organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[2-(1,3-Benzo­thia­zol-2-ylmeth­­oxy)-5-bromo­phen­yl](4-chloro­phen­yl)methanone

aCenter for Nano Science and Technology@Polimi, Istituto Italiano di Tecnologia, Via Pascoli 70/3-20133 Milan, Italy, bSchool of Pharmacy and Pharmacology, University of Kwazulu-Natal, Durban 4000, South Africa, and cSchool of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000, South Africa
*Correspondence e-mail: nksusa@gmail.com, venugopala@ukzn.ac.za

(Received 21 November 2012; accepted 4 December 2012; online 12 December 2012)

In the title compound, C21H13BrClNO2S, the dihedral angle between the planes of the benzothia­zole and chloro­phenyl­methanone groups is 71.34 (6)°. In the crystal, weak C—H⋯N hydrogen bonds lead to dimer formation, whereas Br⋯Cl short contacts [3.4966 (11) Å] form infinite chains along the a-axis direction. Further, the C—H⋯O, C—H⋯π and ππ [centroid–centroid distance = 3.865 (2) Å] inter­actions stabilize the three-dimensional network.

Related literature

For background to the applications of benzothia­zole derivatives, see: Rana et al. (2007[Rana, A., Siddiqui, N. & Khan, S. A. (2007). J. Pharm. Sci. 69, 10-17.]); Saeed et al. (2010[Saeed, S., Rashid, N., Jones, P. G., Ali, M. & Hussain, R. (2010). Eur. J. Med. Chem. 45, 1323-1331.]); Telvekar et al. (2012[Telvekar, V. N., Bairwa, V. K., Satardekar, K. & Bellubi, A. (2012). Bioorg. Med. Chem. Lett. 22, 148-155.]); Venugopala et al. (2012[Venugopala, K. N., Nayak, S. K., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2012). Acta Cryst. E68, o3125.]). For their biological activity, see: Kelarev et al. (2003[Kelarev, V. I., Kobrakov, K. I. & Rybina, I. I. (2003). Chem. Heterocycl. Compd, 39, 1267-1306.]). For types of inter­actions involving halogens, see: Nayak et al. (2011[Nayak, S. K., Reddy, M. K., Guru Row, T. N. & Chopra, D. (2011). Cryst. Growth Des. 11, 1578-1596.]).

[Scheme 1]

Experimental

Crystal data
  • C21H13BrClNO2S

  • Mr = 458.74

  • Monoclinic, P 21 /n

  • a = 13.7746 (3) Å

  • b = 7.4918 (2) Å

  • c = 18.7016 (7) Å

  • β = 106.013 (3)°

  • V = 1855.05 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.49 mm−1

  • T = 292 K

  • 0.21 × 0.19 × 0.06 mm

Data collection
  • Oxford Diffraction Xcalibur (Eos, Nova) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.623, Tmax = 0.865

  • 19324 measured reflections

  • 3645 independent reflections

  • 2451 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.096

  • S = 1.07

  • 3645 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the thia­zole ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O2i 0.93 2.58 3.446 (4) 156
C17—H17⋯N1ii 0.93 2.61 3.434 (4) 147
C18—H18⋯Cg1iii 0.93 2.82 3.666 (3) 151
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y, -z; (iii) x, y-1, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012)[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.] and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

Substituted benzothiazole derivatives have been reported to exhibit various pharmacological properties such as analgesic, antibacterial, antifungal, antidepressant, antitumor, antihypertensive, anthelmintic, and herbicidal activity (Kelarev et al., 2003). However, the variety of biological features of new benzothiazole derivatives is of great scientific interest (Telvekar et al., 2012; Saeed et al., 2010). In continuation of our interest in synthesis and single-crystal analysis of benzothiazole molecule (Venugopala et al., 2012), here we report the structure of the title compound.

The title compound prefers a conformation where the dihedral angle between the plane of the benzothiazole and the chlorophenyl methanone group is 71.34 (6)° (Fig. 2). The weak C17–H17···N1 hydrogen bonds (Table 1, Fig. 2) link the molecules to form a dimer. The C5–H5···O2, weak hydrogen bond, and the C18–H18···Cg1, C–H···π interaction, (Table 1), link the molecules into sheets which lie in the (101) plane and which run parallel to the b-axis, Cg1 is the centroid of the five membered thiazole ring. This is stabilized by the ππ interaction, Cg2···Cg3, (-x+1, -y, -z), in which the centroid to centroid distance is 3.865 (2) Å, the dihedral angle between the planes is 9.49 (15)° and the perpendicular distance between Cg2 on to the plane of the ring with centroid Cg3 is 3.3415 (14)Å, Cg2 is the centroid of the six membered ring containing atoms C1 to C6 and Cg3 is the centroid of six membered ring containing atoms C9 to C14. A Br···Cl short contact links these sheets along the a axis to give a three-dimensional network (Fig. 3). The Br1···Cl1 distance = 3.4966 (11)Å, Br1···Cl1(x + 1, y , z) and Cl1···.Br1(x - 1, y, z); angle at Br1, C12–Br1···Cl1(x + 1, y , z) = 173.56 (13)°; angle at Cl1, C19–Cl1···Br1(x - 1, y , z) = 138.2 (2)°: Type II; Nayak et al., 2011].

Related literature top

For background to the applications of benzothiazole derivatives, see: Rana et al. (2007); Saeed et al. (2010); Telvekar et al. (2012); Venugopala et al. (2012). For their biological activity, see: Kelarev et al. (2003). For types of interactions involving halogens, see: Nayak et al. (2011).

Experimental top

To a solution of (5-bromo-2-hydroxyphenyl)(4-chlorophenyl) methanone (1 mmol) and (2-chloromethyl)benzo[d]thiazole (1 mmol) in dry THF, dry potassium carbonate (1 mmol) was added and stirred at room temperature for 8 h. The reaction mixture was concentrated to remove the solvent, diluted with ethyl acetate, washed with water, brine solution and dried over anhydrous sodium sulfate. The organic layer was concentrated to yield a residue which was purified by column chromatography using ethyl acetate and n-hexane as eluent (7:3, Rf = 3/4) to afford the product in 64% as a brown solid (m. p. 450 K). Suitable crystals for single-crystal X-ray study were obtained from ethanol solvent using slow evaporation technique at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with Uiso(H)= 1.2 Ueq(C).

Structure description top

Substituted benzothiazole derivatives have been reported to exhibit various pharmacological properties such as analgesic, antibacterial, antifungal, antidepressant, antitumor, antihypertensive, anthelmintic, and herbicidal activity (Kelarev et al., 2003). However, the variety of biological features of new benzothiazole derivatives is of great scientific interest (Telvekar et al., 2012; Saeed et al., 2010). In continuation of our interest in synthesis and single-crystal analysis of benzothiazole molecule (Venugopala et al., 2012), here we report the structure of the title compound.

The title compound prefers a conformation where the dihedral angle between the plane of the benzothiazole and the chlorophenyl methanone group is 71.34 (6)° (Fig. 2). The weak C17–H17···N1 hydrogen bonds (Table 1, Fig. 2) link the molecules to form a dimer. The C5–H5···O2, weak hydrogen bond, and the C18–H18···Cg1, C–H···π interaction, (Table 1), link the molecules into sheets which lie in the (101) plane and which run parallel to the b-axis, Cg1 is the centroid of the five membered thiazole ring. This is stabilized by the ππ interaction, Cg2···Cg3, (-x+1, -y, -z), in which the centroid to centroid distance is 3.865 (2) Å, the dihedral angle between the planes is 9.49 (15)° and the perpendicular distance between Cg2 on to the plane of the ring with centroid Cg3 is 3.3415 (14)Å, Cg2 is the centroid of the six membered ring containing atoms C1 to C6 and Cg3 is the centroid of six membered ring containing atoms C9 to C14. A Br···Cl short contact links these sheets along the a axis to give a three-dimensional network (Fig. 3). The Br1···Cl1 distance = 3.4966 (11)Å, Br1···Cl1(x + 1, y , z) and Cl1···.Br1(x - 1, y, z); angle at Br1, C12–Br1···Cl1(x + 1, y , z) = 173.56 (13)°; angle at Cl1, C19–Cl1···Br1(x - 1, y , z) = 138.2 (2)°: Type II; Nayak et al., 2011].

For background to the applications of benzothiazole derivatives, see: Rana et al. (2007); Saeed et al. (2010); Telvekar et al. (2012); Venugopala et al. (2012). For their biological activity, see: Kelarev et al. (2003). For types of interactions involving halogens, see: Nayak et al. (2011).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. Molecular structure shows the atom labelling scheme with displacement ellipsoids for non-H atoms at 50% probability level, hydrogen atoms are arbitrary circle.
[Figure 2] Fig. 2. The C—H···N hydrogen bond dimers and Br···Cl short contacts of infinite chains along a axis.
[Figure 3] Fig. 3. Sheets of three-dimensional network structure.
[2-(1,3-Benzothiazol-2-ylmethoxy)-5-bromophenyl](4-chlorophenyl)methanone top
Crystal data top
C21H13BrClNO2SF(000) = 920
Mr = 458.74Dx = 1.643 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ynCell parameters from 450 reflections
a = 13.7746 (3) Åθ = 1.0–28.0°
b = 7.4918 (2) ŵ = 2.49 mm1
c = 18.7016 (7) ÅT = 292 K
β = 106.013 (3)°Plate, colourless
V = 1855.05 (10) Å30.21 × 0.19 × 0.06 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur (Eos, Nova)
diffractometer
3645 independent reflections
Radiation source: Mova (Mo) X-ray Source2451 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.054
Detector resolution: 16.0839 pixels mm-1θmax = 26.0°, θmin = 3.0°
ω scansh = 1616
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 99
Tmin = 0.623, Tmax = 0.865l = 2323
19324 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0325P)2 + 0.1234P]
where P = (Fo2 + 2Fc2)/3
3645 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C21H13BrClNO2SV = 1855.05 (10) Å3
Mr = 458.74Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.7746 (3) ŵ = 2.49 mm1
b = 7.4918 (2) ÅT = 292 K
c = 18.7016 (7) Å0.21 × 0.19 × 0.06 mm
β = 106.013 (3)°
Data collection top
Oxford Diffraction Xcalibur (Eos, Nova)
diffractometer
3645 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2451 reflections with I > 2σ(I)
Tmin = 0.623, Tmax = 0.865Rint = 0.054
19324 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.07Δρmax = 0.45 e Å3
3645 reflectionsΔρmin = 0.43 e Å3
244 parameters
Special details top

Experimental. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.33.34d Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.04455 (3)0.14743 (5)0.15995 (3)0.06540 (18)
S10.41791 (7)0.14738 (11)0.12108 (5)0.0461 (2)
Cl10.28248 (7)0.33938 (14)0.18242 (7)0.0736 (3)
O10.61465 (16)0.0996 (3)0.11015 (12)0.0437 (6)
N10.39940 (19)0.3398 (3)0.00334 (14)0.0356 (6)
O20.75803 (17)0.0576 (3)0.30851 (13)0.0563 (7)
C140.7576 (2)0.0504 (4)0.18309 (18)0.0351 (8)
C60.3056 (2)0.3399 (4)0.01745 (17)0.0337 (7)
C90.7118 (2)0.0447 (4)0.11796 (18)0.0359 (8)
C170.5611 (2)0.2566 (4)0.16701 (16)0.0363 (8)
H170.59880.28650.13450.044*
C160.6032 (2)0.1492 (4)0.22765 (17)0.0320 (7)
C10.3006 (2)0.2404 (4)0.07985 (17)0.0393 (8)
C200.4476 (2)0.1627 (4)0.26215 (18)0.0427 (8)
H200.40880.12950.29350.051*
C70.4624 (2)0.2449 (4)0.05198 (16)0.0341 (7)
C100.7655 (2)0.0818 (4)0.06722 (19)0.0432 (8)
H100.73500.14640.02440.052*
C80.5692 (2)0.2169 (4)0.05054 (18)0.0416 (8)
H8A0.57110.16490.00350.050*
H8B0.60500.32980.05670.050*
C150.7089 (2)0.0826 (4)0.24430 (19)0.0366 (8)
C180.4637 (2)0.3200 (4)0.15417 (19)0.0414 (8)
H180.43630.39520.11410.050*
C50.2192 (2)0.4269 (4)0.02485 (18)0.0432 (8)
H50.22100.49450.06620.052*
C190.4081 (2)0.2704 (4)0.20142 (19)0.0409 (8)
C110.8638 (2)0.0239 (4)0.0796 (2)0.0447 (9)
H110.89930.04710.04480.054*
C20.2111 (3)0.2240 (5)0.09968 (19)0.0507 (9)
H20.20830.15690.14090.061*
C210.5458 (2)0.1054 (4)0.27540 (18)0.0409 (8)
H210.57430.03600.31720.049*
C40.1317 (3)0.4104 (5)0.0041 (2)0.0542 (10)
H40.07390.46870.03170.065*
C130.8576 (2)0.1043 (4)0.19534 (19)0.0394 (8)
H130.88980.16500.23880.047*
C120.9090 (2)0.0684 (4)0.1436 (2)0.0454 (9)
C30.1270 (3)0.3092 (5)0.0570 (2)0.0572 (10)
H30.06610.29910.06910.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0341 (2)0.0652 (3)0.0997 (4)0.00450 (18)0.0232 (2)0.0024 (2)
S10.0439 (5)0.0521 (6)0.0458 (6)0.0111 (4)0.0182 (5)0.0180 (4)
Cl10.0384 (5)0.0839 (8)0.0968 (9)0.0133 (5)0.0160 (6)0.0076 (6)
O10.0339 (12)0.0514 (14)0.0502 (15)0.0117 (10)0.0188 (12)0.0197 (11)
N10.0365 (15)0.0345 (15)0.0351 (16)0.0021 (12)0.0087 (13)0.0025 (12)
O20.0474 (15)0.0796 (18)0.0373 (15)0.0139 (13)0.0040 (13)0.0010 (13)
C140.0302 (17)0.0320 (18)0.044 (2)0.0009 (14)0.0111 (16)0.0017 (16)
C60.0363 (18)0.0317 (17)0.0325 (18)0.0029 (14)0.0087 (15)0.0003 (15)
C90.0304 (17)0.0326 (18)0.047 (2)0.0010 (14)0.0139 (16)0.0020 (15)
C170.040 (2)0.0357 (19)0.0344 (19)0.0064 (15)0.0124 (16)0.0029 (15)
C160.0329 (17)0.0315 (17)0.0323 (18)0.0029 (14)0.0100 (15)0.0021 (15)
C10.0385 (19)0.0397 (19)0.040 (2)0.0061 (15)0.0115 (17)0.0021 (16)
C200.039 (2)0.051 (2)0.042 (2)0.0012 (16)0.0183 (18)0.0030 (17)
C70.0379 (18)0.0327 (18)0.0324 (18)0.0016 (15)0.0106 (16)0.0007 (15)
C100.041 (2)0.0414 (19)0.050 (2)0.0049 (16)0.0178 (18)0.0057 (16)
C80.0389 (19)0.043 (2)0.044 (2)0.0073 (16)0.0132 (17)0.0108 (17)
C150.0364 (18)0.0324 (17)0.039 (2)0.0002 (14)0.0068 (17)0.0007 (15)
C180.043 (2)0.037 (2)0.042 (2)0.0027 (15)0.0072 (18)0.0031 (16)
C50.0387 (19)0.049 (2)0.039 (2)0.0038 (17)0.0068 (17)0.0043 (16)
C190.0290 (18)0.043 (2)0.049 (2)0.0034 (15)0.0074 (17)0.0082 (17)
C110.041 (2)0.044 (2)0.056 (2)0.0013 (16)0.0252 (19)0.0015 (18)
C20.048 (2)0.060 (2)0.049 (2)0.0020 (19)0.021 (2)0.0089 (19)
C210.044 (2)0.045 (2)0.0316 (19)0.0023 (16)0.0077 (17)0.0041 (15)
C40.038 (2)0.070 (3)0.050 (2)0.0113 (19)0.0049 (19)0.003 (2)
C130.0322 (18)0.0383 (19)0.044 (2)0.0004 (14)0.0048 (17)0.0014 (15)
C120.0314 (18)0.0378 (19)0.068 (3)0.0006 (15)0.0156 (19)0.0073 (19)
C30.038 (2)0.075 (3)0.063 (3)0.004 (2)0.020 (2)0.001 (2)
Geometric parameters (Å, º) top
Br1—C121.902 (3)C20—C191.377 (4)
S1—C11.733 (3)C20—H200.9300
S1—C71.737 (3)C7—C81.493 (4)
Cl1—C191.746 (3)C10—C111.380 (4)
O1—C91.368 (3)C10—H100.9300
O1—C81.422 (3)C8—H8A0.9700
N1—C71.285 (4)C8—H8B0.9700
N1—C61.389 (4)C18—C191.371 (4)
O2—C151.219 (3)C18—H180.9300
C14—C131.392 (4)C5—C41.370 (5)
C14—C91.402 (4)C5—H50.9300
C14—C151.498 (4)C11—C121.374 (4)
C6—C51.395 (4)C11—H110.9300
C6—C11.402 (4)C2—C31.370 (5)
C9—C101.383 (4)C2—H20.9300
C17—C181.380 (4)C21—H210.9300
C17—C161.381 (4)C4—C31.388 (5)
C17—H170.9300C4—H40.9300
C16—C211.385 (4)C13—C121.373 (4)
C16—C151.489 (4)C13—H130.9300
C1—C21.387 (4)C3—H30.9300
C20—C211.375 (4)
C1—S1—C788.70 (15)H8A—C8—H8B108.5
C9—O1—C8118.4 (2)O2—C15—C16120.2 (3)
C7—N1—C6110.4 (3)O2—C15—C14118.9 (3)
C13—C14—C9118.6 (3)C16—C15—C14120.9 (3)
C13—C14—C15117.3 (3)C19—C18—C17118.9 (3)
C9—C14—C15123.8 (3)C19—C18—H18120.5
N1—C6—C5125.8 (3)C17—C18—H18120.5
N1—C6—C1114.8 (3)C4—C5—C6118.5 (3)
C5—C6—C1119.4 (3)C4—C5—H5120.8
O1—C9—C10124.0 (3)C6—C5—H5120.8
O1—C9—C14116.0 (3)C18—C19—C20121.8 (3)
C10—C9—C14120.0 (3)C18—C19—Cl1119.2 (3)
C18—C17—C16120.7 (3)C20—C19—Cl1119.0 (3)
C18—C17—H17119.6C12—C11—C10119.4 (3)
C16—C17—H17119.6C12—C11—H11120.3
C17—C16—C21118.9 (3)C10—C11—H11120.3
C17—C16—C15122.1 (3)C3—C2—C1118.3 (3)
C21—C16—C15119.0 (3)C3—C2—H2120.8
C2—C1—C6121.4 (3)C1—C2—H2120.8
C2—C1—S1129.3 (3)C20—C21—C16121.2 (3)
C6—C1—S1109.3 (2)C20—C21—H21119.4
C21—C20—C19118.5 (3)C16—C21—H21119.4
C21—C20—H20120.8C5—C4—C3121.8 (3)
C19—C20—H20120.8C5—C4—H4119.1
N1—C7—C8122.8 (3)C3—C4—H4119.1
N1—C7—S1116.8 (2)C12—C13—C14120.4 (3)
C8—C7—S1120.4 (2)C12—C13—H13119.8
C11—C10—C9120.6 (3)C14—C13—H13119.8
C11—C10—H10119.7C13—C12—C11121.0 (3)
C9—C10—H10119.7C13—C12—Br1120.0 (3)
O1—C8—C7107.2 (2)C11—C12—Br1119.0 (3)
O1—C8—H8A110.3C2—C3—C4120.6 (4)
C7—C8—H8A110.3C2—C3—H3119.7
O1—C8—H8B110.3C4—C3—H3119.7
C7—C8—H8B110.3
C7—N1—C6—C5179.0 (3)C21—C16—C15—C14151.8 (3)
C7—N1—C6—C10.3 (4)C13—C14—C15—O240.1 (4)
C8—O1—C9—C106.7 (4)C9—C14—C15—O2133.8 (3)
C8—O1—C9—C14171.5 (3)C13—C14—C15—C16138.1 (3)
C13—C14—C9—O1177.8 (3)C9—C14—C15—C1648.0 (4)
C15—C14—C9—O14.0 (4)C16—C17—C18—C191.9 (5)
C13—C14—C9—C100.5 (4)N1—C6—C5—C4178.6 (3)
C15—C14—C9—C10174.3 (3)C1—C6—C5—C40.6 (5)
C18—C17—C16—C210.2 (4)C17—C18—C19—C201.5 (5)
C18—C17—C16—C15178.3 (3)C17—C18—C19—Cl1176.3 (2)
N1—C6—C1—C2178.2 (3)C21—C20—C19—C180.5 (5)
C5—C6—C1—C21.1 (5)C21—C20—C19—Cl1178.3 (2)
N1—C6—C1—S10.5 (3)C9—C10—C11—C121.3 (5)
C5—C6—C1—S1179.8 (2)C6—C1—C2—C30.5 (5)
C7—S1—C1—C2177.7 (3)S1—C1—C2—C3178.9 (3)
C7—S1—C1—C60.8 (2)C19—C20—C21—C162.2 (5)
C6—N1—C7—C8178.9 (3)C17—C16—C21—C201.8 (5)
C6—N1—C7—S11.0 (3)C15—C16—C21—C20179.6 (3)
C1—S1—C7—N11.1 (3)C6—C5—C4—C30.5 (5)
C1—S1—C7—C8178.8 (3)C9—C14—C13—C121.5 (5)
O1—C9—C10—C11179.0 (3)C15—C14—C13—C12175.7 (3)
C14—C9—C10—C110.9 (5)C14—C13—C12—C111.2 (5)
C9—O1—C8—C7176.2 (2)C14—C13—C12—Br1178.6 (2)
N1—C7—C8—O1177.4 (3)C10—C11—C12—C130.3 (5)
S1—C7—C8—O12.4 (4)C10—C11—C12—Br1180.0 (2)
C17—C16—C15—O2148.5 (3)C1—C2—C3—C40.5 (5)
C21—C16—C15—O230.0 (4)C5—C4—C3—C21.1 (6)
C17—C16—C15—C1429.7 (4)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the thiazole ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.932.583.446 (4)156
C17—H17···N1ii0.932.613.434 (4)147
C18—H18···Cg1iii0.932.823.666 (3)151
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1, y, z; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC21H13BrClNO2S
Mr458.74
Crystal system, space groupMonoclinic, P21/n
Temperature (K)292
a, b, c (Å)13.7746 (3), 7.4918 (2), 18.7016 (7)
β (°) 106.013 (3)
V3)1855.05 (10)
Z4
Radiation typeMo Kα
µ (mm1)2.49
Crystal size (mm)0.21 × 0.19 × 0.06
Data collection
DiffractometerOxford Diffraction Xcalibur (Eos, Nova)
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.623, 0.865
No. of measured, independent and
observed [I > 2σ(I)] reflections
19324, 3645, 2451
Rint0.054
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.096, 1.07
No. of reflections3645
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.43

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008), PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the thiazole ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.932.583.446 (4)156
C17—H17···N1ii0.932.613.434 (4)147
C18—H18···Cg1iii0.932.823.666 (3)151
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1, y, z; (iii) x, y1, z.
 

Acknowledgements

We are thankful to the SSCU, IISc, for the Oxford Diffraction facility funded under DST–FIST (Level II) and the University of KwaZulu-Natal, South Africa, for facilities.

References

First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKelarev, V. I., Kobrakov, K. I. & Rybina, I. I. (2003). Chem. Heterocycl. Compd, 39, 1267–1306.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationNayak, S. K., Reddy, M. K., Guru Row, T. N. & Chopra, D. (2011). Cryst. Growth Des. 11, 1578–1596.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationRana, A., Siddiqui, N. & Khan, S. A. (2007). J. Pharm. Sci. 69, 10–17.  CAS Google Scholar
First citationSaeed, S., Rashid, N., Jones, P. G., Ali, M. & Hussain, R. (2010). Eur. J. Med. Chem. 45, 1323–1331.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTelvekar, V. N., Bairwa, V. K., Satardekar, K. & Bellubi, A. (2012). Bioorg. Med. Chem. Lett. 22, 148–155.  Google Scholar
First citationVenugopala, K. N., Nayak, S. K., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2012). Acta Cryst. E68, o3125.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds