—H19D0.9600O2A—C18A1.454 (3)
C19B—H19C0.9600O2A—C17A1.347 (3)
C19B—H19B0.9600O2B—C18B1.453 (3)
C19B—H19A0.9600O2B—C17B1.349 (3)
C10A—C11A—H11A120.0C2B—C3B—H3B119.4
C10A—C11A—C12A120.0 (2)C2B—C1B—C15B118.4 (2)
C10A—C9A—C14A119.1 (2)C3A—C4A—C5A121.2 (3)
C10B—C11B—H11B120.4C3A—C4A—H4A119.4
C10B—C11B—C12B119.1 (2)C3A—C2A—C7A117.1 (2)
C10B—C9B—C14B119.0 (2)C3B—C4B—C5B121.3 (2)
C11A—C12A—H12A119.7C3B—C4B—H4B119.4
C11A—C10A—H10A119.4C3B—C2B—C7B117.5 (2)
C11A—C10A—C9A121.3 (2)C4A—C5A—H5A120.3
C11B—C10B—H10B119.1C4A—C3A—H3A119.2
C11B—C10B—C9B121.8 (2)C4A—C3A—C2A121.5 (2)
C11B—C12B—H12B119.4C4B—C3B—H3B119.4
C12A—C11A—H11A120.0C4B—C3B—C2B121.2 (2)
C12A—C13A—H13A119.4C4B—C5B—H5B120.3
C12A—C13A—C14A121.2 (2)C5A—C6A—H6A119.1
C12B—C11B—H11B120.4C5A—C6A—C7A121.7 (2)
C12B—C13B—H13B119.1C5A—C4A—H4A119.4
C12B—C13B—C14B121.9 (2)C5B—C4B—H4B119.4
C13A—C12A—C11A120.7 (2)C5B—C6B—H6B119.4
C13A—C12A—H12A119.7C5B—C6B—C7B121.2 (2)
C13A—C14A—C9A117.7 (2)C6A—C5A—H5A120.3
C13B—C12B—C11B121.1 (2)C6A—C5A—C4A119.4 (2)
C13B—C12B—H12B119.4C6A—C7A—C2A119.0 (2)
C13B—C14B—C9B116.9 (2)C6B—C5B—H5B120.3
C14A—C13A—H13A119.4C6B—C5B—C4B119.5 (2)
C14A—C1A—C15A118.6 (2)C6B—C7B—C2B119.3 (2)
C14A—C1A—C2A120.5 (2)C7A—C6A—H6A119.1
C14B—C13B—H13B119.1C7A—C8A—H8A118.9
C14B—C1B—C15B121.1 (2)C7A—C8A—C9A122.2 (2)
C14B—C1B—C2B120.5 (2)C7B—C8B—H8B118.9
C15A—C16A—C17A121.4 (2)C7B—C8B—C9B122.1 (2)
C15A—C16A—H16A119.3C7B—C6B—H6B119.4
C15B—C16B—C17B121.4 (2)C8A—C7A—C6A121.5 (2)
C15B—C16B—H16B119.3C8A—C7A—C2A119.5 (2)
C16A—C15A—H15A117.3C8A—C9A—C10A121.7 (2)
C16A—C15A—C1A125.5 (2)C8A—C9A—C14A119.2 (2)
C16B—C15B—H15B117.5C8B—C9B—C10B121.4 (2)
C16B—C15B—C1B125.0 (2)C8B—C9B—C14B119.6 (2)
C17A—C16A—H16A119.3C8B—C7B—C6B121.7 (2)
C17A—O2A—C18A115.54 (19)C8B—C7B—C2B119.1 (2)
C17B—C16B—H16B119.3C9A—C10A—H10A119.4
C17B—O2B—C18B116.66 (19)C9A—C8A—H8A118.9
C18A—C19A—H19F109.5C9B—C10B—H10B119.1
C18A—C19A—H19E109.5C9B—C8B—H8B118.9
C18A—C19A—H19D109.5H18A—C18B—H18B108.0
C18B—C19B—H19C109.5H18C—C18A—H18D108.5
C18B—C19B—H19B109.5H19A—C19B—H19C109.5
C18B—C19B—H19A109.5H19A—C19B—H19B109.5
C19A—C18A—H18D110.3H19B—C19B—H19C109.5
C19A—C18A—H18C110.3H19D—C19A—H19F109.5
C19B—C18B—H18B109.4H19D—C19A—H19E109.5
C19B—C18B—H18A109.4H19E—C19A—H19F109.5
C1A—C15A—H15A117.3O1A—C17A—C16A125.9 (2)
C1A—C14A—C13A122.7 (2)O1A—C17A—O2A123.9 (2)
C1A—C14A—C9A119.6 (2)O1B—C17B—C16B125.9 (2)
C1A—C2A—C3A123.9 (2)O1B—C17B—O2B124.2 (2)
C1A—C2A—C7A119.0 (2)O2A—C18A—C19A107.3 (2)
C1B—C15B—H15B117.5O2A—C18A—H18D110.3
C1B—C2B—C3B122.9 (2)O2A—C18A—H18C110.3
C1B—C2B—C7B119.6 (2)O2A—C17A—C16A110.2 (2)
C1B—C14B—C13B124.0 (2)O2B—C18B—C19B111.0 (2)
C1B—C14B—C9B119.1 (2)O2B—C18B—H18B109.4
C2A—C3A—H3A119.2O2B—C18B—H18A109.4
C2A—C1A—C15A121.0 (2)O2B—C17B—C16B109.9 (2)
C10A—C9A—C8A—C7A179.5 (2)C1A—C2A—C7A—C8A1.6 (3)
C10B—C9B—C8B—C7B180.0 (2)C1B—C2B—C3B—C4B177.8 (2)
C11B—C12B—C13B—C14B0.1 (4)C1B—C2B—C7B—C8B0.4 (3)
C12B—C11B—C10B—C9B1.3 (4)C1B—C2B—C7B—C6B179.3 (2)
C13A—C12A—C11A—C10A1.4 (4)C1B—C14B—C13B—C12B179.6 (2)
C13A—C14A—C9A—C10A2.7 (3)C1B—C14B—C9B—C10B179.0 (2)
C13A—C14A—C9A—C8A176.7 (2)C1B—C14B—C9B—C8B1.8 (3)
C13B—C12B—C11B—C10B1.9 (4)C2A—C7A—C6A—C5A1.4 (4)
C13B—C14B—C9B—C10B3.1 (3)C2A—C1A—C15A—C16A49.8 (4)
C13B—C14B—C9B—C8B176.1 (2)C2A—C1A—C14A—C13A177.9 (2)
C13B—C14B—C1B—C15B4.6 (4)C2A—C1A—C14A—C9A0.0 (3)
C13B—C14B—C1B—C2B176.0 (2)C2B—C7B—C8B—C9B0.3 (4)
C14A—C13A—C12A—C11A0.1 (4)C2B—C7B—C6B—C5B2.0 (4)
C14A—C9A—C10A—C11A1.5 (4)C2B—C1B—C15B—C16B129.6 (3)
C14A—C9A—C8A—C7A1.1 (4)C3A—C4A—C5A—C6A1.6 (4)
C14A—C1A—C15A—C16A130.4 (3)C3A—C2A—C7A—C6A3.7 (3)
C14A—C1A—C2A—C3A176.4 (2)C3A—C2A—C7A—C8A176.3 (2)
C14A—C1A—C2A—C7A1.4 (3)C3B—C4B—C5B—C6B1.1 (4)
C14B—C9B—C10B—C11B1.2 (4)C3B—C2B—C7B—C8B176.8 (2)
C14B—C9B—C8B—C7B0.7 (4)C3B—C2B—C7B—C6B2.2 (3)
C14B—C1B—C15B—C16B49.8 (4)C3B—C2B—C1B—C15B1.7 (4)
C15A—C16A—C17A—O2A169.2 (2)C3B—C2B—C1B—C14B177.7 (2)
C15A—C16A—C17A—O1A10.2 (4)C5A—C4A—C3A—C2A0.9 (4)
C15A—C1A—C14A—C13A2.3 (4)C5B—C4B—C3B—C2B0.9 (4)
C15A—C1A—C14A—C9A179.8 (2)C6B—C7B—C8B—C9B179.3 (2)
C15A—C1A—C2A—C3A3.5 (4)C7A—C6A—C5A—C4A1.3 (4)
C15A—C1A—C2A—C7A178.7 (2)C7A—C2A—C3A—C4A3.5 (3)
C15B—C16B—C17B—O2B171.2 (2)C7B—C6B—C5B—C4B0.3 (4)
C15B—C16B—C17B—O1B8.7 (4)C7B—C2B—C3B—C4B0.8 (4)
C17A—O2A—C18A—C19A178.4 (2)C7B—C2B—C1B—C15B178.7 (2)
C17B—C16B—C15B—C1B179.1 (2)C7B—C2B—C1B—C14B0.7 (4)
C17B—O2B—C18B—C19B87.3 (3)C8A—C7A—C6A—C5A178.6 (2)
C18A—O2A—C17A—C16A176.1 (2)C8A—C9A—C10A—C11A177.9 (2)
C18A—O2A—C17A—O1A3.3 (3)C8B—C9B—C10B—C11B178.0 (2)
C18B—O2B—C17B—C16B177.5 (2)C8B—C7B—C6B—C5B176.9 (2)
C18B—O2B—C17B—O1B2.4 (4)C9A—C10A—C11A—C12A0.6 (4)
C1A—C15A—C16A—C17A179.8 (2)C9A—C8A—C7A—C6A179.6 (2)
C1A—C14A—C13A—C12A179.9 (2)C9A—C8A—C7A—C2A0.3 (4)
C1A—C14A—C9A—C10A179.3 (2)C9A—C14A—C13A—C12A1.9 (4)
C1A—C14A—C9A—C8A1.3 (3)C9B—C14B—C13B—C12B2.6 (4)
C1A—C2A—C3A—C4A178.7 (2)C9B—C14B—C1B—C15B177.6 (2)
C1A—C2A—C7A—C6A178.4 (2)C9B—C14B—C1B—C2B1.7 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1A/C2A/C7A–C9A/C14A and C2A—C7A rings, respectively.
D—H···AD—HH···AD···AD—H···A
C13A—H13A···O1Ai0.932.563.455 (3)163
C18B—H18B···O2Aii0.972.563.422 (3)148
C3B—H3B···O1Biii0.932.573.470 (3)162
C6A—H6A···O2Biv0.932.673.438 (3)140
C19A—H19E···O1Bv0.962.663.409 (3)135
C6B—H6B···Cg1vi0.932.813.447 (3)126
C8B—H8B···Cg2vi0.932.823.439 (3)124
Symmetry codes: (i) x+1, y+2, z+2; (ii) x+2, y+1, z+1; (iii) x+2, y, z+1; (iv) x, y, z+1; (v) x1, y+1, z; (vi) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC19H16O2
Mr276.32
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)8.8700 (5), 12.8918 (7), 13.1062 (7)
α, β, γ (°)84.389 (4), 84.620 (4), 70.771 (5)
V3)1405.28 (13)
Z4
Radiation typeCu Kα
µ (mm1)0.66
Crystal size (mm)0.22 × 0.11 × 0.09
Data collection
DiffractometerAgilent SuperNova Dual Atlas
Absorption correctionGaussian
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.889, 0.942
No. of measured, independent and
observed [I > 2σ(I)] reflections
11350, 4901, 4250
Rint0.025
(sin θ/λ)max1)0.593
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.171, 1.10
No. of reflections4901
No. of parameters381
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.26

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) within OLEX2 (Dolomanov et al., 2009), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1A/C2A/C7A–C9A/C14A and C2A—C7A rings, respectively.
D—H···AD—HH···AD···AD—H···A
C13A—H13A···O1Ai0.9302.563.455 (3)163
C18B—H18B···O2Aii0.9702.563.422 (3)148
C3B—H3B···O1Biii0.9302.573.470 (3)162
C6A—H6A···O2Biv0.9302.673.438 (3)140
C19A—H19E···O1Bv0.9602.663.409 (3)135
C6B—H6B···Cg1vi0.9302.813.447 (3)126
C8B—H8B···Cg2vi0.9302.823.439 (3)124
Symmetry codes: (i) x+1, y+2, z+2; (ii) x+2, y+1, z+1; (iii) x+2, y, z+1; (iv) x, y, z+1; (v) x1, y+1, z; (vi) x+1, y+1, z+2.
 

Acknowledgements

The authors thank the UAEU inter­disciplinary grant 31S036 for financial support. They also thank Thirumurugan Prakasam, NYU Abu Dhabi, for the mass spectrometry measurements.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationColeman, W. F. (2007). J. Chem. Educ. 84, 121–121.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIhmels, H., Leusser, D., Pfeiffer, M. & Stalke, D. (2000). Tetrahedron, 56, 6867–6875.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMascitti, V. & Corey, E. J. (2006). Tetrahedron Lett. 47, 5879–5882.  Web of Science CSD CrossRef CAS Google Scholar
First citationNguyen, K. & Weizman, H. (2007). J. Chem. Educ. 84, 119–121.  CrossRef CAS Google Scholar
First citationSchmidt, G. M. J. (1964). J. Chem. Soc., pp. 2014–2021.  Google Scholar
First citationSchmidt, G. M. J. (1971). Pure Appl. Chem., 27, 647–678.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSonoda, Y. (2011). Molecules, 16, 119–148.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVishnumurthy, K., Guru Row, T. N. & Venkatesan, K. (2002). Photochem. Photobiol. Sci. 1, 427–430.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds