organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Phenyl­benzo[d]naphtho­[2,3-b]thio­phene

aCAS in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai-25, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai-25, India
*Correspondence e-mail: shirai2011@gmail.com

(Received 19 November 2012; accepted 3 December 2012; online 8 December 2012)

In the title compound, C22H14S, the r.m.s. deviation from the mean plane of the four-fused-ring naphtho­thio­phene unit is 0.056 Å. The dihedral angle between the naphtho­thio­phene plane and the pendant phenyl ring is 67.24 (6)°. In the crystal, weak C—H⋯π and ππ stacking [minimum centroid–centroid separation = 3.7466 (10) Å] inter­actions are observed, which together lead to (010) sheets.

Related literature

For background to the biological activity of benzothio­phene derivatives, see: Isloora et al. (2010[Isloora, A. M., Kalluraya, B. & Sridhar Pai, K. (2010). Eur. J. Med. Chem. 45, 825-830.]).

[Scheme 1]

Experimental

Crystal data
  • C22H14S

  • Mr = 310.40

  • Orthorhombic, P c c n

  • a = 12.6752 (10) Å

  • b = 28.578 (2) Å

  • c = 8.5659 (6) Å

  • V = 3102.8 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 16518 measured reflections

  • 3855 independent reflections

  • 2892 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.118

  • S = 1.03

  • 3855 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C1-C6 and C10–C16 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯Cg2i 0.93 2.94 3.8138 (19) 158
C13—H13⋯Cg3i 0.93 2.64 3.5399 (17) 163
Symmetry code: (i) [-x-{\script{1\over 2}}, y, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012)[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]; software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Some benzo[b]thiophene derivatives show significant antimicrobial and anti-inflammatory activities (Isloora et al., 2010). As part of our own studies in this area, an X-ray study of the title compound was carried out.

Fig. 1 shows the ORTEP representation of the molecular structure of the title compound with atoms at the 30% probability level. The naphthothiophene moiety is almost planar with an r.m.s. deviation of fitted atoms = -0.0065 (1)°. The dihedral angle between the naphthothiophene plane and the attached benzene [C17—C22] ring is 67.24 (6)°. The thiophene ring is almost planar, with maximum deviation of 0.014 (1) Å.

In the crystal, C—H···π interactions occur (Table 1).

Related literature top

For background to the biological activity of benzothiophene derivatives, see: Isloora et al. (2010).

Experimental top

The benzo[b]thiophen-3-yl(2-(phenyl(pivaloyloxy)methyl)phenyl) methyl pivalate (0.73 g, 1.60 mmol) upon interaction with ZnBr2 (0.02 g, 0.13 mmol) followed by removal of solvent and column chromatographic purification (silica gel; hexane-ethyl acetate, 99:1) gave the compound as a colorless solid (0.50 g, 72%). Colourless blocks were obtained by slow evaporation of a solution of the title compound in acetone at room temperature.

Refinement top

All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms.

Structure description top

Some benzo[b]thiophene derivatives show significant antimicrobial and anti-inflammatory activities (Isloora et al., 2010). As part of our own studies in this area, an X-ray study of the title compound was carried out.

Fig. 1 shows the ORTEP representation of the molecular structure of the title compound with atoms at the 30% probability level. The naphthothiophene moiety is almost planar with an r.m.s. deviation of fitted atoms = -0.0065 (1)°. The dihedral angle between the naphthothiophene plane and the attached benzene [C17—C22] ring is 67.24 (6)°. The thiophene ring is almost planar, with maximum deviation of 0.014 (1) Å.

In the crystal, C—H···π interactions occur (Table 1).

For background to the biological activity of benzothiophene derivatives, see: Isloora et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The π···π and C—H···π interactions (dotted lines) in the title compound. Cg1, Cg2 and Cg3 are the centroids of the S1/C1/C6/C7/C8, C1—C6, C7—C12 rings. [Symmetry code: (i) 1 - x,-y,2 - z; (ii) 1/2 - x,y,1/2 + z].
6-Phenylbenzo[d]naphtho[2,3-b]thiophene top
Crystal data top
C22H14SF(000) = 1296
Mr = 310.40Dx = 1.329 Mg m3
Orthorhombic, PccnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ab 2acCell parameters from 3855 reflections
a = 12.6752 (10) Åθ = 1.8–28.4°
b = 28.578 (2) ŵ = 0.21 mm1
c = 8.5659 (6) ÅT = 293 K
V = 3102.8 (4) Å3Block, colourless
Z = 80.20 × 0.20 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
2892 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 28.4°, θmin = 1.8°
ω and φ scansh = 1616
16518 measured reflectionsk = 3438
3855 independent reflectionsl = 911
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0571P)2 + 0.6864P]
where P = (Fo2 + 2Fc2)/3
3855 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C22H14SV = 3102.8 (4) Å3
Mr = 310.40Z = 8
Orthorhombic, PccnMo Kα radiation
a = 12.6752 (10) ŵ = 0.21 mm1
b = 28.578 (2) ÅT = 293 K
c = 8.5659 (6) Å0.20 × 0.20 × 0.20 mm
Data collection top
Bruker APEXII CCD
diffractometer
2892 reflections with I > 2σ(I)
16518 measured reflectionsRint = 0.031
3855 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.03Δρmax = 0.21 e Å3
3855 reflectionsΔρmin = 0.24 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.49436 (3)0.039709 (15)0.71196 (5)0.04701 (14)
C110.34912 (11)0.12197 (5)1.10829 (17)0.0367 (3)
C100.41403 (11)0.14729 (5)1.00101 (17)0.0361 (3)
C170.52550 (12)0.14890 (5)0.75491 (18)0.0375 (3)
C70.37407 (11)0.05119 (5)0.95979 (18)0.0376 (3)
C90.46095 (11)0.12338 (5)0.87264 (17)0.0361 (3)
C130.30387 (12)0.14611 (6)1.23609 (19)0.0444 (4)
H130.26330.12971.30800.053*
C80.44145 (11)0.07613 (5)0.85662 (17)0.0369 (3)
C220.62230 (13)0.16834 (6)0.7927 (2)0.0471 (4)
H220.64920.16480.89300.057*
C10.42526 (12)0.00859 (5)0.78516 (19)0.0411 (3)
C60.36343 (12)0.00252 (5)0.91445 (18)0.0388 (3)
C120.32950 (12)0.07416 (5)1.08341 (19)0.0397 (3)
H120.28570.05791.15170.048*
C160.42662 (13)0.19611 (6)1.0261 (2)0.0437 (4)
H160.46770.21340.95720.052*
C180.48824 (13)0.15417 (6)0.6039 (2)0.0457 (4)
H180.42440.14060.57550.055*
C190.54498 (15)0.17947 (7)0.4950 (2)0.0533 (4)
H190.51890.18320.39430.064*
C50.30009 (14)0.03191 (6)0.9809 (2)0.0491 (4)
H50.25820.02501.06700.059*
C200.63982 (15)0.19908 (6)0.5357 (2)0.0528 (4)
H200.67740.21660.46290.063*
C150.37981 (14)0.21805 (6)1.1489 (2)0.0499 (4)
H150.38860.25011.16200.060*
C20.42771 (15)0.05383 (6)0.7253 (2)0.0493 (4)
H20.47120.06140.64150.059*
C210.67926 (14)0.19303 (6)0.6823 (2)0.0536 (4)
H210.74470.20560.70830.064*
C30.36430 (15)0.08691 (6)0.7931 (2)0.0539 (5)
H30.36450.11730.75390.065*
C40.29989 (15)0.07614 (6)0.9188 (2)0.0554 (5)
H40.25630.09900.96130.066*
C140.31846 (14)0.19275 (6)1.2558 (2)0.0501 (4)
H140.28770.20801.34030.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0557 (3)0.0449 (2)0.0404 (3)0.00271 (18)0.01194 (18)0.00246 (18)
C110.0346 (7)0.0416 (8)0.0341 (8)0.0018 (6)0.0010 (6)0.0011 (6)
C100.0347 (7)0.0395 (8)0.0340 (8)0.0009 (6)0.0037 (6)0.0022 (6)
C170.0415 (8)0.0346 (8)0.0365 (8)0.0008 (6)0.0039 (6)0.0026 (6)
C70.0372 (7)0.0384 (8)0.0371 (8)0.0013 (6)0.0001 (6)0.0039 (6)
C90.0355 (7)0.0395 (8)0.0333 (8)0.0024 (6)0.0016 (6)0.0037 (6)
C130.0418 (8)0.0510 (10)0.0404 (9)0.0017 (7)0.0051 (7)0.0001 (7)
C80.0382 (7)0.0394 (8)0.0332 (8)0.0001 (6)0.0013 (6)0.0010 (6)
C220.0508 (9)0.0483 (9)0.0423 (9)0.0087 (7)0.0026 (7)0.0066 (8)
C10.0437 (8)0.0392 (8)0.0403 (9)0.0014 (6)0.0038 (7)0.0014 (7)
C60.0416 (8)0.0356 (8)0.0391 (8)0.0010 (6)0.0025 (6)0.0028 (6)
C120.0392 (7)0.0410 (8)0.0390 (8)0.0020 (6)0.0050 (6)0.0055 (7)
C160.0485 (8)0.0392 (8)0.0435 (9)0.0025 (7)0.0016 (7)0.0033 (7)
C180.0454 (8)0.0521 (10)0.0397 (9)0.0004 (7)0.0008 (7)0.0042 (7)
C190.0608 (10)0.0604 (11)0.0386 (9)0.0084 (9)0.0052 (8)0.0102 (8)
C50.0555 (10)0.0402 (9)0.0516 (10)0.0024 (7)0.0069 (8)0.0044 (7)
C200.0602 (10)0.0450 (9)0.0533 (11)0.0006 (8)0.0188 (9)0.0111 (8)
C150.0582 (10)0.0401 (9)0.0515 (10)0.0023 (7)0.0028 (8)0.0043 (8)
C20.0580 (10)0.0445 (9)0.0454 (10)0.0083 (8)0.0041 (8)0.0043 (8)
C210.0518 (9)0.0504 (10)0.0585 (11)0.0133 (8)0.0052 (8)0.0055 (9)
C30.0692 (11)0.0344 (8)0.0580 (11)0.0036 (8)0.0092 (9)0.0027 (8)
C40.0653 (11)0.0384 (9)0.0625 (12)0.0048 (8)0.0017 (9)0.0067 (8)
C140.0538 (10)0.0511 (10)0.0455 (10)0.0071 (8)0.0040 (8)0.0098 (8)
Geometric parameters (Å, º) top
S1—C11.7508 (16)C12—H120.9300
S1—C81.7518 (15)C16—C151.360 (2)
C11—C121.405 (2)C16—H160.9300
C11—C131.415 (2)C18—C191.382 (2)
C11—C101.430 (2)C18—H180.9300
C10—C161.421 (2)C19—C201.371 (3)
C10—C91.425 (2)C19—H190.9300
C17—C221.385 (2)C5—C41.372 (2)
C17—C181.385 (2)C5—H50.9300
C17—C91.489 (2)C20—C211.363 (3)
C7—C121.368 (2)C20—H200.9300
C7—C81.421 (2)C15—C141.402 (2)
C7—C61.450 (2)C15—H150.9300
C9—C81.380 (2)C2—C31.370 (3)
C13—C141.356 (2)C2—H20.9300
C13—H130.9300C21—H210.9300
C22—C211.383 (2)C3—C41.386 (3)
C22—H220.9300C3—H30.9300
C1—C21.391 (2)C4—H40.9300
C1—C61.393 (2)C14—H140.9300
C6—C51.392 (2)
C1—S1—C891.35 (7)C15—C16—C10121.39 (15)
C12—C11—C13121.30 (14)C15—C16—H16119.3
C12—C11—C10119.76 (13)C10—C16—H16119.3
C13—C11—C10118.92 (14)C19—C18—C17120.63 (16)
C16—C10—C9122.76 (14)C19—C18—H18119.7
C16—C10—C11117.65 (14)C17—C18—H18119.7
C9—C10—C11119.57 (13)C20—C19—C18119.93 (17)
C22—C17—C18118.47 (14)C20—C19—H19120.0
C22—C17—C9121.64 (14)C18—C19—H19120.0
C18—C17—C9119.89 (14)C4—C5—C6119.59 (17)
C12—C7—C8119.28 (14)C4—C5—H5120.2
C12—C7—C6128.98 (14)C6—C5—H5120.2
C8—C7—C6111.74 (13)C21—C20—C19120.25 (16)
C8—C9—C10118.13 (13)C21—C20—H20119.9
C8—C9—C17120.69 (14)C19—C20—H20119.9
C10—C9—C17121.14 (13)C16—C15—C14120.59 (16)
C14—C13—C11121.33 (16)C16—C15—H15119.7
C14—C13—H13119.3C14—C15—H15119.7
C11—C13—H13119.3C3—C2—C1118.14 (17)
C9—C8—C7122.47 (14)C3—C2—H2120.9
C9—C8—S1125.69 (12)C1—C2—H2120.9
C7—C8—S1111.84 (11)C20—C21—C22120.21 (16)
C21—C22—C17120.47 (16)C20—C21—H21119.9
C21—C22—H22119.8C22—C21—H21119.9
C17—C22—H22119.8C2—C3—C4121.47 (16)
C2—C1—C6121.15 (15)C2—C3—H3119.3
C2—C1—S1126.11 (13)C4—C3—H3119.3
C6—C1—S1112.73 (12)C5—C4—C3120.33 (17)
C5—C6—C1119.26 (15)C5—C4—H4119.8
C5—C6—C7128.46 (15)C3—C4—H4119.8
C1—C6—C7112.27 (13)C13—C14—C15120.07 (16)
C7—C12—C11120.72 (14)C13—C14—H14120.0
C7—C12—H12119.6C15—C14—H14120.0
C11—C12—H12119.6
C12—C11—C10—C16176.46 (14)S1—C1—C6—C5177.03 (13)
C13—C11—C10—C162.1 (2)C2—C1—C6—C7178.72 (14)
C12—C11—C10—C92.0 (2)S1—C1—C6—C71.81 (17)
C13—C11—C10—C9179.41 (13)C12—C7—C6—C54.2 (3)
C16—C10—C9—C8178.29 (14)C8—C7—C6—C5176.05 (16)
C11—C10—C9—C80.1 (2)C12—C7—C6—C1177.08 (15)
C16—C10—C9—C170.9 (2)C8—C7—C6—C12.66 (19)
C11—C10—C9—C17177.53 (13)C8—C7—C12—C110.5 (2)
C22—C17—C9—C8114.77 (18)C6—C7—C12—C11179.82 (15)
C18—C17—C9—C866.1 (2)C13—C11—C12—C7179.73 (14)
C22—C17—C9—C1067.9 (2)C10—C11—C12—C71.7 (2)
C18—C17—C9—C10111.22 (17)C9—C10—C16—C15179.23 (15)
C12—C11—C13—C14176.64 (16)C11—C10—C16—C150.8 (2)
C10—C11—C13—C141.9 (2)C22—C17—C18—C192.0 (2)
C10—C9—C8—C72.1 (2)C9—C17—C18—C19177.19 (16)
C17—C9—C8—C7175.29 (14)C17—C18—C19—C200.9 (3)
C10—C9—C8—S1177.76 (11)C1—C6—C5—C40.3 (3)
C17—C9—C8—S14.8 (2)C7—C6—C5—C4178.93 (16)
C12—C7—C8—C92.5 (2)C18—C19—C20—C211.1 (3)
C6—C7—C8—C9177.76 (14)C10—C16—C15—C140.8 (3)
C12—C7—C8—S1177.44 (12)C6—C1—C2—C32.6 (2)
C6—C7—C8—S12.33 (16)S1—C1—C2—C3176.83 (13)
C1—S1—C8—C9178.97 (14)C19—C20—C21—C222.1 (3)
C1—S1—C8—C71.12 (12)C17—C22—C21—C201.0 (3)
C18—C17—C22—C211.0 (3)C1—C2—C3—C40.6 (3)
C9—C17—C22—C21178.11 (16)C6—C5—C4—C31.6 (3)
C8—S1—C1—C2179.84 (15)C2—C3—C4—C51.5 (3)
C8—S1—C1—C60.41 (12)C11—C13—C14—C150.3 (3)
C2—C1—C6—C52.4 (2)C16—C15—C14—C131.1 (3)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C1-C6 and C10–C16 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5···Cg2i0.932.943.8138 (19)158
C13—H13···Cg3i0.932.643.5399 (17)163
Symmetry code: (i) x1/2, y, z1/2.

Experimental details

Crystal data
Chemical formulaC22H14S
Mr310.40
Crystal system, space groupOrthorhombic, Pccn
Temperature (K)293
a, b, c (Å)12.6752 (10), 28.578 (2), 8.5659 (6)
V3)3102.8 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerBruker APEXII CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
16518, 3855, 2892
Rint0.031
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.118, 1.03
No. of reflections3855
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.24

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C1-C6 and C10–C16 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5···Cg2i0.932.943.8138 (19)158
C13—H13···Cg3i0.932.643.5399 (17)163
Symmetry code: (i) x1/2, y, z1/2.
 

Acknowledgements

VS and DV thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, and the UGC SAP for the facilities to the department.

References

First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIsloora, A. M., Kalluraya, B. & Sridhar Pai, K. (2010). Eur. J. Med. Chem. 45, 825–830.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds