organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2E,2′E)-1,1′-Bis(6-chloro-2-methyl-4-phenyl­quinolin-3-yl)-3,3′-(1,4-phenyl­ene)diprop-2-en-1-one ethyl acetate disolvate

aLaboratoire de Chimie Appliquée, Faculté des Sciences, Université de Guelma 24000, Algeria, bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Mentouri-Constantine, 25000 Algeria, cCentre de Difractométrie X, UMR 6226 CNRS Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du Général Leclerc, 35042 Rennes, France, and dLaboratoire des Produits Naturels, d'Origine Végétale et de Synthèse Organique, PHYSYNOR, Université Mentouri-Constantine, 25000 Constantine, Algeria
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

(Received 28 November 2012; accepted 2 December 2012; online 8 December 2012)

In the title solvate, C44H30Cl2N2O2·2C4H8O2, the complete polycyclic mol­ecule is generated by inversion symmetry. The dihedral angle between the quinolyl ring system (Q; r.m.s. deviation = 0.020 Å) and the pendant phenyl ring is 78.80 (6)°; the dihedral angle between Q and the central benzene ring is 85.92 (7)°. In the crystal, the components are linked by C—H⋯O and C—H⋯π inter­actions, generating (110) layers. Weak aromatic ππ stacking [centroid–centroid distances = 3.7025 (11) and 3.8124 (10) Å] is also observed.

Related literature

For our previous studies in the area of potentially bioactive mol­ecules, see: Menasra et al. (2005[Menasra, H., Kedjadja, A., Debache, A., Rhouati, S., Carboni, B. & Belfaitah, A. (2005). Synth. Commun. 35, 2779-2788.]); Kedjadja et al. (2004[Kedjadja, A., Moussaoui, F., Debache, A., Rhouati, S. & Belfaitah, A. (2004). J. Soc. Alger. Chim. 14, 225-233.]). For further synthetic details, see: Wang et al. (2006[Wang, G.-W., Jia, C.-C. & Dong, Y.-W. (2006). Tetrahedron Lett. 47, 1059-1063.]).

[Scheme 1]

Experimental

Crystal data
  • C44H30Cl2N2O2·2C4H8O2

  • Mr = 865.81

  • Triclinic, [P \overline 1]

  • a = 9.9851 (3) Å

  • b = 10.0086 (2) Å

  • c = 11.3676 (3) Å

  • α = 102.350 (1)°

  • β = 97.108 (1)°

  • γ = 95.290 (2)°

  • V = 1092.94 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 150 K

  • 0.25 × 0.15 × 0.1 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.]) Tmin = 0.884, Tmax = 0.980

  • 18119 measured reflections

  • 4866 independent reflections

  • 4035 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.140

  • S = 1.04

  • 4866 reflections

  • 283 parameters

  • H-atom parameters constrained

  • Δρmax = 1.02 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C12–C17 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O19i 0.95 2.54 3.218 (2) 128
C23—H23⋯O53 0.95 2.57 3.468 (2) 157
C24—H24⋯O56ii 0.95 2.48 3.410 (3) 165
C51—H51BCg1iii 0.98 2.76 3.627 (3) 147
Symmetry codes: (i) -x, -y, -z+1; (ii) -x+1, -y+1, -z; (iii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2001[Bruker (2001). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

In continuation of our interest related to the synthesis and structures of potentially bioactive products (Kedjadja et al. 2004; Menasra et al. 2005), we report herein the synthesis and the structure determination of the title compound, (I). The reactivity of this compound and its analogues toward nucleophiles is under investigation.

The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1. The asymmetric unit of (I)consists of one-half of the molecule, with the other half generated by a crystallographic inversion centre. In the title molecule the centrosymmetric phenyl ring is attached to two prop-2-en-1-one linked to two 6-chloro-2-methyl-4-phenylquinolin-3-yl and two molecules of ethyl acetate are co-crystalized with it. The two rings of quinolyl group are fused in axial fashion and form adihedral angle of 1.72 (5)° and this quasi plane system forms a dihedral angle of 78.80 (6)° with the phenyl ring (C12—C17) attached to quinolyl moiety. The crystal packing can be described as layers in zigzag parallel to the (110) plane. (Fig. 2). It features C—H···O and C—H···π interactions (Table. 1) and strong π-π stacking interactions between quinolyl rings with a centroid-centroid distance of 3.7025 (11) and 3.8124 (10)å. These interactions link the molecules within the layers and also link the layers together, reinforcing the cohesion of the structure.

Related literature top

For our previous studies in the area of potentially bioactive molecules, see: Menasra et al. (2005); Kedjadja et al. (2004). For further synthetic details, see: Wang et al. (2006).

Experimental top

A mixture of 2-aminobenzophénone (1.0 mmol), acetylacetone (1.2 mmol), water (1 ml) and 1.0 eq. of 1 N HCl, gave the corresponding 1-(2-methyl-4-phenylquinolin-3-yl) ethanone as a white solid in 86% yield, according to the procedure reported by Wang et al. (2006). Next, the title compound was prepared in 75% of yield, by an aldol condensation reaction of the Friedländer product with 0.5 eq. of terephthalaldehyde in an ethanolic solution of NaOH at room temperature. Colourless prisms of (I) were obtained by crystallization from ethyl acetate/petroleum ether (1/1) solution.

Refinement top

Approximate positions for all the H atoms were first obtained from the difference electron density map. However, the H atoms were situated into idealized positions and the H-atoms have been refined within the riding atom approximation. The applied constraints were as follow: Caryl—Haryl = 0.95 Å; Cmethylene—Hmethylene = 0.99 Å and Cmethyl—Hmethyl = 0.98 Å and; The idealized methyl group was allowed to rotate about the C—C bond during the refinement by application of the command AFIX 137 in SHELXL97 (Sheldrick, 2008). Uiso(Hmethyl) = 1.5Ueq(Cmethyl) or Uiso(Haryl or Hmethylene) = 1.2 Ueq(Caryl or Cmethylene).

Structure description top

In continuation of our interest related to the synthesis and structures of potentially bioactive products (Kedjadja et al. 2004; Menasra et al. 2005), we report herein the synthesis and the structure determination of the title compound, (I). The reactivity of this compound and its analogues toward nucleophiles is under investigation.

The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1. The asymmetric unit of (I)consists of one-half of the molecule, with the other half generated by a crystallographic inversion centre. In the title molecule the centrosymmetric phenyl ring is attached to two prop-2-en-1-one linked to two 6-chloro-2-methyl-4-phenylquinolin-3-yl and two molecules of ethyl acetate are co-crystalized with it. The two rings of quinolyl group are fused in axial fashion and form adihedral angle of 1.72 (5)° and this quasi plane system forms a dihedral angle of 78.80 (6)° with the phenyl ring (C12—C17) attached to quinolyl moiety. The crystal packing can be described as layers in zigzag parallel to the (110) plane. (Fig. 2). It features C—H···O and C—H···π interactions (Table. 1) and strong π-π stacking interactions between quinolyl rings with a centroid-centroid distance of 3.7025 (11) and 3.8124 (10)å. These interactions link the molecules within the layers and also link the layers together, reinforcing the cohesion of the structure.

For our previous studies in the area of potentially bioactive molecules, see: Menasra et al. (2005); Kedjadja et al. (2004). For further synthetic details, see: Wang et al. (2006).

Computing details top

Data collection: APEX2 (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular geometry of (I) with displacement ellipsoids drawn at the 50% probability level. Only the contents of the asymmetric unit are numbered. The two ethyl acetate co-crystalized molecules were omitted for clarity.
[Figure 2] Fig. 2. A diagram of the layered crystal packing of (I) viewed down the c axis.
(2E,2'E)-1,1'-Bis(6-chloro-2-methyl-4-phenylquinolin-3- yl)-3,3'-(1,4-phenylene)diprop-2-en-1-one ethyl acetate disolvate top
Crystal data top
C44H30Cl2N2O2·2C4H8O2Z = 1
Mr = 865.81F(000) = 454
Triclinic, P1Dx = 1.315 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.9851 (3) ÅCell parameters from 8289 reflections
b = 10.0086 (2) Åθ = 2.5–27.5°
c = 11.3676 (3) ŵ = 0.20 mm1
α = 102.350 (1)°T = 150 K
β = 97.108 (1)°Prism, colourless
γ = 95.290 (2)°0.25 × 0.15 × 0.1 mm
V = 1092.94 (5) Å3
Data collection top
Bruker APEXII
diffractometer
4035 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
CCD rotation images, thin slices scansθmax = 27.5°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 1212
Tmin = 0.884, Tmax = 0.980k = 1212
18119 measured reflectionsl = 1414
4866 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0694P)2 + 0.8188P]
where P = (Fo2 + 2Fc2)/3
4866 reflections(Δ/σ)max = 0.011
283 parametersΔρmax = 1.02 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C44H30Cl2N2O2·2C4H8O2γ = 95.290 (2)°
Mr = 865.81V = 1092.94 (5) Å3
Triclinic, P1Z = 1
a = 9.9851 (3) ÅMo Kα radiation
b = 10.0086 (2) ŵ = 0.20 mm1
c = 11.3676 (3) ÅT = 150 K
α = 102.350 (1)°0.25 × 0.15 × 0.1 mm
β = 97.108 (1)°
Data collection top
Bruker APEXII
diffractometer
4866 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
4035 reflections with I > 2σ(I)
Tmin = 0.884, Tmax = 0.980Rint = 0.026
18119 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.04Δρmax = 1.02 e Å3
4866 reflectionsΔρmin = 0.42 e Å3
283 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O530.31158 (16)0.42524 (16)0.11802 (16)0.0417 (4)
Cl10.31876 (5)0.75570 (5)0.69990 (4)0.02960 (15)
C10.23208 (18)0.65060 (19)0.56441 (16)0.0234 (4)
C20.15254 (19)0.70928 (19)0.48229 (18)0.0265 (4)
H20.14730.80570.49950.032*
C30.08296 (19)0.6252 (2)0.37739 (18)0.0265 (4)
H30.02940.66420.32150.032*
C40.08921 (18)0.48125 (18)0.35046 (16)0.0220 (4)
C50.17208 (17)0.42485 (18)0.43299 (16)0.0209 (4)
C60.24378 (18)0.51286 (18)0.54149 (16)0.0226 (4)
H60.29950.47630.59780.027*
N70.01376 (16)0.40156 (16)0.24584 (14)0.0248 (3)
C80.01928 (18)0.26750 (19)0.22137 (16)0.0232 (4)
C90.0649 (2)0.1817 (2)0.10685 (18)0.0309 (4)
H9A0.11690.24110.06540.046*
H9B0.12770.1120.12740.046*
H9C0.00510.13610.05310.046*
C100.10213 (17)0.20250 (18)0.29886 (16)0.0210 (4)
C110.17907 (17)0.28022 (18)0.40423 (16)0.0206 (4)
C120.26671 (18)0.21649 (18)0.48762 (16)0.0214 (4)
C130.20937 (19)0.14663 (19)0.56647 (18)0.0262 (4)
H130.11380.13850.56640.031*
C140.2911 (2)0.0889 (2)0.64504 (18)0.0300 (4)
H140.25150.04240.69930.036*
C150.4301 (2)0.0989 (2)0.64447 (18)0.0305 (4)
H150.48580.05840.69760.037*
C160.4880 (2)0.1681 (2)0.56644 (19)0.0303 (4)
H160.58340.17450.56580.036*
C170.40700 (19)0.2279 (2)0.48915 (17)0.0265 (4)
H170.44740.27690.4370.032*
C180.10551 (18)0.04827 (18)0.26507 (16)0.0228 (4)
O190.02241 (15)0.02933 (15)0.29611 (15)0.0380 (4)
C200.21001 (18)0.00520 (18)0.19329 (16)0.0218 (4)
H200.21890.10080.17930.026*
C210.29293 (17)0.07597 (18)0.14703 (15)0.0202 (3)
H210.28310.17140.16510.024*
C220.39718 (17)0.03406 (17)0.07162 (15)0.0191 (3)
C230.47009 (18)0.13423 (18)0.02708 (16)0.0216 (4)
H230.44960.22660.04550.026*
C240.57142 (18)0.10142 (18)0.04320 (16)0.0218 (4)
H240.61970.17110.07220.026*
C510.5390 (2)0.5546 (3)0.1748 (2)0.0432 (5)
H51A0.57970.47280.1390.065*
H51B0.60370.61280.24210.065*
H51C0.51650.60660.11270.065*
C520.4113 (2)0.5106 (2)0.2220 (2)0.0398 (5)
H52A0.43310.45630.28360.048*
H52B0.37160.59280.26110.048*
C540.2331 (2)0.4949 (3)0.0581 (2)0.0412 (5)
C550.1442 (3)0.3999 (3)0.0465 (2)0.0465 (6)
H55A0.05570.3760.02250.07*
H55B0.18670.31590.07120.07*
H55C0.13140.44510.11480.07*
O560.23575 (18)0.61974 (16)0.08844 (18)0.0503 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O530.0426 (9)0.0300 (8)0.0574 (10)0.0100 (7)0.0142 (8)0.0142 (7)
Cl10.0318 (3)0.0239 (2)0.0291 (2)0.00118 (18)0.00172 (18)0.00038 (18)
C10.0207 (9)0.0231 (9)0.0252 (9)0.0010 (7)0.0050 (7)0.0024 (7)
C20.0250 (9)0.0198 (8)0.0357 (10)0.0050 (7)0.0068 (8)0.0062 (8)
C30.0255 (9)0.0245 (9)0.0312 (10)0.0074 (7)0.0035 (7)0.0087 (8)
C40.0207 (9)0.0222 (9)0.0243 (9)0.0045 (7)0.0069 (7)0.0054 (7)
C50.0192 (8)0.0214 (8)0.0233 (8)0.0034 (7)0.0068 (6)0.0055 (7)
C60.0227 (9)0.0218 (9)0.0243 (9)0.0035 (7)0.0045 (7)0.0061 (7)
N70.0240 (8)0.0257 (8)0.0248 (8)0.0056 (6)0.0037 (6)0.0052 (6)
C80.0208 (9)0.0266 (9)0.0229 (9)0.0030 (7)0.0069 (7)0.0048 (7)
C90.0328 (10)0.0299 (10)0.0268 (10)0.0058 (8)0.0002 (8)0.0012 (8)
C100.0190 (8)0.0221 (8)0.0240 (8)0.0030 (7)0.0103 (7)0.0056 (7)
C110.0197 (8)0.0214 (8)0.0229 (8)0.0038 (7)0.0089 (6)0.0064 (7)
C120.0234 (9)0.0180 (8)0.0228 (8)0.0045 (7)0.0051 (7)0.0031 (7)
C130.0248 (9)0.0239 (9)0.0328 (10)0.0042 (7)0.0091 (7)0.0095 (8)
C140.0374 (11)0.0252 (9)0.0314 (10)0.0062 (8)0.0088 (8)0.0121 (8)
C150.0362 (11)0.0261 (9)0.0293 (10)0.0108 (8)0.0001 (8)0.0063 (8)
C160.0225 (9)0.0315 (10)0.0362 (11)0.0067 (8)0.0039 (8)0.0053 (8)
C170.0247 (9)0.0285 (10)0.0291 (9)0.0051 (7)0.0088 (7)0.0092 (8)
C180.0231 (9)0.0224 (9)0.0229 (8)0.0018 (7)0.0065 (7)0.0036 (7)
O190.0385 (8)0.0268 (7)0.0525 (9)0.0009 (6)0.0267 (7)0.0083 (7)
C200.0237 (9)0.0189 (8)0.0227 (8)0.0041 (7)0.0053 (7)0.0029 (7)
C210.0211 (8)0.0188 (8)0.0200 (8)0.0041 (6)0.0040 (6)0.0019 (6)
C220.0189 (8)0.0198 (8)0.0184 (8)0.0036 (6)0.0027 (6)0.0032 (6)
C230.0237 (9)0.0167 (8)0.0252 (9)0.0050 (7)0.0061 (7)0.0041 (7)
C240.0235 (9)0.0183 (8)0.0249 (9)0.0025 (7)0.0076 (7)0.0058 (7)
C510.0440 (13)0.0422 (13)0.0419 (13)0.0048 (10)0.0016 (10)0.0096 (10)
C520.0454 (13)0.0374 (12)0.0354 (11)0.0053 (10)0.0002 (9)0.0090 (9)
C540.0376 (12)0.0418 (13)0.0482 (13)0.0055 (10)0.0113 (10)0.0158 (11)
C550.0407 (13)0.0438 (13)0.0527 (14)0.0015 (10)0.0001 (11)0.0131 (11)
O560.0483 (10)0.0284 (8)0.0802 (13)0.0103 (7)0.0120 (9)0.0216 (8)
Geometric parameters (Å, º) top
O53—C541.318 (3)C15—C161.384 (3)
O53—C521.496 (3)C15—H150.95
Cl1—C11.7427 (18)C16—C171.387 (3)
C1—C61.366 (3)C16—H160.95
C1—C21.409 (3)C17—H170.95
C2—C31.368 (3)C18—O191.219 (2)
C2—H20.95C18—C201.472 (2)
C3—C41.417 (3)C20—C211.337 (2)
C3—H30.95C20—H200.95
C4—N71.371 (2)C21—C221.464 (2)
C4—C51.416 (3)C21—H210.95
C5—C61.418 (2)C22—C24i1.399 (2)
C5—C111.424 (2)C22—C231.402 (2)
C6—H60.95C23—C241.385 (2)
N7—C81.319 (2)C23—H230.95
C8—C101.431 (3)C24—C22i1.399 (2)
C8—C91.502 (3)C24—H240.95
C9—H9A0.98C51—C521.507 (3)
C9—H9B0.98C51—H51A0.98
C9—H9C0.98C51—H51B0.98
C10—C111.376 (2)C51—H51C0.98
C10—C181.513 (2)C52—H52A0.99
C11—C121.493 (2)C52—H52B0.99
C12—C171.393 (3)C54—O561.219 (3)
C12—C131.393 (3)C54—C551.485 (3)
C13—C141.388 (3)C55—H55A0.98
C13—H130.95C55—H55B0.98
C14—C151.383 (3)C55—H55C0.98
C14—H140.95
C54—O53—C52115.38 (17)C16—C15—H15120
C6—C1—C2122.05 (17)C15—C16—C17120.13 (18)
C6—C1—Cl1118.43 (14)C15—C16—H16119.9
C2—C1—Cl1119.52 (14)C17—C16—H16119.9
C3—C2—C1118.92 (17)C16—C17—C12120.35 (17)
C3—C2—H2120.5C16—C17—H17119.8
C1—C2—H2120.5C12—C17—H17119.8
C2—C3—C4121.30 (17)O19—C18—C20121.15 (16)
C2—C3—H3119.4O19—C18—C10120.30 (15)
C4—C3—H3119.4C20—C18—C10118.54 (15)
N7—C4—C5122.46 (16)C21—C20—C18122.36 (16)
N7—C4—C3118.70 (16)C21—C20—H20118.8
C5—C4—C3118.84 (16)C18—C20—H20118.8
C4—C5—C6119.40 (16)C20—C21—C22127.20 (16)
C4—C5—C11118.38 (16)C20—C21—H21116.4
C6—C5—C11122.22 (16)C22—C21—H21116.4
C1—C6—C5119.46 (17)C24i—C22—C23118.45 (15)
C1—C6—H6120.3C24i—C22—C21122.88 (16)
C5—C6—H6120.3C23—C22—C21118.67 (15)
C8—N7—C4118.54 (16)C24—C23—C22121.39 (16)
N7—C8—C10122.57 (16)C24—C23—H23119.3
N7—C8—C9117.80 (16)C22—C23—H23119.3
C10—C8—C9119.64 (16)C23—C24—C22i120.16 (16)
C8—C9—H9A109.5C23—C24—H24119.9
C8—C9—H9B109.5C22i—C24—H24119.9
H9A—C9—H9B109.5C52—C51—H51A109.5
C8—C9—H9C109.5C52—C51—H51B109.5
H9A—C9—H9C109.5H51A—C51—H51B109.5
H9B—C9—H9C109.5C52—C51—H51C109.5
C11—C10—C8120.02 (16)H51A—C51—H51C109.5
C11—C10—C18119.87 (16)H51B—C51—H51C109.5
C8—C10—C18120.11 (16)O53—C52—C51109.09 (18)
C10—C11—C5118.01 (16)O53—C52—H52A109.9
C10—C11—C12121.72 (16)C51—C52—H52A109.9
C5—C11—C12120.27 (16)O53—C52—H52B109.9
C17—C12—C13119.09 (17)C51—C52—H52B109.9
C17—C12—C11120.53 (16)H52A—C52—H52B108.3
C13—C12—C11120.37 (16)O56—C54—O53122.8 (2)
C14—C13—C12120.34 (17)O56—C54—C55126.9 (2)
C14—C13—H13119.8O53—C54—C55110.3 (2)
C12—C13—H13119.8C54—C55—H55A109.5
C15—C14—C13120.11 (18)C54—C55—H55B109.5
C15—C14—H14119.9H55A—C55—H55B109.5
C13—C14—H14119.9C54—C55—H55C109.5
C14—C15—C16119.97 (18)H55A—C55—H55C109.5
C14—C15—H15120H55B—C55—H55C109.5
C6—C1—C2—C31.2 (3)C6—C5—C11—C121.6 (2)
Cl1—C1—C2—C3178.76 (14)C10—C11—C12—C17103.4 (2)
C1—C2—C3—C40.2 (3)C5—C11—C12—C1777.3 (2)
C2—C3—C4—N7177.88 (17)C10—C11—C12—C1377.7 (2)
C2—C3—C4—C51.6 (3)C5—C11—C12—C13101.7 (2)
N7—C4—C5—C6177.88 (16)C17—C12—C13—C140.2 (3)
C3—C4—C5—C61.5 (2)C11—C12—C13—C14179.20 (17)
N7—C4—C5—C111.4 (3)C12—C13—C14—C150.8 (3)
C3—C4—C5—C11179.16 (16)C13—C14—C15—C160.8 (3)
C2—C1—C6—C51.2 (3)C14—C15—C16—C170.3 (3)
Cl1—C1—C6—C5178.76 (13)C15—C16—C17—C121.3 (3)
C4—C5—C6—C10.2 (3)C13—C12—C17—C161.3 (3)
C11—C5—C6—C1179.47 (16)C11—C12—C17—C16179.74 (17)
C5—C4—N7—C80.2 (3)C11—C10—C18—O1992.4 (2)
C3—C4—N7—C8179.66 (16)C8—C10—C18—O1987.7 (2)
C4—N7—C8—C100.8 (3)C11—C10—C18—C2088.2 (2)
C4—N7—C8—C9179.53 (16)C8—C10—C18—C2091.7 (2)
N7—C8—C10—C110.7 (3)O19—C18—C20—C21172.69 (18)
C9—C8—C10—C11179.70 (16)C10—C18—C20—C216.7 (3)
N7—C8—C10—C18179.25 (16)C18—C20—C21—C22178.00 (16)
C9—C8—C10—C180.4 (2)C20—C21—C22—C24i3.7 (3)
C8—C10—C11—C50.6 (2)C20—C21—C22—C23177.15 (17)
C18—C10—C11—C5179.55 (14)C24i—C22—C23—C240.2 (3)
C8—C10—C11—C12179.94 (15)C21—C22—C23—C24179.00 (16)
C18—C10—C11—C120.2 (2)C22—C23—C24—C22i0.2 (3)
C4—C5—C11—C101.5 (2)C54—O53—C52—C5186.6 (2)
C6—C5—C11—C10177.76 (15)C52—O53—C54—O563.7 (3)
C4—C5—C11—C12179.09 (15)C52—O53—C54—C55176.92 (18)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C12–C17 ring.
D—H···AD—HH···AD···AD—H···A
C13—H13···O19ii0.952.543.218 (2)128
C23—H23···O530.952.573.468 (2)157
C24—H24···O56iii0.952.483.410 (3)165
C51—H51B···Cg1iv0.982.763.627 (3)147
Symmetry codes: (ii) x, y, z+1; (iii) x+1, y+1, z; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC44H30Cl2N2O2·2C4H8O2
Mr865.81
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)9.9851 (3), 10.0086 (2), 11.3676 (3)
α, β, γ (°)102.350 (1), 97.108 (1), 95.290 (2)
V3)1092.94 (5)
Z1
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.25 × 0.15 × 0.1
Data collection
DiffractometerBruker APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.884, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
18119, 4866, 4035
Rint0.026
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.140, 1.04
No. of reflections4866
No. of parameters283
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.02, 0.42

Computer programs: APEX2 (Bruker, 2001), SAINT (Bruker, 2001), SIR2002 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C12–C17 ring.
D—H···AD—HH···AD···AD—H···A
C13—H13···O19i0.952.543.218 (2)128
C23—H23···O530.952.573.468 (2)157
C24—H24···O56ii0.952.483.410 (3)165
C51—H51B···Cg1iii0.982.763.627 (3)147
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1.
 

Footnotes

Département Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Larbi Ben M'hidi, 04000 Oum El Bouaghi, Algeria.

Acknowledgements

We are grateful to all personnel of the research squad "Synthèse de molécules à objectif thérapeutique" of the PHYSYNOR Laboratory, Université Mentouri-Constantine, Algeria, for their assistance. Thanks are also due to the MESRS (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique - Algérie) for financial support.

References

First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBruker (2001). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKedjadja, A., Moussaoui, F., Debache, A., Rhouati, S. & Belfaitah, A. (2004). J. Soc. Alger. Chim. 14, 225–233.  CAS Google Scholar
First citationMenasra, H., Kedjadja, A., Debache, A., Rhouati, S., Carboni, B. & Belfaitah, A. (2005). Synth. Commun. 35, 2779–2788.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, G.-W., Jia, C.-C. & Dong, Y.-W. (2006). Tetrahedron Lett. 47, 1059–1063.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds