organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(Prop-2-yn­yl)-1H-benzimidazol-2(3H)-one

aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'immouzzer, BP 2202 Fès, Morocco, bLaboratoire de Chimie Organique Hétérocyclique URAC21, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco, cInstitute of Nanomaterials and Nanotechnology, MASCIR, Rabat, Morocco, and dLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: ouazzani_chahid@yahoo.fr

(Received 12 December 2012; accepted 14 December 2012; online 22 December 2012)

The benzimidazolone part of the title mol­ecule, C10H8N2O, is almost planar [r.m.s. deviation = 0.014 (1) Å] and the NCH2C≡CH group forms a dihedral angle of 67.95 (6)° with its best plane. In the crystal, mol­ecules form inversion dimers via pairs of N—H⋯O hydrogen bonds. C—H⋯O inter­actions connect the dimers, forming a two-dimensional polymeric network parallel to (100).

Related literature

For pharmacological and biochemical properties of benzimidazole dirivatives, see: Gravatt et al. (1994[Gravatt, G. L., Baguley, B. C., Wilson, W. R. & Denny, W. A. (1994). J. Med. Chem. 37, 4338-4345.]); Horton et al. (2003[Horton, D. A., Bourne, G. T. & Smythe, M. L. (2003). Chem. Rev. 103, 893-930.]); Kim et al. (1996[Kim, J. S., Gatto, B., Yu, C., Liu, A., Liu, L. F. & La Voie, E. J. (1996). J. Med. Chem. 39, 992-998.]); Roth et al. (1997[Roth, T., Morningstar, M. L., Boyer, P. L., Hughes, S. H., Buckheit, R. W. & Michejda, C. J. (1997). J. Med. Chem. 40, 4199-4207.]). For similar structures, see: Ouzidan, Kandri Rodi, Butcheret al. (2011[Ouzidan, Y., Kandri Rodi, Y., Butcher, R. J., Essassi, E. M. & El Ammari, L. (2011). Acta Cryst. E67, o283.]); Ouzidan, Kandri Rodi, Fronczek et al. (2011[Ouzidan, Y., Kandri Rodi, Y., Fronczek, F. R., Venkatraman, R., El Ammari, L. & Essassi, E. M. (2011). Acta Cryst. E67, o362-o363.]); Ouzidan, Kandri Rodi, Jasinski et al. (2011[Ouzidan, Y., Kandri Rodi, Y., Jasinski, J. P., Butcher, R. J., Golen, J. A. & El Ammari, L. (2011). Acta Cryst. E67, o1091.]); Belaziz et al. (2012[Belaziz, D., Kandri Rodi, Y., Ouazzani Chahdi, F., Essassi, E. M., Saadi, M. & El Ammari, L. (2012). Acta Cryst. E68, o3212.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8N2O

  • Mr = 172.18

  • Monoclinic, P 21 /c

  • a = 4.5553 (6) Å

  • b = 18.001 (3) Å

  • c = 10.7488 (13) Å

  • β = 93.645 (8)°

  • V = 879.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.41 × 0.32 × 0.15 mm

Data collection
  • Bruker X8 APEXII diffractometer

  • 10826 measured reflections

  • 2080 independent reflections

  • 1753 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.101

  • S = 1.05

  • 2080 reflections

  • 119 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.95 1.88 2.8226 (12) 174
C10—H10⋯O1ii 0.96 2.39 3.2541 (17) 149
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Benzimidazoles are very useful intermediates/subunits for the development of molecules of pharmaceutical or biological interest. Benzimidazole and its derivatives are an important class of bioactive molecules in the field of drugs and pharmaceuticals. Benzimidazole derivatives have found applications in diverse therapeutic areas including anti-ulcers, anti-hypertensives, anti-virals, anti-fungals, anti-cancers, (Gravatt et al., 1994; Horton et al., 2003; Kim et al., 1996; Roth et al., 1997).

As a continuation of our research work devoted to the development of substituted benzimidazol-2-one derivatives (Ouzidan, Kandri Rodi, Butcher et al., 2011; Ouzidan, Kandri Rodi, Fronczek et al., 2011; Belaziz et al. 2012), we reported in this paper the synthesis of benzimidazol-2-one derivative by action of propargyl bromide with 1H-benzo[d]imidazol-2(3H)-one in the presence of a catalytic quantity of tetra-n-butylammonium bromide under mild conditions to furnish two compounds: di-substituted (Ouzidan, Kandri Rodi, Jasinski et al., 2011) and mono-substituted (Scheme 1).

The two fused five- and six-membered rings building the molecule of the title compound, C10H8N2O, are approximately planar, the largest deviation from the mean plane being 0.014 (2) Å at C1 (Fig.1). The C1–N2–C8–C9 torsion angle along the bond between the benzimidazolone and the prop-2-ynyl groups is -109.99 (12)°. In the crystal, the molecules form centrosymmetric cyclic dimers via a pair of N1–H1···O1 hydrogen-bonds (Fig.2 and Table2). In addition, intermolecular C10–H10···O1 interaction beteen the acetylenic H atom and the carbonyl O atom connects the dimers into (100) layers.

Related literature top

For pharmacological and biochemical properties of benzimidazole dirivatives, see: Gravatt et al. (1994); Horton et al. (2003); Kim et al. (1996); Roth et al. (1997). For similar structures, see: Ouzidan, Kandri Rodi, Butcher et al. (2011); Ouzidan, Kandri Rodi, Fronczek et al. (2011); Ouzidan, Kandri Rodi, Jasinski et al. (2011); Belaziz et al. (2012).

Experimental top

To 1H-benzo[d]imidazol-2(3H)-one (0.2 g, 1.5 mmol), potassium carbonate (0.41 g, 3 mmol) and tetra-n-butylammonium bromide (0.05 g, 0.15 mmol) in DMF (15 ml) was added propargyl bromide (0.16 ml, 1.8 mmol). Stirring was continued at room temperature for 6 h. The salt was removed by filtration and the filtrate concentrated under reduced pressure. The residue was separated by chromatography on a column of silica gel with ethyl acetate/petroleum ether (1/2) as eluent. Colourless crystals were isolated when the solvent was allowed to evaporate (m.p. 399 K).

Refinement top

All H atoms could be located in a difference Fourier map. However, they were placed in calculated positions with N—H = 0.86 Å, C—H = 0.93 Å (aromatic), and C—H = 0.97 Å (methylene) and refined as riding on their parent atoms with Uiso(H) = 1.2 Ueq (C, N).

Structure description top

Benzimidazoles are very useful intermediates/subunits for the development of molecules of pharmaceutical or biological interest. Benzimidazole and its derivatives are an important class of bioactive molecules in the field of drugs and pharmaceuticals. Benzimidazole derivatives have found applications in diverse therapeutic areas including anti-ulcers, anti-hypertensives, anti-virals, anti-fungals, anti-cancers, (Gravatt et al., 1994; Horton et al., 2003; Kim et al., 1996; Roth et al., 1997).

As a continuation of our research work devoted to the development of substituted benzimidazol-2-one derivatives (Ouzidan, Kandri Rodi, Butcher et al., 2011; Ouzidan, Kandri Rodi, Fronczek et al., 2011; Belaziz et al. 2012), we reported in this paper the synthesis of benzimidazol-2-one derivative by action of propargyl bromide with 1H-benzo[d]imidazol-2(3H)-one in the presence of a catalytic quantity of tetra-n-butylammonium bromide under mild conditions to furnish two compounds: di-substituted (Ouzidan, Kandri Rodi, Jasinski et al., 2011) and mono-substituted (Scheme 1).

The two fused five- and six-membered rings building the molecule of the title compound, C10H8N2O, are approximately planar, the largest deviation from the mean plane being 0.014 (2) Å at C1 (Fig.1). The C1–N2–C8–C9 torsion angle along the bond between the benzimidazolone and the prop-2-ynyl groups is -109.99 (12)°. In the crystal, the molecules form centrosymmetric cyclic dimers via a pair of N1–H1···O1 hydrogen-bonds (Fig.2 and Table2). In addition, intermolecular C10–H10···O1 interaction beteen the acetylenic H atom and the carbonyl O atom connects the dimers into (100) layers.

For pharmacological and biochemical properties of benzimidazole dirivatives, see: Gravatt et al. (1994); Horton et al. (2003); Kim et al. (1996); Roth et al. (1997). For similar structures, see: Ouzidan, Kandri Rodi, Butcher et al. (2011); Ouzidan, Kandri Rodi, Fronczek et al. (2011); Ouzidan, Kandri Rodi, Jasinski et al. (2011); Belaziz et al. (2012).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. Intermolecular interactions in the title compound. Hydrogen bonds are shown as dashed lines. Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x, -y + 1/2, z + 1/2.
1-(Prop-2-ynyl)-1H-benzimidazol-2(3H)-one top
Crystal data top
C10H8N2OF(000) = 360
Mr = 172.18Dx = 1.300 Mg m3
Monoclinic, P21/cMelting point: 399 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 4.5553 (6) ÅCell parameters from 2080 reflections
b = 18.001 (3) Åθ = 3.0–27.9°
c = 10.7488 (13) ŵ = 0.09 mm1
β = 93.645 (8)°T = 296 K
V = 879.6 (2) Å3Block, colourless
Z = 40.41 × 0.32 × 0.15 mm
Data collection top
Bruker X8 APEXII
diffractometer
1753 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Graphite monochromatorθmax = 27.9°, θmin = 3.0°
φ and ω scansh = 55
10826 measured reflectionsk = 2323
2080 independent reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0493P)2 + 0.1197P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2080 reflectionsΔρmax = 0.16 e Å3
119 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.018 (4)
Crystal data top
C10H8N2OV = 879.6 (2) Å3
Mr = 172.18Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.5553 (6) ŵ = 0.09 mm1
b = 18.001 (3) ÅT = 296 K
c = 10.7488 (13) Å0.41 × 0.32 × 0.15 mm
β = 93.645 (8)°
Data collection top
Bruker X8 APEXII
diffractometer
1753 reflections with I > 2σ(I)
10826 measured reflectionsRint = 0.020
2080 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.05Δρmax = 0.16 e Å3
2080 reflectionsΔρmin = 0.16 e Å3
119 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.43254 (19)0.40104 (4)0.43888 (7)0.0527 (2)
N10.25564 (19)0.46700 (5)0.60486 (8)0.0425 (2)
H10.35570.51250.59550.051*
N20.0986 (2)0.35310 (5)0.57304 (8)0.0436 (2)
C10.2795 (2)0.40708 (5)0.52935 (9)0.0412 (2)
C20.0662 (2)0.45135 (6)0.69742 (9)0.0412 (2)
C30.0238 (3)0.49315 (7)0.79538 (11)0.0523 (3)
H30.04200.54160.80870.063*
C40.2163 (3)0.46000 (9)0.87330 (12)0.0623 (4)
H40.28060.48680.94030.075*
C50.3150 (3)0.38814 (9)0.85397 (12)0.0625 (4)
H50.44460.36770.90800.075*
C60.2248 (3)0.34587 (7)0.75573 (11)0.0543 (3)
H60.29040.29740.74270.065*
C70.0329 (2)0.37902 (6)0.67788 (9)0.0421 (3)
C80.0605 (3)0.27990 (6)0.51808 (11)0.0539 (3)
H8A0.14970.27890.43850.065*
H8B0.14780.26970.50290.065*
C90.1941 (3)0.22211 (6)0.59936 (12)0.0553 (3)
C100.2989 (4)0.17785 (7)0.66881 (15)0.0737 (4)
H100.37950.14240.72810.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0709 (5)0.0453 (4)0.0429 (4)0.0091 (4)0.0121 (4)0.0023 (3)
N10.0500 (5)0.0341 (4)0.0435 (5)0.0036 (3)0.0030 (4)0.0009 (3)
N20.0516 (5)0.0355 (4)0.0434 (5)0.0065 (4)0.0002 (4)0.0010 (3)
C10.0490 (6)0.0359 (5)0.0381 (5)0.0023 (4)0.0020 (4)0.0038 (4)
C20.0389 (5)0.0424 (5)0.0415 (5)0.0029 (4)0.0029 (4)0.0030 (4)
C30.0491 (6)0.0549 (7)0.0525 (6)0.0059 (5)0.0004 (5)0.0075 (5)
C40.0502 (7)0.0862 (10)0.0506 (7)0.0099 (6)0.0061 (5)0.0070 (6)
C50.0464 (6)0.0881 (10)0.0536 (7)0.0025 (6)0.0081 (5)0.0120 (6)
C60.0478 (6)0.0594 (7)0.0555 (7)0.0086 (5)0.0009 (5)0.0114 (5)
C70.0401 (5)0.0444 (6)0.0411 (5)0.0010 (4)0.0038 (4)0.0049 (4)
C80.0690 (8)0.0412 (6)0.0505 (6)0.0135 (5)0.0032 (5)0.0032 (5)
C90.0709 (8)0.0365 (6)0.0590 (7)0.0124 (5)0.0083 (6)0.0038 (5)
C100.0977 (11)0.0425 (7)0.0799 (10)0.0040 (7)0.0020 (8)0.0087 (6)
Geometric parameters (Å, º) top
N1—C11.3583 (13)C8—H8A0.9700
N1—C21.3869 (13)C8—H8B0.9700
N1—H10.9458C9—C101.1725 (19)
N2—C11.3760 (13)C3—C41.3856 (18)
N2—C71.3900 (14)C3—H30.9300
N2—C81.4500 (13)C6—C51.3848 (19)
C2—C31.3775 (15)C6—H60.9300
C2—C71.3894 (15)C5—C41.381 (2)
O1—C11.2367 (13)C5—H50.9300
C7—C61.3835 (15)C4—H40.9300
C8—C91.4657 (17)C10—H100.9580
C1—N1—C2110.15 (9)N2—C8—H8B109.3
C1—N1—H1124.5C9—C8—H8B109.3
C2—N1—H1125.3H8A—C8—H8B108.0
C1—N2—C7109.75 (9)C10—C9—C8177.04 (14)
C1—N2—C8124.15 (9)C2—C3—C4117.20 (12)
C7—N2—C8126.08 (9)C2—C3—H3121.4
C3—C2—N1131.78 (10)C4—C3—H3121.4
C3—C2—C7121.20 (10)C7—C6—C5116.98 (12)
N1—C2—C7107.02 (9)C7—C6—H6121.5
C6—C7—C2121.62 (10)C5—C6—H6121.5
C6—C7—N2131.84 (10)C4—C5—C6121.32 (12)
C2—C7—N2106.54 (9)C4—C5—H5119.3
O1—C1—N1127.61 (9)C6—C5—H5119.3
O1—C1—N2125.87 (9)C5—C4—C3121.67 (12)
N1—C1—N2106.52 (9)C5—C4—H4119.2
N2—C8—C9111.58 (9)C3—C4—H4119.2
N2—C8—H8A109.3C9—C10—H10177.7
C9—C8—H8A109.3
C1—N1—C2—C3178.95 (11)C8—N2—C1—O10.04 (17)
C1—N1—C2—C70.44 (11)C7—N2—C1—N11.39 (11)
C3—C2—C7—C60.13 (16)C8—N2—C1—N1179.94 (9)
N1—C2—C7—C6179.33 (9)C1—N2—C8—C9109.99 (12)
C3—C2—C7—N2179.88 (9)C7—N2—C8—C968.32 (15)
N1—C2—C7—N20.42 (11)N1—C2—C3—C4179.25 (10)
C1—N2—C7—C6178.59 (11)C7—C2—C3—C40.07 (16)
C8—N2—C7—C60.07 (18)C2—C7—C6—C50.22 (16)
C1—N2—C7—C21.13 (11)N2—C7—C6—C5179.90 (11)
C8—N2—C7—C2179.65 (10)C7—C6—C5—C40.25 (18)
C2—N1—C1—O1178.79 (10)C6—C5—C4—C30.2 (2)
C2—N1—C1—N21.12 (11)C2—C3—C4—C50.10 (18)
C7—N2—C1—O1178.52 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.951.882.8226 (12)174
C10—H10···O1ii0.962.393.2541 (17)149
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H8N2O
Mr172.18
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)4.5553 (6), 18.001 (3), 10.7488 (13)
β (°) 93.645 (8)
V3)879.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.41 × 0.32 × 0.15
Data collection
DiffractometerBruker X8 APEXII
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10826, 2080, 1753
Rint0.020
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.101, 1.05
No. of reflections2080
No. of parameters119
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.16

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.951.882.8226 (12)174
C10—H10···O1ii0.962.393.2541 (17)149
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationBelaziz, D., Kandri Rodi, Y., Ouazzani Chahdi, F., Essassi, E. M., Saadi, M. & El Ammari, L. (2012). Acta Cryst. E68, o3212.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGravatt, G. L., Baguley, B. C., Wilson, W. R. & Denny, W. A. (1994). J. Med. Chem. 37, 4338–4345.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHorton, D. A., Bourne, G. T. & Smythe, M. L. (2003). Chem. Rev. 103, 893–930.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKim, J. S., Gatto, B., Yu, C., Liu, A., Liu, L. F. & La Voie, E. J. (1996). J. Med. Chem. 39, 992–998.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOuzidan, Y., Kandri Rodi, Y., Butcher, R. J., Essassi, E. M. & El Ammari, L. (2011). Acta Cryst. E67, o283.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOuzidan, Y., Kandri Rodi, Y., Fronczek, F. R., Venkatraman, R., El Ammari, L. & Essassi, E. M. (2011). Acta Cryst. E67, o362–o363.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOuzidan, Y., Kandri Rodi, Y., Jasinski, J. P., Butcher, R. J., Golen, J. A. & El Ammari, L. (2011). Acta Cryst. E67, o1091.  CSD CrossRef IUCr Journals Google Scholar
First citationRoth, T., Morningstar, M. L., Boyer, P. L., Hughes, S. H., Buckheit, R. W. & Michejda, C. J. (1997). J. Med. Chem. 40, 4199–4207.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds