organic compounds
[2-(1,3-Benzothiazol-2-ylmethoxy)-5-bromophenyl](4-chlorophenyl)methanone
aCenter for Nano Science and Technology@Polimi, Istituto Italiano di Tecnologia, Via Pascoli 70/3-20133 Milan, Italy, bSchool of Pharmacy and Pharmacology, University of Kwazulu-Natal, Durban 4000, South Africa, and cSchool of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000, South Africa
*Correspondence e-mail: nksusa@gmail.com, venugopala@ukzn.ac.za
In the title compound, C21H13BrClNO2S, the dihedral angle between the planes of the benzothiazole and chlorophenylmethanone groups is 71.34 (6)°. In the crystal, weak C—H⋯N hydrogen bonds lead to dimer formation, whereas Br⋯Cl short contacts [3.4966 (11) Å] form infinite chains along the a-axis direction. Further, the C—H⋯O, C—H⋯π and π–π [centroid–centroid distance = 3.865 (2) Å] interactions stabilize the three-dimensional network.
Related literature
For background to the applications of benzothiazole derivatives, see: Rana et al. (2007); Saeed et al. (2010); Telvekar et al. (2012); Venugopala et al. (2012). For their biological activity, see: Kelarev et al. (2003). For types of interactions involving halogens, see: Nayak et al. (2011).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009) and PARST (Nardelli, 1995).
Supporting information
https://doi.org/10.1107/S1600536812049756/go2078sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812049756/go2078Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536812049756/go2078Isup3.cml
To a solution of (5-bromo-2-hydroxyphenyl)(4-chlorophenyl) methanone (1 mmol) and (2-chloromethyl)benzo[d]thiazole (1 mmol) in dry THF, dry potassium carbonate (1 mmol) was added and stirred at room temperature for 8 h. The reaction mixture was concentrated to remove the solvent, diluted with ethyl acetate, washed with water, brine solution and dried over anhydrous sodium sulfate. The organic layer was concentrated to yield a residue which was purified by
using ethyl acetate and n-hexane as (7:3, Rf = 3/4) to afford the product in 64% as a brown solid (m. p. 450 K). Suitable crystals for single-crystal X-ray study were obtained from ethanol solvent using slow evaporation technique at room temperature.All H atoms were positioned geometrically and refined using a riding model with Uiso(H)= 1.2 Ueq(C).
Substituted benzothiazole derivatives have been reported to exhibit various pharmacological properties such as analgesic, antibacterial, antifungal, antidepressant, antitumor, antihypertensive, anthelmintic, and herbicidal activity (Kelarev et al., 2003). However, the variety of biological features of new benzothiazole derivatives is of great scientific interest (Telvekar et al., 2012; Saeed et al., 2010). In continuation of our interest in synthesis and single-crystal analysis of benzothiazole molecule (Venugopala et al., 2012), here we report the structure of the title compound.
The title compound prefers a conformation where the dihedral angle between the plane of the benzothiazole and the chlorophenyl methanone group is 71.34 (6)° (Fig. 2). The weak C17–H17···N1 hydrogen bonds (Table 1, Fig. 2) link the molecules to form a dimer. The C5–H5···O2, weak hydrogen bond, and the C18–H18···Cg1, C–H···π interaction, (Table 1), link the molecules into sheets which lie in the (101) plane and which run parallel to the b-axis, Cg1 is the centroid of the five membered thiazole ring. This is stabilized by the π–π interaction, Cg2···Cg3, (-x+1, -y, -z), in which the centroid to centroid distance is 3.865 (2) Å, the dihedral angle between the planes is 9.49 (15)° and the perpendicular distance between Cg2 on to the plane of the ring with centroid Cg3 is 3.3415 (14)Å, Cg2 is the centroid of the six membered ring containing atoms C1 to C6 and Cg3 is the centroid of six membered ring containing atoms C9 to C14. A Br···Cl short contact links these sheets along the a axis to give a three-dimensional network (Fig. 3). The Br1···Cl1 distance = 3.4966 (11)Å, Br1···Cl1(x + 1, y , z) and Cl1···.Br1(x - 1, y, z); angle at Br1, C12–Br1···Cl1(x + 1, y , z) = 173.56 (13)°; angle at Cl1, C19–Cl1···Br1(x - 1, y , z) = 138.2 (2)°: Type II; Nayak et al., 2011].
For background to the applications of benzothiazole derivatives, see: Rana et al. (2007); Saeed et al. (2010); Telvekar et al. (2012); Venugopala et al. (2012). For their biological activity, see: Kelarev et al. (2003). For types of interactions involving halogens, see: Nayak et al. (2011).
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell
CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009) and PARST (Nardelli, 1995).C21H13BrClNO2S | F(000) = 920 |
Mr = 458.74 | Dx = 1.643 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.7107 Å |
Hall symbol: -P 2yn | Cell parameters from 450 reflections |
a = 13.7746 (3) Å | θ = 1.0–28.0° |
b = 7.4918 (2) Å | µ = 2.49 mm−1 |
c = 18.7016 (7) Å | T = 292 K |
β = 106.013 (3)° | Plate, colourless |
V = 1855.05 (10) Å3 | 0.21 × 0.19 × 0.06 mm |
Z = 4 |
Oxford Diffraction Xcalibur (Eos, Nova) diffractometer | 3645 independent reflections |
Radiation source: Mova (Mo) X-ray Source | 2451 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.054 |
Detector resolution: 16.0839 pixels mm-1 | θmax = 26.0°, θmin = 3.0° |
ω scans | h = −16→16 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | k = −9→9 |
Tmin = 0.623, Tmax = 0.865 | l = −23→23 |
19324 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.096 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0325P)2 + 0.1234P] where P = (Fo2 + 2Fc2)/3 |
3645 reflections | (Δ/σ)max = 0.001 |
244 parameters | Δρmax = 0.45 e Å−3 |
0 restraints | Δρmin = −0.43 e Å−3 |
C21H13BrClNO2S | V = 1855.05 (10) Å3 |
Mr = 458.74 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 13.7746 (3) Å | µ = 2.49 mm−1 |
b = 7.4918 (2) Å | T = 292 K |
c = 18.7016 (7) Å | 0.21 × 0.19 × 0.06 mm |
β = 106.013 (3)° |
Oxford Diffraction Xcalibur (Eos, Nova) diffractometer | 3645 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | 2451 reflections with I > 2σ(I) |
Tmin = 0.623, Tmax = 0.865 | Rint = 0.054 |
19324 measured reflections |
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.096 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.45 e Å−3 |
3645 reflections | Δρmin = −0.43 e Å−3 |
244 parameters |
Experimental. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.33.34d Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 1.04455 (3) | −0.14743 (5) | 0.15995 (3) | 0.06540 (18) | |
S1 | 0.41791 (7) | 0.14738 (11) | 0.12108 (5) | 0.0461 (2) | |
Cl1 | 0.28248 (7) | −0.33938 (14) | 0.18242 (7) | 0.0736 (3) | |
O1 | 0.61465 (16) | 0.0996 (3) | 0.11015 (12) | 0.0437 (6) | |
N1 | 0.39940 (19) | 0.3398 (3) | 0.00334 (14) | 0.0356 (6) | |
O2 | 0.75803 (17) | −0.0576 (3) | 0.30851 (13) | 0.0563 (7) | |
C14 | 0.7576 (2) | −0.0504 (4) | 0.18309 (18) | 0.0351 (8) | |
C6 | 0.3056 (2) | 0.3399 (4) | 0.01745 (17) | 0.0337 (7) | |
C9 | 0.7118 (2) | 0.0447 (4) | 0.11796 (18) | 0.0359 (8) | |
C17 | 0.5611 (2) | −0.2566 (4) | 0.16701 (16) | 0.0363 (8) | |
H17 | 0.5988 | −0.2865 | 0.1345 | 0.044* | |
C16 | 0.6032 (2) | −0.1492 (4) | 0.22765 (17) | 0.0320 (7) | |
C1 | 0.3006 (2) | 0.2404 (4) | 0.07985 (17) | 0.0393 (8) | |
C20 | 0.4476 (2) | −0.1627 (4) | 0.26215 (18) | 0.0427 (8) | |
H20 | 0.4088 | −0.1295 | 0.2935 | 0.051* | |
C7 | 0.4624 (2) | 0.2449 (4) | 0.05198 (16) | 0.0341 (7) | |
C10 | 0.7655 (2) | 0.0818 (4) | 0.06722 (19) | 0.0432 (8) | |
H10 | 0.7350 | 0.1464 | 0.0244 | 0.052* | |
C8 | 0.5692 (2) | 0.2169 (4) | 0.05054 (18) | 0.0416 (8) | |
H8A | 0.5711 | 0.1649 | 0.0035 | 0.050* | |
H8B | 0.6050 | 0.3298 | 0.0567 | 0.050* | |
C15 | 0.7089 (2) | −0.0826 (4) | 0.24430 (19) | 0.0366 (8) | |
C18 | 0.4637 (2) | −0.3200 (4) | 0.15417 (19) | 0.0414 (8) | |
H18 | 0.4363 | −0.3952 | 0.1141 | 0.050* | |
C5 | 0.2192 (2) | 0.4269 (4) | −0.02485 (18) | 0.0432 (8) | |
H5 | 0.2210 | 0.4945 | −0.0662 | 0.052* | |
C19 | 0.4081 (2) | −0.2704 (4) | 0.20142 (19) | 0.0409 (8) | |
C11 | 0.8638 (2) | 0.0239 (4) | 0.0796 (2) | 0.0447 (9) | |
H11 | 0.8993 | 0.0471 | 0.0448 | 0.054* | |
C2 | 0.2111 (3) | 0.2240 (5) | 0.09968 (19) | 0.0507 (9) | |
H2 | 0.2083 | 0.1569 | 0.1409 | 0.061* | |
C21 | 0.5458 (2) | −0.1054 (4) | 0.27540 (18) | 0.0409 (8) | |
H21 | 0.5743 | −0.0360 | 0.3172 | 0.049* | |
C4 | 0.1317 (3) | 0.4104 (5) | −0.0041 (2) | 0.0542 (10) | |
H4 | 0.0739 | 0.4687 | −0.0317 | 0.065* | |
C13 | 0.8576 (2) | −0.1043 (4) | 0.19534 (19) | 0.0394 (8) | |
H13 | 0.8898 | −0.1650 | 0.2388 | 0.047* | |
C12 | 0.9090 (2) | −0.0684 (4) | 0.1436 (2) | 0.0454 (9) | |
C3 | 0.1270 (3) | 0.3092 (5) | 0.0570 (2) | 0.0572 (10) | |
H3 | 0.0661 | 0.2991 | 0.0691 | 0.069* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0341 (2) | 0.0652 (3) | 0.0997 (4) | 0.00450 (18) | 0.0232 (2) | −0.0024 (2) |
S1 | 0.0439 (5) | 0.0521 (6) | 0.0458 (6) | 0.0111 (4) | 0.0182 (5) | 0.0180 (4) |
Cl1 | 0.0384 (5) | 0.0839 (8) | 0.0968 (9) | −0.0133 (5) | 0.0160 (6) | −0.0076 (6) |
O1 | 0.0339 (12) | 0.0514 (14) | 0.0502 (15) | 0.0117 (10) | 0.0188 (12) | 0.0197 (11) |
N1 | 0.0365 (15) | 0.0345 (15) | 0.0351 (16) | 0.0021 (12) | 0.0087 (13) | 0.0025 (12) |
O2 | 0.0474 (15) | 0.0796 (18) | 0.0373 (15) | −0.0139 (13) | 0.0040 (13) | −0.0010 (13) |
C14 | 0.0302 (17) | 0.0320 (18) | 0.044 (2) | 0.0009 (14) | 0.0111 (16) | −0.0017 (16) |
C6 | 0.0363 (18) | 0.0317 (17) | 0.0325 (18) | 0.0029 (14) | 0.0087 (15) | −0.0003 (15) |
C9 | 0.0304 (17) | 0.0326 (18) | 0.047 (2) | 0.0010 (14) | 0.0139 (16) | −0.0020 (15) |
C17 | 0.040 (2) | 0.0357 (19) | 0.0344 (19) | 0.0064 (15) | 0.0124 (16) | 0.0029 (15) |
C16 | 0.0329 (17) | 0.0315 (17) | 0.0323 (18) | 0.0029 (14) | 0.0100 (15) | 0.0021 (15) |
C1 | 0.0385 (19) | 0.0397 (19) | 0.040 (2) | 0.0061 (15) | 0.0115 (17) | 0.0021 (16) |
C20 | 0.039 (2) | 0.051 (2) | 0.042 (2) | 0.0012 (16) | 0.0183 (18) | 0.0030 (17) |
C7 | 0.0379 (18) | 0.0327 (18) | 0.0324 (18) | 0.0016 (15) | 0.0106 (16) | 0.0007 (15) |
C10 | 0.041 (2) | 0.0414 (19) | 0.050 (2) | 0.0049 (16) | 0.0178 (18) | 0.0057 (16) |
C8 | 0.0389 (19) | 0.043 (2) | 0.044 (2) | 0.0073 (16) | 0.0132 (17) | 0.0108 (17) |
C15 | 0.0364 (18) | 0.0324 (17) | 0.039 (2) | 0.0002 (14) | 0.0068 (17) | −0.0007 (15) |
C18 | 0.043 (2) | 0.037 (2) | 0.042 (2) | −0.0027 (15) | 0.0072 (18) | −0.0031 (16) |
C5 | 0.0387 (19) | 0.049 (2) | 0.039 (2) | 0.0038 (17) | 0.0068 (17) | 0.0043 (16) |
C19 | 0.0290 (18) | 0.043 (2) | 0.049 (2) | −0.0034 (15) | 0.0074 (17) | 0.0082 (17) |
C11 | 0.041 (2) | 0.044 (2) | 0.056 (2) | −0.0013 (16) | 0.0252 (19) | −0.0015 (18) |
C2 | 0.048 (2) | 0.060 (2) | 0.049 (2) | 0.0020 (19) | 0.021 (2) | 0.0089 (19) |
C21 | 0.044 (2) | 0.045 (2) | 0.0316 (19) | −0.0023 (16) | 0.0077 (17) | −0.0041 (15) |
C4 | 0.038 (2) | 0.070 (3) | 0.050 (2) | 0.0113 (19) | 0.0049 (19) | −0.003 (2) |
C13 | 0.0322 (18) | 0.0383 (19) | 0.044 (2) | −0.0004 (14) | 0.0048 (17) | 0.0014 (15) |
C12 | 0.0314 (18) | 0.0378 (19) | 0.068 (3) | −0.0006 (15) | 0.0156 (19) | −0.0073 (19) |
C3 | 0.038 (2) | 0.075 (3) | 0.063 (3) | 0.004 (2) | 0.020 (2) | −0.001 (2) |
Br1—C12 | 1.902 (3) | C20—C19 | 1.377 (4) |
S1—C1 | 1.733 (3) | C20—H20 | 0.9300 |
S1—C7 | 1.737 (3) | C7—C8 | 1.493 (4) |
Cl1—C19 | 1.746 (3) | C10—C11 | 1.380 (4) |
O1—C9 | 1.368 (3) | C10—H10 | 0.9300 |
O1—C8 | 1.422 (3) | C8—H8A | 0.9700 |
N1—C7 | 1.285 (4) | C8—H8B | 0.9700 |
N1—C6 | 1.389 (4) | C18—C19 | 1.371 (4) |
O2—C15 | 1.219 (3) | C18—H18 | 0.9300 |
C14—C13 | 1.392 (4) | C5—C4 | 1.370 (5) |
C14—C9 | 1.402 (4) | C5—H5 | 0.9300 |
C14—C15 | 1.498 (4) | C11—C12 | 1.374 (4) |
C6—C5 | 1.395 (4) | C11—H11 | 0.9300 |
C6—C1 | 1.402 (4) | C2—C3 | 1.370 (5) |
C9—C10 | 1.383 (4) | C2—H2 | 0.9300 |
C17—C18 | 1.380 (4) | C21—H21 | 0.9300 |
C17—C16 | 1.381 (4) | C4—C3 | 1.388 (5) |
C17—H17 | 0.9300 | C4—H4 | 0.9300 |
C16—C21 | 1.385 (4) | C13—C12 | 1.373 (4) |
C16—C15 | 1.489 (4) | C13—H13 | 0.9300 |
C1—C2 | 1.387 (4) | C3—H3 | 0.9300 |
C20—C21 | 1.375 (4) | ||
C1—S1—C7 | 88.70 (15) | H8A—C8—H8B | 108.5 |
C9—O1—C8 | 118.4 (2) | O2—C15—C16 | 120.2 (3) |
C7—N1—C6 | 110.4 (3) | O2—C15—C14 | 118.9 (3) |
C13—C14—C9 | 118.6 (3) | C16—C15—C14 | 120.9 (3) |
C13—C14—C15 | 117.3 (3) | C19—C18—C17 | 118.9 (3) |
C9—C14—C15 | 123.8 (3) | C19—C18—H18 | 120.5 |
N1—C6—C5 | 125.8 (3) | C17—C18—H18 | 120.5 |
N1—C6—C1 | 114.8 (3) | C4—C5—C6 | 118.5 (3) |
C5—C6—C1 | 119.4 (3) | C4—C5—H5 | 120.8 |
O1—C9—C10 | 124.0 (3) | C6—C5—H5 | 120.8 |
O1—C9—C14 | 116.0 (3) | C18—C19—C20 | 121.8 (3) |
C10—C9—C14 | 120.0 (3) | C18—C19—Cl1 | 119.2 (3) |
C18—C17—C16 | 120.7 (3) | C20—C19—Cl1 | 119.0 (3) |
C18—C17—H17 | 119.6 | C12—C11—C10 | 119.4 (3) |
C16—C17—H17 | 119.6 | C12—C11—H11 | 120.3 |
C17—C16—C21 | 118.9 (3) | C10—C11—H11 | 120.3 |
C17—C16—C15 | 122.1 (3) | C3—C2—C1 | 118.3 (3) |
C21—C16—C15 | 119.0 (3) | C3—C2—H2 | 120.8 |
C2—C1—C6 | 121.4 (3) | C1—C2—H2 | 120.8 |
C2—C1—S1 | 129.3 (3) | C20—C21—C16 | 121.2 (3) |
C6—C1—S1 | 109.3 (2) | C20—C21—H21 | 119.4 |
C21—C20—C19 | 118.5 (3) | C16—C21—H21 | 119.4 |
C21—C20—H20 | 120.8 | C5—C4—C3 | 121.8 (3) |
C19—C20—H20 | 120.8 | C5—C4—H4 | 119.1 |
N1—C7—C8 | 122.8 (3) | C3—C4—H4 | 119.1 |
N1—C7—S1 | 116.8 (2) | C12—C13—C14 | 120.4 (3) |
C8—C7—S1 | 120.4 (2) | C12—C13—H13 | 119.8 |
C11—C10—C9 | 120.6 (3) | C14—C13—H13 | 119.8 |
C11—C10—H10 | 119.7 | C13—C12—C11 | 121.0 (3) |
C9—C10—H10 | 119.7 | C13—C12—Br1 | 120.0 (3) |
O1—C8—C7 | 107.2 (2) | C11—C12—Br1 | 119.0 (3) |
O1—C8—H8A | 110.3 | C2—C3—C4 | 120.6 (4) |
C7—C8—H8A | 110.3 | C2—C3—H3 | 119.7 |
O1—C8—H8B | 110.3 | C4—C3—H3 | 119.7 |
C7—C8—H8B | 110.3 | ||
C7—N1—C6—C5 | −179.0 (3) | C21—C16—C15—C14 | −151.8 (3) |
C7—N1—C6—C1 | 0.3 (4) | C13—C14—C15—O2 | 40.1 (4) |
C8—O1—C9—C10 | −6.7 (4) | C9—C14—C15—O2 | −133.8 (3) |
C8—O1—C9—C14 | 171.5 (3) | C13—C14—C15—C16 | −138.1 (3) |
C13—C14—C9—O1 | −177.8 (3) | C9—C14—C15—C16 | 48.0 (4) |
C15—C14—C9—O1 | −4.0 (4) | C16—C17—C18—C19 | 1.9 (5) |
C13—C14—C9—C10 | 0.5 (4) | N1—C6—C5—C4 | 178.6 (3) |
C15—C14—C9—C10 | 174.3 (3) | C1—C6—C5—C4 | −0.6 (5) |
C18—C17—C16—C21 | −0.2 (4) | C17—C18—C19—C20 | −1.5 (5) |
C18—C17—C16—C15 | 178.3 (3) | C17—C18—C19—Cl1 | 176.3 (2) |
N1—C6—C1—C2 | −178.2 (3) | C21—C20—C19—C18 | −0.5 (5) |
C5—C6—C1—C2 | 1.1 (5) | C21—C20—C19—Cl1 | −178.3 (2) |
N1—C6—C1—S1 | 0.5 (3) | C9—C10—C11—C12 | −1.3 (5) |
C5—C6—C1—S1 | 179.8 (2) | C6—C1—C2—C3 | −0.5 (5) |
C7—S1—C1—C2 | 177.7 (3) | S1—C1—C2—C3 | −178.9 (3) |
C7—S1—C1—C6 | −0.8 (2) | C19—C20—C21—C16 | 2.2 (5) |
C6—N1—C7—C8 | 178.9 (3) | C17—C16—C21—C20 | −1.8 (5) |
C6—N1—C7—S1 | −1.0 (3) | C15—C16—C21—C20 | 179.6 (3) |
C1—S1—C7—N1 | 1.1 (3) | C6—C5—C4—C3 | −0.5 (5) |
C1—S1—C7—C8 | −178.8 (3) | C9—C14—C13—C12 | −1.5 (5) |
O1—C9—C10—C11 | 179.0 (3) | C15—C14—C13—C12 | −175.7 (3) |
C14—C9—C10—C11 | 0.9 (5) | C14—C13—C12—C11 | 1.2 (5) |
C9—O1—C8—C7 | 176.2 (2) | C14—C13—C12—Br1 | −178.6 (2) |
N1—C7—C8—O1 | −177.4 (3) | C10—C11—C12—C13 | 0.3 (5) |
S1—C7—C8—O1 | 2.4 (4) | C10—C11—C12—Br1 | 180.0 (2) |
C17—C16—C15—O2 | −148.5 (3) | C1—C2—C3—C4 | −0.5 (5) |
C21—C16—C15—O2 | 30.0 (4) | C5—C4—C3—C2 | 1.1 (6) |
C17—C16—C15—C14 | 29.7 (4) |
Cg1 is the centroid of the thiazole ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O2i | 0.93 | 2.58 | 3.446 (4) | 156 |
C17—H17···N1ii | 0.93 | 2.61 | 3.434 (4) | 147 |
C18—H18···Cg1iii | 0.93 | 2.82 | 3.666 (3) | 151 |
Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) −x+1, −y, −z; (iii) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | C21H13BrClNO2S |
Mr | 458.74 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 292 |
a, b, c (Å) | 13.7746 (3), 7.4918 (2), 18.7016 (7) |
β (°) | 106.013 (3) |
V (Å3) | 1855.05 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.49 |
Crystal size (mm) | 0.21 × 0.19 × 0.06 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur (Eos, Nova) |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) |
Tmin, Tmax | 0.623, 0.865 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 19324, 3645, 2451 |
Rint | 0.054 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.096, 1.07 |
No. of reflections | 3645 |
No. of parameters | 244 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.45, −0.43 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008), PLATON (Spek, 2009) and PARST (Nardelli, 1995).
Cg1 is the centroid of the thiazole ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···O2i | 0.93 | 2.58 | 3.446 (4) | 156 |
C17—H17···N1ii | 0.93 | 2.61 | 3.434 (4) | 147 |
C18—H18···Cg1iii | 0.93 | 2.82 | 3.666 (3) | 151 |
Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) −x+1, −y, −z; (iii) x, y−1, z. |
Acknowledgements
We are thankful to the SSCU, IISc, for the Oxford Diffraction facility funded under DST–FIST (Level II) and the University of KwaZulu-Natal, South Africa, for facilities.
References
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Kelarev, V. I., Kobrakov, K. I. & Rybina, I. I. (2003). Chem. Heterocycl. Compd, 39, 1267–1306. CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Nayak, S. K., Reddy, M. K., Guru Row, T. N. & Chopra, D. (2011). Cryst. Growth Des. 11, 1578–1596. Web of Science CSD CrossRef CAS Google Scholar
Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Rana, A., Siddiqui, N. & Khan, S. A. (2007). J. Pharm. Sci. 69, 10–17. CAS Google Scholar
Saeed, S., Rashid, N., Jones, P. G., Ali, M. & Hussain, R. (2010). Eur. J. Med. Chem. 45, 1323–1331. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Telvekar, V. N., Bairwa, V. K., Satardekar, K. & Bellubi, A. (2012). Bioorg. Med. Chem. Lett. 22, 148–155. Google Scholar
Venugopala, K. N., Nayak, S. K., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2012). Acta Cryst. E68, o3125. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Substituted benzothiazole derivatives have been reported to exhibit various pharmacological properties such as analgesic, antibacterial, antifungal, antidepressant, antitumor, antihypertensive, anthelmintic, and herbicidal activity (Kelarev et al., 2003). However, the variety of biological features of new benzothiazole derivatives is of great scientific interest (Telvekar et al., 2012; Saeed et al., 2010). In continuation of our interest in synthesis and single-crystal analysis of benzothiazole molecule (Venugopala et al., 2012), here we report the structure of the title compound.
The title compound prefers a conformation where the dihedral angle between the plane of the benzothiazole and the chlorophenyl methanone group is 71.34 (6)° (Fig. 2). The weak C17–H17···N1 hydrogen bonds (Table 1, Fig. 2) link the molecules to form a dimer. The C5–H5···O2, weak hydrogen bond, and the C18–H18···Cg1, C–H···π interaction, (Table 1), link the molecules into sheets which lie in the (101) plane and which run parallel to the b-axis, Cg1 is the centroid of the five membered thiazole ring. This is stabilized by the π–π interaction, Cg2···Cg3, (-x+1, -y, -z), in which the centroid to centroid distance is 3.865 (2) Å, the dihedral angle between the planes is 9.49 (15)° and the perpendicular distance between Cg2 on to the plane of the ring with centroid Cg3 is 3.3415 (14)Å, Cg2 is the centroid of the six membered ring containing atoms C1 to C6 and Cg3 is the centroid of six membered ring containing atoms C9 to C14. A Br···Cl short contact links these sheets along the a axis to give a three-dimensional network (Fig. 3). The Br1···Cl1 distance = 3.4966 (11)Å, Br1···Cl1(x + 1, y , z) and Cl1···.Br1(x - 1, y, z); angle at Br1, C12–Br1···Cl1(x + 1, y , z) = 173.56 (13)°; angle at Cl1, C19–Cl1···Br1(x - 1, y , z) = 138.2 (2)°: Type II; Nayak et al., 2011].