organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Meth­­oxy-3-(meth­­oxy­meth­yl)benzalde­hyde

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 211816, People's Republic of China
*Correspondence e-mail: guocheng@njut.edu.cn

(Received 7 December 2012; accepted 11 December 2012; online 19 December 2012)

In the title compound, C10H12O3, the dihedral angle between the benzene ring and the meth­oxy­methyl side chain is 9.7 (2)°. The O atom of the aldehyde group and the C atom of the meth­oxy group deviate from the plane of the ring by 0.039 (3) and 0.338 (4) Å, respectively. The only inter­molecular inter­actions are very weak C—H⋯π inter­actions.

Related literature

For the synthesis and applications of the title compound see: Jonali et al. (2003[Jonali, G., Naleen, B. & Amrit, G. (2003). J. Chem. Res. S, 200-203.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12O3

  • Mr = 180.20

  • Monoclinic, P 21 /c

  • a = 7.8100 (16) Å

  • b = 8.3970 (17) Å

  • c = 14.510 (3) Å

  • β = 98.01 (3)°

  • V = 942.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.973, Tmax = 0.991

  • 1860 measured reflections

  • 1729 independent reflections

  • 860 reflections with I > 2σ(I)

  • Rint = 0.099

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.165

  • S = 1.01

  • 1729 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7BCg1i 0.96 2.84 3.650 (5) 143
C8—H8ACg1ii 0.97 2.97 3.731 (3) 136
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y, -z.

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Related literature top

For the synthesis and applications of the title compound see: Jonali et al. (2003).

Experimental top

The title compound, (I) was prepared by the literature method (Jonali et al. 2003). Colourless blocks were obtained by dissolving (I) (0.18 g, 1.0 mmol) in acetone (25 ml) and evaporating the solvent slowly at room temperature for about 7 d.

Refinement top

H atoms were positioned geometrically and refined as riding groups with Uiso(H) = xUeq(C), where x = 1.2 for aromatic H, and x = 1.5 for other H.

Structure description top

For the synthesis and applications of the title compound see: Jonali et al. (2003).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of (I).
4-Methoxy-3-(methoxymethyl)benzaldehyde top
Crystal data top
C10H12O3F(000) = 384
Mr = 180.20Dx = 1.270 Mg m3
Monoclinic, P21/cMelting point: 341 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 7.8100 (16) ÅCell parameters from 25 reflections
b = 8.3970 (17) Åθ = 9–13°
c = 14.510 (3) ŵ = 0.09 mm1
β = 98.01 (3)°T = 293 K
V = 942.3 (3) Å3Block, colourless
Z = 40.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
860 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.099
Graphite monochromatorθmax = 25.4°, θmin = 2.6°
ω/2θ scansh = 09
Absorption correction: ψ scan
(North et al., 1968)
k = 010
Tmin = 0.973, Tmax = 0.991l = 1717
1860 measured reflections3 standard reflections every 200 reflections
1729 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.165H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.070P)2]
where P = (Fo2 + 2Fc2)/3
1729 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C10H12O3V = 942.3 (3) Å3
Mr = 180.20Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.8100 (16) ŵ = 0.09 mm1
b = 8.3970 (17) ÅT = 293 K
c = 14.510 (3) Å0.30 × 0.20 × 0.10 mm
β = 98.01 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
860 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.099
Tmin = 0.973, Tmax = 0.9913 standard reflections every 200 reflections
1860 measured reflections intensity decay: 1%
1729 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.165H-atom parameters constrained
S = 1.01Δρmax = 0.19 e Å3
1729 reflectionsΔρmin = 0.18 e Å3
118 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3742 (3)0.2060 (2)0.10208 (17)0.0606 (7)
C10.4323 (4)0.0653 (3)0.1125 (2)0.0449 (8)
O20.2282 (3)0.2507 (3)0.03860 (18)0.0736 (8)
C20.5453 (4)0.1885 (4)0.1380 (2)0.0512 (9)
H2A0.50920.29270.12500.061*
O30.8048 (3)0.4313 (3)0.1968 (2)0.0838 (10)
C30.7125 (5)0.1612 (4)0.1829 (2)0.0531 (9)
C40.7648 (4)0.0059 (4)0.2027 (3)0.0608 (10)
H4A0.87520.01330.23390.073*
C50.6561 (5)0.1209 (4)0.1772 (3)0.0579 (10)
H5A0.69280.22480.19040.070*
C60.4919 (4)0.0912 (3)0.1318 (2)0.0494 (9)
C70.4335 (5)0.3667 (4)0.1007 (3)0.0688 (12)
H7A0.33800.43530.07910.103*
H7B0.48260.39780.16240.103*
H7C0.51960.37490.05980.103*
C80.2523 (4)0.0900 (3)0.0654 (2)0.0547 (9)
H8A0.23070.02210.01100.066*
H8B0.17090.06140.10750.066*
C90.0623 (5)0.2781 (4)0.0121 (3)0.0835 (13)
H9A0.05090.38870.02860.125*
H9B0.02480.24970.02560.125*
H9C0.04850.21450.06760.125*
C100.8314 (5)0.2919 (5)0.2107 (3)0.0680 (11)
H10A0.93900.26440.24250.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0666 (16)0.0309 (13)0.0856 (18)0.0025 (11)0.0151 (13)0.0033 (11)
C10.050 (2)0.0358 (18)0.052 (2)0.0002 (16)0.0158 (16)0.0018 (14)
O20.0662 (17)0.0371 (14)0.112 (2)0.0032 (13)0.0070 (15)0.0046 (13)
C20.058 (2)0.0342 (17)0.063 (2)0.0024 (16)0.0133 (18)0.0005 (15)
O30.082 (2)0.0481 (16)0.118 (3)0.0127 (14)0.0024 (17)0.0007 (16)
C30.058 (2)0.0404 (19)0.062 (2)0.0006 (18)0.0120 (18)0.0036 (17)
C40.055 (2)0.053 (2)0.075 (3)0.0049 (19)0.0107 (19)0.0041 (19)
C50.064 (2)0.040 (2)0.073 (3)0.0082 (18)0.019 (2)0.0009 (18)
C60.057 (2)0.0321 (18)0.061 (2)0.0024 (16)0.0157 (19)0.0034 (15)
C70.084 (3)0.0297 (18)0.097 (3)0.0005 (18)0.029 (2)0.0046 (18)
C80.060 (2)0.0332 (18)0.072 (3)0.0042 (16)0.0143 (19)0.0049 (16)
C90.066 (3)0.062 (3)0.119 (4)0.016 (2)0.000 (3)0.004 (2)
C100.060 (2)0.058 (2)0.084 (3)0.007 (2)0.006 (2)0.003 (2)
Geometric parameters (Å, º) top
O1—C61.360 (4)C4—H4A0.9300
O1—C71.427 (3)C5—C61.380 (4)
C1—C21.376 (4)C5—H5A0.9300
C1—C61.409 (4)C7—H7A0.9600
C1—C81.490 (4)C7—H7B0.9600
O2—C81.410 (3)C7—H7C0.9600
O2—C91.416 (4)C8—H8A0.9700
C2—C31.395 (5)C8—H8B0.9700
C2—H2A0.9300C9—H9A0.9600
O3—C101.201 (4)C9—H9B0.9600
C3—C41.385 (4)C9—H9C0.9600
C3—C101.457 (5)C10—H10A0.9300
C4—C51.380 (4)
C6—O1—C7118.0 (3)O1—C7—H7B109.5
C2—C1—C6117.8 (3)H7A—C7—H7B109.5
C2—C1—C8123.2 (3)O1—C7—H7C109.5
C6—C1—C8119.0 (3)H7A—C7—H7C109.5
C8—O2—C9112.1 (3)H7B—C7—H7C109.5
C1—C2—C3121.7 (3)O2—C8—C1109.9 (3)
C1—C2—H2A119.2O2—C8—H8A109.7
C3—C2—H2A119.2C1—C8—H8A109.7
C4—C3—C2118.8 (3)O2—C8—H8B109.7
C4—C3—C10119.6 (3)C1—C8—H8B109.7
C2—C3—C10121.6 (3)H8A—C8—H8B108.2
C5—C4—C3121.2 (3)O2—C9—H9A109.5
C5—C4—H4A119.4O2—C9—H9B109.5
C3—C4—H4A119.4H9A—C9—H9B109.5
C4—C5—C6119.0 (3)O2—C9—H9C109.5
C4—C5—H5A120.5H9A—C9—H9C109.5
C6—C5—H5A120.5H9B—C9—H9C109.5
O1—C6—C5124.4 (3)O3—C10—C3126.8 (4)
O1—C6—C1114.1 (3)O3—C10—H10A116.6
C5—C6—C1121.5 (3)C3—C10—H10A116.6
O1—C7—H7A109.5
C6—C1—C2—C31.0 (5)C4—C5—C6—C11.0 (5)
C8—C1—C2—C3179.3 (3)C2—C1—C6—O1178.2 (3)
C1—C2—C3—C40.6 (5)C8—C1—C6—O11.5 (4)
C1—C2—C3—C10179.4 (3)C2—C1—C6—C51.8 (5)
C2—C3—C4—C51.4 (5)C8—C1—C6—C5178.4 (3)
C10—C3—C4—C5179.8 (3)C9—O2—C8—C1176.0 (3)
C3—C4—C5—C60.6 (5)C2—C1—C8—O29.5 (4)
C7—O1—C6—C513.0 (5)C6—C1—C8—O2170.2 (3)
C7—O1—C6—C1167.1 (3)C4—C3—C10—O3178.7 (4)
C4—C5—C6—O1179.0 (3)C2—C3—C10—O32.5 (6)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C7—H7B···Cg1i0.962.843.650 (5)143
C8—H8A···Cg1ii0.972.973.731 (3)136
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC10H12O3
Mr180.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.8100 (16), 8.3970 (17), 14.510 (3)
β (°) 98.01 (3)
V3)942.3 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.973, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
1860, 1729, 860
Rint0.099
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.165, 1.01
No. of reflections1729
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.18

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C7—H7B···Cg1i0.962.843.650 (5)143
C8—H8A···Cg1ii0.972.973.731 (3)136
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y, z.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for the data collection.

References

First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationJonali, G., Naleen, B. & Amrit, G. (2003). J. Chem. Res. S, 200–203.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds