metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chlorido[1H-1,2,4-triazole-5(4H)-thione-κS]bis­­(tri­phenyl­phosphane-κP)copper(I) acetro­nitrile monosolvate

aDepartment of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
*Correspondence e-mail: saowanit.sa@psu.ac.th

(Received 30 November 2012; accepted 3 December 2012; online 8 December 2012)

In the title solvate, [CuCl(C2H3N3S)(C18H15P)2]·CH3CN, the CuI ion is bonded to two triphenyl­phosphane ligands, one 1H-1,2,4-triazole-5(4H)-thione ligand via its S atom and one chloride ion in a distorted CuP2SCl tetra­hedron. An intra­molecular N—H⋯Cl hydrogen bond, which closes an S(6) ring, helps to establish the conformation of the complex. In the crystal, N—H⋯Cl hydrogen bonds and C—H⋯π inter­actions link the components, generating (110) layers.

Related literature

For the properties of mixed-ligand copper(I) complexes, see: Oshio et al. (1996[Oshio, H., Watanabe, T., Ohto, A., Ito, T. & Masuda, H. (1996). Inorg. Chem. 35, 472-479.]); Henary et al. (1997[Henary, M., Wootton, J. L., Khan, S. I. & Zink, J. I. (1997). Inorg. Chem. 36, 796-801.]); Vitale & Ford (2001[Vitale, M. & Ford, P. C. (2001). Coord. Chem. Rev. 219-221, 3-16.]); Zhang & Chen (2003[Zhang, X.-M. & Chen, X.-M. (2003). Eur. J. Inorg. Chem. pp. 413-417.]). For structurally related mixed-ligand complexes of triphenyl­phosphane and thione ligands, see: Skoulika et al. (1991[Skoulika, S., Aubry, A., Karagiannidis, P., Aslanidis, P. & Papastefanou, S. (1991). Inorg. Chim. Acta, 183, 207-211.]); Aslanidis et al. (1998[Aslanidis, P., Hadjikakou, S. K., Karagiannidis, P. & Cox, P. J. (1998). Inorg. Chim. Acta, 271, 243-247.]); Chen et al. (2001[Chen, Z.-F., Li, B.-Q., Xie, Y.-R., Xiong, R.-G., You, X.-Z. & Feng, X.-L. (2001). Inorg. Chem. Commun. 4, 346-349.]); Li et al. (2004[Li, D., Shi, W.-J., Wu, T. & Ng, S. W. (2004). Acta Cryst. E60, m776-m777.]); Lobana et al. (2008[Lobana, T. S., Sultana, R. & Hundal, G. (2008). Polyhedron, 27, 1008-1016.]); La-o et al. (2009[La-o, L., Pakawatchai, C., Saithong, S. & Skelton, B. W. (2009). Acta Cryst. E65, m926.]). For complexes of 1,2,4-triazole-2-thione and its derivatives, see: Sen et al. (1996[Sen, A. K., Dubey, S. N. & Squattrito, P. J. (1996). Acta Cryst. C52, 865-868.]); Zhang et al. (2008[Zhang, R.-B., Li, Z.-J., Cheng, J.-K., Qin, Y.-Y., Zhang, J. & Yao, Y.-G. (2008). Cryst. Growth Des. 8, 2562-2573.]).

[Scheme 1]

Experimental

Crystal data
  • [CuCl(C2H3N3S)(C18H15P)2]·C2H3N

  • Mr = 765.72

  • Orthorhombic, P 21 21 21

  • a = 10.2348 (4) Å

  • b = 16.4046 (7) Å

  • c = 22.3632 (9) Å

  • V = 3754.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.83 mm−1

  • T = 293 K

  • 0.27 × 0.18 × 0.09 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.840, Tmax = 0.928

  • 30968 measured reflections

  • 6602 independent reflections

  • 6040 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.086

  • S = 1.11

  • 6602 reflections

  • 449 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2890 Friedel pairs

  • Flack parameter: −0.001 (11)

Table 1
Selected bond lengths (Å)

Cu1—P1 2.2802 (9)
Cu1—P2 2.2824 (9)
Cu1—S1 2.3582 (9)
Cu1—Cl1 2.4035 (9)

Table 2
Hydrogen-bond geometry (Å, °)

Cg7 is the centroid of the C31–C36 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯Cl1 0.84 (2) 2.41 (3) 3.183 (3) 155 (5)
N1—H1A⋯Cl1i 0.84 (2) 2.34 (2) 3.154 (3) 163 (5)
C15—H15⋯Cg7ii 0.93 2.88 3.749 (4) 155
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2]; (ii) [-x-1, y+{\script{5\over 2}}, -z+{\script{5\over 2}}].

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT (Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The mixed ligand metal(I) complexes of IB group have been studied and characterized due to various properties such as magnetism (Oshio et al., 1996), mocroporus (Zhang & Chen, 2003) and luminescent properties (Vitale & Ford, 2001). Besides, some mixed ligand of copper(I) with drug has been studied (Chen et al., 2001).

For the 1,2,4-triazole-2-thione and its derivatives group have been used as an active ligand to coordinate metals with interesting intrinsic properties (Sen et al., 1996; Zhang et al., 2008). This study reports the crystal structure analysis and self-assembly of the tiltle complex base on mixed ligand copper(I) complex containing triphenylphosphosphane (PPh3) and 1H-1,2,4-triazole-2-thione (C2H3N3S).

The title compound, [Cu(C2H3N3S)(PPh3)2Cl].CH3CN, is a mononuclear complex. The asymetric unit of the complex contains one formula unit with no crystallographically imposed symmetry and a non-coordinating acetonitrile solvent molecule (Fig.1), in which Cu center is in distorted tetrahedral geometry coordinated by two P atoms of two PPh3 molecules, one S atom from C2H3N3S molecule and one Cl atom. Similar to those copper(I) complexes coordinating with mixed PPh3/ heterocyclic thione and Cl ligands, the geometry around copper center and the coordination modes are in agreement with the previous reports (Aslanidis et al., 1998; Li et al., 2004; Lobana et al.,2008).

The short non-bonding distance between N at 3-positon of triazole ring and Cl atom (N3–H3A···Cl1) in the molecule can be accepted as an intra-molecular hydrogen bond with the N3···Cl1 distance = 3.183 (3) Å and the N3–H3A···Cl1 bond angle = 155 (5)°. In crystal packing, the one-dimensional interaction chain along [100] is connected by inter- hydrogen bonding interactions, N–H···Cl, between N at 1-position of triazole ring and the Cl atom of neighbouring molecule (N1···Cl1i = 3.154 (3) Å; i: x + 1/2, -y + 3/2, -z + 2). In addition, each chain is further linked to each other to form two-dimensional network parallel to (001) due to C—H···π interactions between C15 of phenyl ring and the Cg7 centroid (Cg7: C31–C32–C33–C34–C35–C36) of the nearby phenyl ring of adjacent molecule with the C···Cg7ii distance of 3.749 (4) Å (ii: -x - 1, y + 5/2, -z + 5/2). Two perspective views of intra- and inter-interactions are depicted in Fig. 2 and 3.

Related literature top

For the properties of mixed-ligand copper(I) complexes, see: Oshio et al. (1996); Henary et al. (1997); Vitale & Ford (2001); Zhang & Chen (2003). For structurally related mixed-ligand complexes of triphenylphosphane and thione ligands, see: Skoulika et al. (1991); Aslanidis et al. (1998); Chen et al. (2001); Li et al. (2004); Lobana et al. (2008); La-o et al. (2009). For complexes of 1,2,4-triazole-2-thione and its derivatives, see: Sen et al. (1996); Zhang et al. (2008).

Experimental top

A mixture of CuCl (0.15 g: 1.50 mmol), C2H3N3S (0.15 g: 1.48 mmol) and PPh3 (0.80: 3.05 mmol) in acetronitrile 30 ml was refluxed for 4 h. Then, the fitrate was kept to evaporate at room temperature over night. The polygon colorless crystals were obtained. The complex melts at 140–142°C.

Refinement top

All carbon H-atoms of triazole ring and phenyl ring were placed in calculated positions (C—H = 0.93 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) = 1.2Ueq(C). The hydrogen atoms of N atoms are located in the difference map and restrained, N—H = 0.86 Å with Uiso(H) = 1.2Ueq(N).

Structure description top

The mixed ligand metal(I) complexes of IB group have been studied and characterized due to various properties such as magnetism (Oshio et al., 1996), mocroporus (Zhang & Chen, 2003) and luminescent properties (Vitale & Ford, 2001). Besides, some mixed ligand of copper(I) with drug has been studied (Chen et al., 2001).

For the 1,2,4-triazole-2-thione and its derivatives group have been used as an active ligand to coordinate metals with interesting intrinsic properties (Sen et al., 1996; Zhang et al., 2008). This study reports the crystal structure analysis and self-assembly of the tiltle complex base on mixed ligand copper(I) complex containing triphenylphosphosphane (PPh3) and 1H-1,2,4-triazole-2-thione (C2H3N3S).

The title compound, [Cu(C2H3N3S)(PPh3)2Cl].CH3CN, is a mononuclear complex. The asymetric unit of the complex contains one formula unit with no crystallographically imposed symmetry and a non-coordinating acetonitrile solvent molecule (Fig.1), in which Cu center is in distorted tetrahedral geometry coordinated by two P atoms of two PPh3 molecules, one S atom from C2H3N3S molecule and one Cl atom. Similar to those copper(I) complexes coordinating with mixed PPh3/ heterocyclic thione and Cl ligands, the geometry around copper center and the coordination modes are in agreement with the previous reports (Aslanidis et al., 1998; Li et al., 2004; Lobana et al.,2008).

The short non-bonding distance between N at 3-positon of triazole ring and Cl atom (N3–H3A···Cl1) in the molecule can be accepted as an intra-molecular hydrogen bond with the N3···Cl1 distance = 3.183 (3) Å and the N3–H3A···Cl1 bond angle = 155 (5)°. In crystal packing, the one-dimensional interaction chain along [100] is connected by inter- hydrogen bonding interactions, N–H···Cl, between N at 1-position of triazole ring and the Cl atom of neighbouring molecule (N1···Cl1i = 3.154 (3) Å; i: x + 1/2, -y + 3/2, -z + 2). In addition, each chain is further linked to each other to form two-dimensional network parallel to (001) due to C—H···π interactions between C15 of phenyl ring and the Cg7 centroid (Cg7: C31–C32–C33–C34–C35–C36) of the nearby phenyl ring of adjacent molecule with the C···Cg7ii distance of 3.749 (4) Å (ii: -x - 1, y + 5/2, -z + 5/2). Two perspective views of intra- and inter-interactions are depicted in Fig. 2 and 3.

For the properties of mixed-ligand copper(I) complexes, see: Oshio et al. (1996); Henary et al. (1997); Vitale & Ford (2001); Zhang & Chen (2003). For structurally related mixed-ligand complexes of triphenylphosphane and thione ligands, see: Skoulika et al. (1991); Aslanidis et al. (1998); Chen et al. (2001); Li et al. (2004); Lobana et al. (2008); La-o et al. (2009). For complexes of 1,2,4-triazole-2-thione and its derivatives, see: Sen et al. (1996); Zhang et al. (2008).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title complex with displacement ellipsoids plotted at the 30% probability level.
[Figure 2] Fig. 2. The interactions sheet of the title complex plot down a axis.
[Figure 3] Fig. 3. The two-dimensional sheet of hydrogen bond, N–H···Cl, and C–H···π interaction of the title complex plotted parallel to (001). All H atoms not involving the interactions are omitted.
Chlorido[1H-1,2,4-triazole-5(4H)-thione- κS]bis(triphenylphosphane-κP)copper(I) acetronitrile monosolvate top
Crystal data top
[CuCl(C2H3N3S)(C18H15P)2]·C2H3NF(000) = 1584
Mr = 765.72Dx = 1.355 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5583 reflections
a = 10.2348 (4) Åθ = 2.2–21.3°
b = 16.4046 (7) ŵ = 0.83 mm1
c = 22.3632 (9) ÅT = 293 K
V = 3754.7 (3) Å3Polyhedron, colourless
Z = 40.27 × 0.18 × 0.09 mm
Data collection top
Bruker APEX CCD
diffractometer
6602 independent reflections
Radiation source: fine-focus sealed tube6040 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Frames, each covering 0.3 ° in ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1212
Tmin = 0.840, Tmax = 0.928k = 1919
30968 measured reflectionsl = 2626
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0419P)2 + 0.5093P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
6602 reflectionsΔρmax = 0.52 e Å3
449 parametersΔρmin = 0.17 e Å3
2 restraintsAbsolute structure: Flack (1983), 2890 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.001 (11)
Crystal data top
[CuCl(C2H3N3S)(C18H15P)2]·C2H3NV = 3754.7 (3) Å3
Mr = 765.72Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.2348 (4) ŵ = 0.83 mm1
b = 16.4046 (7) ÅT = 293 K
c = 22.3632 (9) Å0.27 × 0.18 × 0.09 mm
Data collection top
Bruker APEX CCD
diffractometer
6602 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
6040 reflections with I > 2σ(I)
Tmin = 0.840, Tmax = 0.928Rint = 0.044
30968 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.086Δρmax = 0.52 e Å3
S = 1.11Δρmin = 0.17 e Å3
6602 reflectionsAbsolute structure: Flack (1983), 2890 Friedel pairs
449 parametersAbsolute structure parameter: 0.001 (11)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.34524 (4)0.93751 (2)0.962685 (16)0.03712 (11)
Cl10.12918 (7)0.90194 (5)0.92963 (4)0.04224 (19)
S10.46576 (9)0.82003 (6)0.98819 (5)0.0529 (2)
P10.29805 (8)1.00323 (5)1.04989 (3)0.03605 (19)
P20.42531 (8)0.99058 (5)0.87575 (4)0.03542 (19)
N10.4062 (3)0.65928 (17)0.98402 (14)0.0466 (7)
N20.3204 (3)0.60429 (17)0.96044 (14)0.0533 (7)
N30.2723 (3)0.72977 (17)0.93421 (14)0.0440 (7)
C10.4369 (3)1.0231 (2)1.09970 (16)0.0449 (8)
C20.5549 (4)1.0419 (2)1.0752 (2)0.0615 (11)
H20.56381.04551.03390.074*
C30.6623 (4)1.0557 (3)1.1121 (3)0.0848 (15)
H30.74211.07031.09530.102*
C40.6519 (6)1.0481 (3)1.1714 (3)0.0953 (18)
H40.72511.05491.19550.114*
C50.5345 (7)1.0306 (4)1.1963 (3)0.114 (2)
H50.52641.02711.23770.136*
C60.4271 (5)1.0178 (3)1.16028 (19)0.0840 (15)
H60.34691.00551.17760.101*
C70.1835 (3)0.9471 (2)1.09762 (14)0.0401 (8)
C80.1875 (4)0.8625 (2)1.09702 (16)0.0509 (9)
H80.24790.83561.07300.061*
C90.1017 (4)0.8182 (3)1.13215 (18)0.0651 (12)
H90.10630.76161.13250.078*
C100.0106 (4)0.8570 (3)1.16626 (18)0.0691 (12)
H100.04840.82681.18880.083*
C110.0061 (4)0.9391 (4)1.16727 (18)0.0723 (12)
H110.05530.96511.19130.087*
C120.0909 (4)0.9851 (3)1.13328 (16)0.0579 (10)
H120.08601.04171.13430.070*
C130.2164 (3)1.10211 (19)1.04311 (16)0.0452 (8)
C140.2650 (4)1.1740 (2)1.06457 (17)0.0543 (10)
H140.34421.17411.08500.065*
C150.1981 (5)1.2473 (2)1.0564 (2)0.0730 (14)
H150.23291.29601.07060.088*
C160.0804 (6)1.2465 (3)1.0272 (2)0.0865 (16)
H160.03481.29501.02160.104*
C170.0295 (6)1.1749 (3)1.0060 (3)0.110 (2)
H170.05081.17440.98650.132*
C180.0985 (5)1.1035 (3)1.0139 (2)0.0856 (16)
H180.06421.05500.99900.103*
C190.3278 (3)1.07665 (19)0.84849 (13)0.0404 (8)
C200.3033 (5)1.1388 (2)0.88831 (19)0.0784 (15)
H200.33861.13640.92660.094*
C210.2265 (6)1.2051 (3)0.8721 (2)0.0907 (17)
H210.21411.24770.89890.109*
C220.1697 (5)1.2080 (3)0.8176 (2)0.0698 (12)
H220.11571.25130.80710.084*
C230.1932 (5)1.1460 (3)0.7780 (2)0.0815 (14)
H230.15521.14740.74030.098*
C240.2720 (4)1.0819 (3)0.79331 (18)0.0649 (11)
H240.28771.04100.76540.078*
C250.4252 (3)0.91805 (18)0.81294 (14)0.0382 (7)
C260.3092 (4)0.8834 (3)0.79486 (16)0.0606 (11)
H260.23220.89610.81490.073*
C270.3067 (5)0.8294 (3)0.74663 (18)0.0715 (13)
H270.22740.80860.73330.086*
C280.4188 (5)0.8070 (2)0.71913 (18)0.0670 (12)
H280.41680.77060.68730.080*
C290.5353 (5)0.8384 (2)0.73845 (19)0.0668 (12)
H290.61270.82240.72020.080*
C300.5385 (4)0.8940 (2)0.78519 (17)0.0531 (9)
H300.61810.91520.79780.064*
C310.5944 (3)1.0287 (2)0.87255 (14)0.0384 (7)
C320.6363 (4)1.0808 (2)0.82716 (16)0.0479 (8)
H320.57641.10230.80020.057*
C330.7671 (4)1.1001 (2)0.82252 (19)0.0617 (11)
H330.79561.13480.79230.074*
C340.8556 (4)1.0682 (3)0.8627 (2)0.0643 (11)
H340.94411.07990.85880.077*
C350.8137 (4)1.0195 (2)0.9080 (2)0.0603 (10)
H350.87350.99900.93550.072*
C360.6832 (3)1.0004 (2)0.91342 (16)0.0472 (8)
H360.65520.96800.94500.057*
C370.3795 (3)0.73556 (19)0.96862 (15)0.0396 (7)
C380.2396 (4)0.6494 (2)0.93112 (17)0.0514 (9)
H380.16770.62950.91040.062*
N41.0664 (6)0.7141 (3)0.8189 (3)0.1146 (18)
C390.8865 (6)0.8191 (4)0.8394 (3)0.122 (2)
H39A0.86160.81640.88080.183*
H39B0.81210.80740.81480.183*
H39C0.91830.87280.83050.183*
C400.9877 (6)0.7604 (4)0.8278 (2)0.0798 (15)
H3A0.219 (4)0.767 (2)0.926 (2)0.096*
H1A0.477 (3)0.646 (3)1.001 (2)0.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0398 (2)0.0367 (2)0.03486 (19)0.00132 (17)0.00169 (18)0.00165 (17)
Cl10.0320 (4)0.0448 (4)0.0499 (5)0.0026 (3)0.0016 (4)0.0037 (4)
S10.0455 (5)0.0383 (5)0.0747 (6)0.0050 (4)0.0170 (5)0.0032 (5)
P10.0398 (4)0.0322 (4)0.0362 (4)0.0018 (3)0.0010 (3)0.0013 (3)
P20.0344 (4)0.0397 (5)0.0322 (4)0.0029 (4)0.0011 (3)0.0033 (4)
N10.0458 (17)0.0364 (16)0.0577 (19)0.0051 (14)0.0041 (14)0.0052 (14)
N20.0525 (17)0.0423 (16)0.0651 (19)0.0000 (15)0.0029 (17)0.0033 (16)
N30.0385 (16)0.0387 (16)0.0549 (18)0.0053 (13)0.0063 (14)0.0018 (14)
C10.047 (2)0.0366 (18)0.051 (2)0.0024 (16)0.0093 (17)0.0040 (15)
C20.048 (2)0.059 (3)0.077 (3)0.0066 (18)0.001 (2)0.018 (2)
C30.046 (2)0.075 (3)0.134 (5)0.000 (2)0.005 (3)0.029 (3)
C40.080 (4)0.087 (4)0.119 (5)0.008 (3)0.055 (4)0.029 (3)
C50.104 (5)0.156 (6)0.081 (4)0.033 (4)0.051 (4)0.010 (4)
C60.071 (3)0.125 (4)0.056 (3)0.022 (3)0.015 (2)0.004 (3)
C70.0415 (19)0.0448 (19)0.0340 (16)0.0072 (16)0.0025 (14)0.0009 (15)
C80.061 (2)0.047 (2)0.0440 (19)0.0071 (19)0.0028 (18)0.0026 (17)
C90.082 (3)0.059 (2)0.055 (2)0.019 (2)0.009 (2)0.011 (2)
C100.065 (3)0.091 (4)0.051 (2)0.025 (3)0.004 (2)0.015 (2)
C110.063 (3)0.102 (4)0.053 (2)0.002 (3)0.019 (2)0.001 (3)
C120.057 (2)0.065 (2)0.052 (2)0.005 (2)0.0072 (19)0.003 (2)
C130.054 (2)0.0348 (17)0.0466 (19)0.0038 (16)0.0024 (18)0.0010 (16)
C140.065 (2)0.039 (2)0.059 (2)0.0034 (18)0.007 (2)0.0043 (17)
C150.100 (4)0.037 (2)0.082 (3)0.000 (2)0.021 (3)0.006 (2)
C160.104 (4)0.051 (3)0.105 (4)0.033 (3)0.007 (4)0.000 (3)
C170.093 (4)0.082 (4)0.157 (6)0.039 (3)0.049 (4)0.013 (4)
C180.087 (3)0.056 (3)0.114 (4)0.017 (2)0.049 (3)0.016 (3)
C190.0381 (18)0.0442 (19)0.0390 (17)0.0013 (15)0.0002 (15)0.0077 (14)
C200.130 (5)0.049 (2)0.056 (2)0.018 (3)0.023 (3)0.005 (2)
C210.153 (5)0.046 (2)0.073 (3)0.027 (3)0.009 (3)0.001 (2)
C220.070 (3)0.059 (3)0.080 (3)0.017 (2)0.009 (3)0.027 (2)
C230.085 (3)0.086 (3)0.073 (3)0.019 (3)0.030 (3)0.012 (3)
C240.076 (3)0.064 (3)0.055 (2)0.020 (2)0.014 (2)0.0043 (19)
C250.0477 (19)0.0370 (18)0.0298 (16)0.0022 (15)0.0008 (15)0.0044 (13)
C260.063 (3)0.073 (3)0.046 (2)0.017 (2)0.0061 (19)0.013 (2)
C270.083 (3)0.075 (3)0.056 (3)0.026 (3)0.008 (2)0.014 (2)
C280.108 (4)0.045 (2)0.048 (2)0.002 (2)0.000 (2)0.0103 (18)
C290.081 (3)0.051 (2)0.069 (3)0.009 (2)0.009 (2)0.015 (2)
C300.055 (2)0.046 (2)0.058 (2)0.0056 (18)0.0003 (19)0.0058 (18)
C310.0368 (18)0.0416 (18)0.0369 (17)0.0023 (14)0.0049 (15)0.0008 (14)
C320.046 (2)0.049 (2)0.0481 (19)0.0044 (17)0.0041 (17)0.0025 (16)
C330.062 (3)0.057 (2)0.065 (2)0.016 (2)0.019 (2)0.001 (2)
C340.040 (2)0.061 (2)0.092 (3)0.007 (2)0.012 (2)0.009 (2)
C350.047 (2)0.053 (2)0.081 (3)0.0003 (19)0.012 (2)0.003 (2)
C360.0380 (19)0.049 (2)0.055 (2)0.0002 (16)0.0014 (16)0.0043 (17)
C370.0353 (17)0.0430 (18)0.0405 (18)0.0076 (14)0.0042 (15)0.0044 (15)
C380.042 (2)0.047 (2)0.065 (2)0.0008 (17)0.0008 (19)0.0066 (18)
N40.108 (4)0.109 (4)0.127 (4)0.007 (3)0.037 (4)0.021 (4)
C390.098 (5)0.127 (5)0.141 (5)0.003 (4)0.040 (4)0.037 (5)
C400.080 (4)0.081 (4)0.078 (3)0.023 (3)0.029 (3)0.003 (3)
Geometric parameters (Å, º) top
Cu1—P12.2802 (9)C15—H150.9300
Cu1—P22.2824 (9)C16—C171.370 (7)
Cu1—S12.3582 (9)C16—H160.9300
Cu1—Cl12.4035 (9)C17—C181.378 (6)
S1—C371.700 (3)C17—H170.9300
P1—C131.831 (3)C18—H180.9300
P1—C71.834 (3)C19—C241.363 (5)
P1—C11.834 (4)C19—C201.377 (5)
P2—C191.833 (3)C20—C211.390 (6)
P2—C251.841 (3)C20—H200.9300
P2—C311.841 (3)C21—C221.352 (7)
N1—C371.326 (4)C21—H210.9300
N1—N21.364 (4)C22—C231.369 (6)
N1—H1A0.844 (19)C22—H220.9300
N2—C381.289 (5)C23—C241.368 (6)
N3—C371.343 (4)C23—H230.9300
N3—C381.361 (4)C24—H240.9300
N3—H3A0.835 (19)C25—C301.372 (5)
C1—C61.361 (6)C25—C261.377 (5)
C1—C21.362 (5)C26—C271.397 (5)
C2—C31.393 (6)C26—H260.9300
C2—H20.9300C27—C281.352 (6)
C3—C41.336 (7)C27—H270.9300
C3—H30.9300C28—C291.369 (6)
C4—C51.355 (8)C28—H280.9300
C4—H40.9300C29—C301.388 (5)
C5—C61.379 (7)C29—H290.9300
C5—H50.9300C30—H300.9300
C6—H60.9300C31—C361.370 (5)
C7—C121.386 (5)C31—C321.394 (5)
C7—C81.388 (5)C32—C331.380 (5)
C8—C91.384 (5)C32—H320.9300
C8—H80.9300C33—C341.379 (6)
C9—C101.362 (6)C33—H330.9300
C9—H90.9300C34—C351.360 (6)
C10—C111.347 (7)C34—H340.9300
C10—H100.9300C35—C361.378 (5)
C11—C121.379 (6)C35—H350.9300
C11—H110.9300C36—H360.9300
C12—H120.9300C38—H380.9300
C13—C141.368 (5)N4—C401.125 (7)
C13—C181.373 (6)C39—C401.438 (8)
C14—C151.395 (6)C39—H39A0.9600
C14—H140.9300C39—H39B0.9600
C15—C161.371 (7)C39—H39C0.9600
P1—Cu1—P2128.63 (3)C16—C17—C18119.3 (5)
P1—Cu1—S1106.88 (4)C16—C17—H17120.3
P2—Cu1—S1109.27 (4)C18—C17—H17120.3
P1—Cu1—Cl1100.54 (3)C13—C18—C17121.6 (5)
P2—Cu1—Cl199.26 (3)C13—C18—H18119.2
S1—Cu1—Cl1110.93 (3)C17—C18—H18119.2
C37—S1—Cu1109.39 (11)C24—C19—C20117.5 (3)
C13—P1—C7101.60 (16)C24—C19—P2125.3 (3)
C13—P1—C1104.29 (16)C20—C19—P2117.0 (3)
C7—P1—C1103.35 (15)C19—C20—C21120.9 (4)
C13—P1—Cu1116.40 (12)C19—C20—H20119.5
C7—P1—Cu1113.32 (11)C21—C20—H20119.5
C1—P1—Cu1116.05 (12)C22—C21—C20120.4 (4)
C19—P2—C25104.12 (14)C22—C21—H21119.8
C19—P2—C31103.71 (15)C20—C21—H21119.8
C25—P2—C31100.96 (15)C21—C22—C23118.7 (4)
C19—P2—Cu1112.43 (10)C21—C22—H22120.6
C25—P2—Cu1113.78 (10)C23—C22—H22120.6
C31—P2—Cu1120.00 (11)C24—C23—C22120.9 (4)
C37—N1—N2113.0 (3)C24—C23—H23119.6
C37—N1—H1A122 (4)C22—C23—H23119.6
N2—N1—H1A124 (4)C19—C24—C23121.5 (4)
C38—N2—N1103.2 (3)C19—C24—H24119.3
C37—N3—C38107.3 (3)C23—C24—H24119.3
C37—N3—H3A128 (4)C30—C25—C26118.5 (3)
C38—N3—H3A122 (4)C30—C25—P2122.0 (3)
C6—C1—C2118.7 (4)C26—C25—P2119.4 (3)
C6—C1—P1122.4 (3)C25—C26—C27120.3 (4)
C2—C1—P1118.9 (3)C25—C26—H26119.9
C1—C2—C3119.9 (4)C27—C26—H26119.9
C1—C2—H2120.1C28—C27—C26120.5 (4)
C3—C2—H2120.1C28—C27—H27119.7
C4—C3—C2120.6 (5)C26—C27—H27119.7
C4—C3—H3119.7C27—C28—C29119.6 (4)
C2—C3—H3119.7C27—C28—H28120.2
C3—C4—C5120.0 (5)C29—C28—H28120.2
C3—C4—H4120.0C28—C29—C30120.4 (4)
C5—C4—H4120.0C28—C29—H29119.8
C4—C5—C6119.9 (5)C30—C29—H29119.8
C4—C5—H5120.1C25—C30—C29120.6 (4)
C6—C5—H5120.1C25—C30—H30119.7
C1—C6—C5120.9 (5)C29—C30—H30119.7
C1—C6—H6119.5C36—C31—C32119.3 (3)
C5—C6—H6119.5C36—C31—P2118.8 (3)
C12—C7—C8118.4 (3)C32—C31—P2121.7 (3)
C12—C7—P1123.1 (3)C33—C32—C31119.6 (4)
C8—C7—P1118.5 (3)C33—C32—H32120.2
C9—C8—C7120.0 (4)C31—C32—H32120.2
C9—C8—H8120.0C34—C33—C32120.0 (4)
C7—C8—H8120.0C34—C33—H33120.0
C10—C9—C8120.5 (4)C32—C33—H33120.0
C10—C9—H9119.8C35—C34—C33120.2 (4)
C8—C9—H9119.8C35—C34—H34119.9
C11—C10—C9120.0 (4)C33—C34—H34119.9
C11—C10—H10120.0C34—C35—C36120.3 (4)
C9—C10—H10120.0C34—C35—H35119.9
C10—C11—C12121.1 (4)C36—C35—H35119.9
C10—C11—H11119.5C31—C36—C35120.5 (4)
C12—C11—H11119.5C31—C36—H36119.7
C11—C12—C7120.1 (4)C35—C36—H36119.7
C11—C12—H12119.9N1—C37—N3104.5 (3)
C7—C12—H12119.9N1—C37—S1126.5 (3)
C14—C13—C18118.2 (3)N3—C37—S1129.0 (3)
C14—C13—P1124.7 (3)N2—C38—N3111.9 (3)
C18—C13—P1117.1 (3)N2—C38—H38124.1
C13—C14—C15121.3 (4)N3—C38—H38124.1
C13—C14—H14119.4C40—C39—H39A109.5
C15—C14—H14119.4C40—C39—H39B109.5
C16—C15—C14119.0 (4)H39A—C39—H39B109.5
C16—C15—H15120.5C40—C39—H39C109.5
C14—C15—H15120.5H39A—C39—H39C109.5
C17—C16—C15120.5 (4)H39B—C39—H39C109.5
C17—C16—H16119.7N4—C40—C39179.7 (8)
C15—C16—H16119.7
P1—Cu1—S1—C37116.24 (13)P1—C13—C14—C15178.5 (3)
P2—Cu1—S1—C37100.90 (13)C13—C14—C15—C161.1 (7)
Cl1—Cu1—S1—C377.53 (13)C14—C15—C16—C170.3 (8)
P2—Cu1—P1—C1341.73 (14)C15—C16—C17—C180.6 (10)
S1—Cu1—P1—C13174.88 (13)C14—C13—C18—C170.1 (7)
Cl1—Cu1—P1—C1369.26 (13)P1—C13—C18—C17179.5 (5)
P2—Cu1—P1—C7159.03 (12)C16—C17—C18—C130.8 (10)
S1—Cu1—P1—C767.83 (12)C25—P2—C19—C240.6 (4)
Cl1—Cu1—P1—C748.03 (12)C31—P2—C19—C24104.7 (3)
P2—Cu1—P1—C181.59 (13)Cu1—P2—C19—C24124.2 (3)
S1—Cu1—P1—C151.56 (13)C25—P2—C19—C20175.6 (3)
Cl1—Cu1—P1—C1167.42 (13)C31—P2—C19—C2079.2 (4)
P1—Cu1—P2—C1953.12 (13)Cu1—P2—C19—C2051.9 (4)
S1—Cu1—P2—C19174.57 (12)C24—C19—C20—C211.3 (7)
Cl1—Cu1—P2—C1958.44 (12)P2—C19—C20—C21177.8 (4)
P1—Cu1—P2—C25171.18 (12)C19—C20—C21—C222.9 (8)
S1—Cu1—P2—C2556.52 (12)C20—C21—C22—C232.4 (8)
Cl1—Cu1—P2—C2559.61 (12)C21—C22—C23—C240.4 (8)
P1—Cu1—P2—C3169.18 (13)C20—C19—C24—C230.7 (7)
S1—Cu1—P2—C3163.12 (13)P2—C19—C24—C23175.5 (4)
Cl1—Cu1—P2—C31179.25 (13)C22—C23—C24—C191.2 (8)
C37—N1—N2—C381.1 (4)C19—P2—C25—C30119.2 (3)
C13—P1—C1—C688.1 (4)C31—P2—C25—C3011.9 (3)
C7—P1—C1—C617.8 (4)Cu1—P2—C25—C30118.1 (3)
Cu1—P1—C1—C6142.5 (4)C19—P2—C25—C2664.1 (3)
C13—P1—C1—C293.5 (3)C31—P2—C25—C26171.4 (3)
C7—P1—C1—C2160.6 (3)Cu1—P2—C25—C2658.6 (3)
Cu1—P1—C1—C236.0 (3)C30—C25—C26—C274.3 (6)
C6—C1—C2—C30.3 (6)P2—C25—C26—C27178.9 (3)
P1—C1—C2—C3178.8 (3)C25—C26—C27—C283.5 (7)
C1—C2—C3—C42.1 (7)C26—C27—C28—C290.7 (7)
C2—C3—C4—C53.1 (8)C27—C28—C29—C301.2 (7)
C3—C4—C5—C62.2 (10)C26—C25—C30—C292.4 (5)
C2—C1—C6—C50.5 (8)P2—C25—C30—C29179.2 (3)
P1—C1—C6—C5177.9 (5)C28—C29—C30—C250.4 (6)
C4—C5—C6—C10.4 (10)C19—P2—C31—C36149.0 (3)
C13—P1—C7—C1219.7 (3)C25—P2—C31—C36103.3 (3)
C1—P1—C7—C1288.2 (3)Cu1—P2—C31—C3622.6 (3)
Cu1—P1—C7—C12145.4 (3)C19—P2—C31—C3235.7 (3)
C13—P1—C7—C8158.7 (3)C25—P2—C31—C3271.9 (3)
C1—P1—C7—C893.3 (3)Cu1—P2—C31—C32162.2 (2)
Cu1—P1—C7—C833.1 (3)C36—C31—C32—C332.8 (5)
C12—C7—C8—C90.9 (5)P2—C31—C32—C33172.4 (3)
P1—C7—C8—C9179.5 (3)C31—C32—C33—C340.1 (6)
C7—C8—C9—C101.8 (6)C32—C33—C34—C352.0 (6)
C8—C9—C10—C111.9 (7)C33—C34—C35—C361.4 (6)
C9—C10—C11—C121.3 (7)C32—C31—C36—C353.4 (5)
C10—C11—C12—C70.5 (6)P2—C31—C36—C35171.9 (3)
C8—C7—C12—C110.3 (5)C34—C35—C36—C311.3 (6)
P1—C7—C12—C11178.8 (3)N2—N1—C37—N30.4 (4)
C7—P1—C13—C14115.5 (3)N2—N1—C37—S1178.8 (2)
C1—P1—C13—C148.3 (4)C38—N3—C37—N10.4 (4)
Cu1—P1—C13—C14120.9 (3)C38—N3—C37—S1179.5 (3)
C7—P1—C13—C1865.0 (4)Cu1—S1—C37—N1168.9 (3)
C1—P1—C13—C18172.2 (3)Cu1—S1—C37—N312.1 (3)
Cu1—P1—C13—C1858.6 (4)N1—N2—C38—N31.3 (4)
C18—C13—C14—C150.9 (6)C37—N3—C38—N21.1 (4)
Hydrogen-bond geometry (Å, º) top
Cg7 is the centroid of the C31–C36 ring.
D—H···AD—HH···AD···AD—H···A
N3—H3A···Cl10.84 (2)2.41 (3)3.183 (3)155 (5)
N1—H1A···Cl1i0.84 (2)2.34 (2)3.154 (3)163 (5)
C15—H15···Cg7ii0.932.883.749 (4)155
Symmetry codes: (i) x+1/2, y+3/2, z+2; (ii) x1, y+5/2, z+5/2.

Experimental details

Crystal data
Chemical formula[CuCl(C2H3N3S)(C18H15P)2]·C2H3N
Mr765.72
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)10.2348 (4), 16.4046 (7), 22.3632 (9)
V3)3754.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.83
Crystal size (mm)0.27 × 0.18 × 0.09
Data collection
DiffractometerBruker APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.840, 0.928
No. of measured, independent and
observed [I > 2σ(I)] reflections
30968, 6602, 6040
Rint0.044
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.086, 1.11
No. of reflections6602
No. of parameters449
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.52, 0.17
Absolute structureFlack (1983), 2890 Friedel pairs
Absolute structure parameter0.001 (11)

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Cu1—P12.2802 (9)Cu1—S12.3582 (9)
Cu1—P22.2824 (9)Cu1—Cl12.4035 (9)
Hydrogen-bond geometry (Å, º) top
Cg7 is the centroid of the C31–C36 ring.
D—H···AD—HH···AD···AD—H···A
N3—H3A···Cl10.835 (19)2.41 (3)3.183 (3)155 (5)
N1—H1A···Cl1i0.844 (19)2.34 (2)3.154 (3)163 (5)
C15—H15···Cg7ii0.932.883.749 (4)155
Symmetry codes: (i) x+1/2, y+3/2, z+2; (ii) x1, y+5/2, z+5/2.
 

Acknowledgements

Financial support from the Center of Excellence for Innovation in Chemistry (PERCH-CIC), the Office of the Higher Education Commission, the Ministry of Education and the Graduate School, Prince of Songkla University, are gratefully acknowledged.

References

First citationAslanidis, P., Hadjikakou, S. K., Karagiannidis, P. & Cox, P. J. (1998). Inorg. Chim. Acta, 271, 243–247.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Z.-F., Li, B.-Q., Xie, Y.-R., Xiong, R.-G., You, X.-Z. & Feng, X.-L. (2001). Inorg. Chem. Commun. 4, 346–349.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHenary, M., Wootton, J. L., Khan, S. I. & Zink, J. I. (1997). Inorg. Chem. 36, 796–801.  CSD CrossRef CAS Web of Science Google Scholar
First citationLa-o, L., Pakawatchai, C., Saithong, S. & Skelton, B. W. (2009). Acta Cryst. E65, m926.  CSD CrossRef IUCr Journals Google Scholar
First citationLi, D., Shi, W.-J., Wu, T. & Ng, S. W. (2004). Acta Cryst. E60, m776–m777.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLobana, T. S., Sultana, R. & Hundal, G. (2008). Polyhedron, 27, 1008–1016.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOshio, H., Watanabe, T., Ohto, A., Ito, T. & Masuda, H. (1996). Inorg. Chem. 35, 472–479.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationSen, A. K., Dubey, S. N. & Squattrito, P. J. (1996). Acta Cryst. C52, 865–868.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSkoulika, S., Aubry, A., Karagiannidis, P., Aslanidis, P. & Papastefanou, S. (1991). Inorg. Chim. Acta, 183, 207–211.  CSD CrossRef CAS Web of Science Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVitale, M. & Ford, P. C. (2001). Coord. Chem. Rev. 219–221, 3–16.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X.-M. & Chen, X.-M. (2003). Eur. J. Inorg. Chem. pp. 413–417.  CSD CrossRef Google Scholar
First citationZhang, R.-B., Li, Z.-J., Cheng, J.-K., Qin, Y.-Y., Zhang, J. & Yao, Y.-G. (2008). Cryst. Growth Des. 8, 2562–2573.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds