organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[4-(Morpholin-4-ylmeth­yl)phen­yl]benzo­nitrile

aDepartment of Studies in Chemistry, Karnataka University, Dharwad 580 003, Karnataka, India, and bDepartment of Physics, Yuvaraja's College (Constituent College), University of Mysore, Mysore 570 005, Karnataka, India
*Correspondence e-mail: devarajegowda@yahoo.com, kamchem9@gmail.com

(Received 12 December 2012; accepted 15 December 2012; online 22 December 2012)

In the title compound, C18H18N2O, the morpholine ring adopts a chair conformation with the exocyclic N—C bond in an equatorial orientation. The dihedral angles between the central benzene ring and the morpholine ring (all atoms) and the cyano­benzene ring are 87.87 (7) and 52.54 (7)°, respectively. No significant inter­molecular inter­actions are observed in the crystal structure.

Related literature

For biological applications of biphenyl derivatives see; Li et al. (2011[Li, W., Xu, Z., Sun, P., Jiang, X. & Fang, M. (2011). Org. Lett. 13, 1286-1289.]); Hadizad et al. (2009[Hadizad, T., Kirkpatrick, A. S., Mason, S., Burns, K., Beanlands, R. S. & Dasilva, J. N. (2009). Bioorg. Med. Chem. 23, 7971-7977.]); Larsen et al. (1994[Larsen, R. D., King, A. O., Chen, C. Y., Corley, E. G., Foster, B. S., Roberts, F. E., Yang, C., Lieberman, D. R. & Reamer, R. A. (1994). J. Org. Chem. 59, 6391-6394.]); Kamble et al. (2011[Kamble, R. R., Biradar, D. B., Meti, G. Y., Tasneem, T., Tegginamath, G., Khazi, I. M., Vaidynathan, S. T., Mohandoss, R. & Balasubramanian, S. V. P. (2011). J. Chem. Sci. 123, 393-401.]); Zhang et al. (2004[Zhang, H., Yang, B., Zheng, Y., Yang, G., Ye, L., Ma, Y., Chen, X., Cheng, G. & Liu, S. (2004). J. Phys. Chem. B, 108, 9571-9573.]); Chan et al. (1994[Chan, W., Butler, R. G. & Smith, R. G. (1994). J. Med. Chem. 37, 897-906.]).

[Scheme 1]

Experimental

Crystal data
  • C18H18N2O

  • Mr = 278.34

  • Monoclinic, P 21 /c

  • a = 21.1079 (5) Å

  • b = 8.1358 (1) Å

  • c = 9.0793 (2) Å

  • β = 100.833 (1)°

  • V = 1531.40 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.24 × 0.20 × 0.12 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.]) Tmin = 0.770, Tmax = 1.000

  • 10319 measured reflections

  • 2387 independent reflections

  • 1948 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.083

  • S = 1.03

  • 2387 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.10 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Biphenyl derivatives were reported as non-peptide AII antagonists by the discovery at Du-pont Merck which resulted into clinical candidate (5–2-[(4-methyl)-biphenyl]-1H-tetrazole. This has become the common motif for most of the potent antagonists reported (Li et al., 2011; Hadizad et al., 2009; Larsen et al., 1994). This discovery lead to the development of drugs such as irbesartan and losartan for the efficient treatment of hypertension. Since then these biphenyl derivatives have received enormous focus due to their inhibition of angiotensin converting enzyme (ACE) and in this regard many biphenyl derivatives have been reported (Kamble et al., 2011; Zhang et al., 2004; Chan et al., 1994).

The asymmetric unit of 4'-(morpholin-4-ylmethyl)biphenyl-2-carbonitrile is shown in Fig. 1. The the morpholine ring (O1/N2/C4–C7)adopts a chair conformation. The dihedral angle between the morpholine ring (O1/N2/C4–C7) and the benzene rings (C9–C14) and (C15–C20) are 87.87 (7)° and 44.76 (7)° respectively. No significant intermolecular interactions are observed. The crystal packing of the molecules is shown in Fig.2.

Related literature top

For biological applications of biphenyl derivatives see; Li et al. (2011); Hadizad et al. (2009); Larsen et al. (1994); Kamble et al. (2011); Zhang et al. (2004); Chan et al. (1994).

Experimental top

A mixture of 4'-(bromomethyl)-biphenyl-2-carbonitrile (0.0074 mol), morpholine (0.0085 mol) in presence of potassium carbonate (0.009 mol) in acetone (20 ml) was stirred at 298–300 K for 5–6hrs, filtred the salt, filtrate added to 50 ml water stirred well to get solid, filtered and washed with water, dried at 313 K. Colourless plates were recrystallized from a solvent mixture of acetone and THF (m.p. 348 K).

Refinement top

All H atoms were positioned geometrically, with C—H = 0.93 Å for aromatic H and C—H = 0.97 Å for methylene H and refined using a riding model with Uiso(H) = 1.2Ueq(C) for aromatic and methylene H.

Structure description top

Biphenyl derivatives were reported as non-peptide AII antagonists by the discovery at Du-pont Merck which resulted into clinical candidate (5–2-[(4-methyl)-biphenyl]-1H-tetrazole. This has become the common motif for most of the potent antagonists reported (Li et al., 2011; Hadizad et al., 2009; Larsen et al., 1994). This discovery lead to the development of drugs such as irbesartan and losartan for the efficient treatment of hypertension. Since then these biphenyl derivatives have received enormous focus due to their inhibition of angiotensin converting enzyme (ACE) and in this regard many biphenyl derivatives have been reported (Kamble et al., 2011; Zhang et al., 2004; Chan et al., 1994).

The asymmetric unit of 4'-(morpholin-4-ylmethyl)biphenyl-2-carbonitrile is shown in Fig. 1. The the morpholine ring (O1/N2/C4–C7)adopts a chair conformation. The dihedral angle between the morpholine ring (O1/N2/C4–C7) and the benzene rings (C9–C14) and (C15–C20) are 87.87 (7)° and 44.76 (7)° respectively. No significant intermolecular interactions are observed. The crystal packing of the molecules is shown in Fig.2.

For biological applications of biphenyl derivatives see; Li et al. (2011); Hadizad et al. (2009); Larsen et al. (1994); Kamble et al. (2011); Zhang et al. (2004); Chan et al. (1994).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The packing of molecules.
2-[4-(Morpholin-4-ylmethyl)phenyl]benzonitrile top
Crystal data top
C18H18N2OF(000) = 592
Mr = 278.34Dx = 1.207 Mg m3
Monoclinic, P21/cMelting point: 348 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 21.1079 (5) ÅCell parameters from 2387 reflections
b = 8.1358 (1) Åθ = 2.7–24.1°
c = 9.0793 (2) ŵ = 0.08 mm1
β = 100.833 (1)°T = 296 K
V = 1531.40 (5) Å3Plate, colourless
Z = 40.24 × 0.20 × 0.12 mm
Data collection top
Bruker SMART CCD
diffractometer
2387 independent reflections
Radiation source: fine-focus sealed tube1948 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω and φ scansθmax = 24.1°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 1824
Tmin = 0.770, Tmax = 1.000k = 99
10319 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0398P)2 + 0.1412P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2387 reflectionsΔρmax = 0.11 e Å3
191 parametersΔρmin = 0.10 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0110 (13)
Crystal data top
C18H18N2OV = 1531.40 (5) Å3
Mr = 278.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 21.1079 (5) ŵ = 0.08 mm1
b = 8.1358 (1) ÅT = 296 K
c = 9.0793 (2) Å0.24 × 0.20 × 0.12 mm
β = 100.833 (1)°
Data collection top
Bruker SMART CCD
diffractometer
2387 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
1948 reflections with I > 2σ(I)
Tmin = 0.770, Tmax = 1.000Rint = 0.021
10319 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.03Δρmax = 0.11 e Å3
2387 reflectionsΔρmin = 0.10 e Å3
191 parameters
Special details top

Experimental. Spectroscopic data IR (KBr): 3040–3080, 2175, 1500, 1H NMR (300 MHz, CDCl3, δ p.p.m..): 2.93 (t,4H, Morpholine CH2), 3.8 (s, 2H, CH2), 3.94 (t, 4H, morpholine CH2), 7.42- 7.84 (m, 8H, ArH). MS (m/z, 70 eV): 278, 250, 192.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.05263 (6)0.66354 (15)0.88307 (13)0.0926 (4)
N20.11430 (4)0.39688 (12)0.76422 (10)0.0462 (3)
N30.42812 (7)0.18166 (17)1.11979 (17)0.0859 (4)
C40.10594 (8)0.5807 (2)0.96979 (18)0.0835 (5)
H4A0.09040.49271.02580.100*
H4B0.13020.65681.04120.100*
C50.14930 (6)0.51072 (17)0.87289 (15)0.0584 (4)
H5A0.16670.59910.82090.070*
H5B0.18510.45410.93510.070*
C60.05896 (6)0.48231 (17)0.67698 (15)0.0585 (4)
H6A0.03370.40600.60750.070*
H6B0.07390.56950.61910.070*
C70.01763 (7)0.5536 (2)0.7778 (2)0.0789 (5)
H7A0.01850.61120.71780.095*
H7B0.00050.46540.83060.095*
C80.15600 (7)0.33485 (18)0.66566 (14)0.0583 (4)
H8A0.17820.42700.63040.070*
H8B0.12930.28430.57880.070*
C90.20548 (6)0.21152 (16)0.73752 (13)0.0504 (3)
C100.18769 (6)0.07434 (16)0.81104 (13)0.0523 (3)
H100.14480.06080.81970.063*
C110.23247 (6)0.04191 (16)0.87128 (13)0.0507 (3)
H110.21930.13310.91940.061*
C120.29698 (6)0.02548 (15)0.86153 (14)0.0491 (3)
C130.31476 (6)0.11113 (16)0.78798 (15)0.0582 (4)
H130.35770.12510.77980.070*
C140.26966 (6)0.22674 (17)0.72675 (15)0.0585 (4)
H140.28270.31700.67710.070*
C150.34412 (6)0.15362 (15)0.92802 (15)0.0527 (3)
C160.40058 (6)0.11543 (16)1.02980 (16)0.0566 (4)
C170.44281 (7)0.23758 (18)1.09399 (18)0.0706 (4)
H170.48010.20991.16150.085*
C180.42949 (8)0.39895 (19)1.0579 (2)0.0776 (5)
H180.45780.48101.10060.093*
C190.37458 (8)0.43904 (18)0.9591 (2)0.0789 (5)
H190.36550.54870.93510.095*
C200.33248 (7)0.31866 (17)0.89470 (18)0.0687 (4)
H200.29540.34860.82740.082*
C210.41517 (6)0.05194 (18)1.07696 (17)0.0633 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0948 (8)0.0848 (8)0.0920 (8)0.0435 (7)0.0019 (7)0.0129 (6)
N20.0412 (6)0.0469 (6)0.0480 (6)0.0037 (4)0.0018 (4)0.0029 (4)
N30.0726 (9)0.0598 (9)0.1148 (11)0.0027 (7)0.0098 (8)0.0077 (8)
C40.0912 (12)0.0866 (11)0.0668 (9)0.0383 (9)0.0004 (9)0.0144 (9)
C50.0537 (8)0.0582 (8)0.0572 (8)0.0045 (6)0.0051 (6)0.0016 (6)
C60.0477 (7)0.0567 (8)0.0651 (8)0.0028 (6)0.0051 (6)0.0076 (7)
C70.0517 (9)0.0840 (12)0.0987 (12)0.0207 (8)0.0079 (8)0.0104 (10)
C80.0629 (8)0.0654 (9)0.0447 (7)0.0125 (7)0.0054 (6)0.0041 (6)
C90.0529 (8)0.0578 (8)0.0394 (6)0.0078 (6)0.0062 (5)0.0035 (6)
C100.0434 (7)0.0646 (8)0.0488 (7)0.0043 (6)0.0081 (6)0.0036 (6)
C110.0491 (7)0.0507 (7)0.0525 (7)0.0014 (6)0.0101 (6)0.0021 (6)
C120.0475 (7)0.0463 (7)0.0529 (7)0.0029 (6)0.0079 (6)0.0050 (6)
C130.0453 (7)0.0593 (8)0.0710 (8)0.0027 (6)0.0137 (6)0.0035 (7)
C140.0578 (9)0.0567 (8)0.0618 (8)0.0030 (7)0.0132 (7)0.0087 (7)
C150.0488 (7)0.0467 (7)0.0638 (8)0.0037 (6)0.0139 (6)0.0009 (6)
C160.0466 (8)0.0482 (8)0.0746 (9)0.0051 (6)0.0106 (7)0.0021 (7)
C170.0530 (8)0.0618 (9)0.0932 (11)0.0106 (7)0.0044 (8)0.0069 (8)
C180.0693 (10)0.0554 (9)0.1073 (12)0.0191 (8)0.0140 (9)0.0113 (9)
C190.0840 (11)0.0446 (8)0.1079 (12)0.0080 (8)0.0171 (10)0.0030 (8)
C200.0637 (9)0.0522 (9)0.0874 (10)0.0010 (7)0.0070 (8)0.0079 (8)
C210.0458 (8)0.0573 (9)0.0821 (10)0.0039 (7)0.0003 (7)0.0027 (8)
Geometric parameters (Å, º) top
O1—C71.4120 (19)C10—C111.3758 (17)
O1—C41.4169 (18)C10—H100.9300
N2—C51.4502 (16)C11—C121.3873 (17)
N2—C81.4581 (16)C11—H110.9300
N2—C61.4585 (15)C12—C131.3843 (18)
N3—C211.1401 (18)C12—C151.4886 (18)
C4—C51.496 (2)C13—C141.3788 (18)
C4—H4A0.9700C13—H130.9300
C4—H4B0.9700C14—H140.9300
C5—H5A0.9700C15—C201.3881 (19)
C5—H5B0.9700C15—C161.3989 (18)
C6—C71.495 (2)C16—C171.3880 (18)
C6—H6A0.9700C16—C211.443 (2)
C6—H6B0.9700C17—C181.369 (2)
C7—H7A0.9700C17—H170.9300
C7—H7B0.9700C18—C191.365 (2)
C8—C91.5057 (17)C18—H180.9300
C8—H8A0.9700C19—C201.377 (2)
C8—H8B0.9700C19—H190.9300
C9—C141.3819 (18)C20—H200.9300
C9—C101.3879 (18)
C7—O1—C4109.55 (11)C10—C9—C8121.06 (12)
C5—N2—C8110.46 (10)C11—C10—C9121.07 (12)
C5—N2—C6108.59 (10)C11—C10—H10119.5
C8—N2—C6110.24 (9)C9—C10—H10119.5
O1—C4—C5111.35 (12)C10—C11—C12121.17 (12)
O1—C4—H4A109.4C10—C11—H11119.4
C5—C4—H4A109.4C12—C11—H11119.4
O1—C4—H4B109.4C13—C12—C11117.81 (12)
C5—C4—H4B109.4C13—C12—C15122.46 (11)
H4A—C4—H4B108.0C11—C12—C15119.73 (11)
N2—C5—C4110.69 (12)C14—C13—C12120.86 (12)
N2—C5—H5A109.5C14—C13—H13119.6
C4—C5—H5A109.5C12—C13—H13119.6
N2—C5—H5B109.5C13—C14—C9121.47 (13)
C4—C5—H5B109.5C13—C14—H14119.3
H5A—C5—H5B108.1C9—C14—H14119.3
N2—C6—C7110.63 (11)C20—C15—C16116.92 (12)
N2—C6—H6A109.5C20—C15—C12120.77 (12)
C7—C6—H6A109.5C16—C15—C12122.27 (11)
N2—C6—H6B109.5C17—C16—C15121.23 (13)
C7—C6—H6B109.5C17—C16—C21117.81 (13)
H6A—C6—H6B108.1C15—C16—C21120.89 (11)
O1—C7—C6111.65 (12)C18—C17—C16119.94 (15)
O1—C7—H7A109.3C18—C17—H17120.0
C6—C7—H7A109.3C16—C17—H17120.0
O1—C7—H7B109.3C19—C18—C17119.81 (14)
C6—C7—H7B109.3C19—C18—H18120.1
H7A—C7—H7B108.0C17—C18—H18120.1
N2—C8—C9114.47 (10)C18—C19—C20120.64 (14)
N2—C8—H8A108.6C18—C19—H19119.7
C9—C8—H8A108.6C20—C19—H19119.7
N2—C8—H8B108.6C19—C20—C15121.46 (14)
C9—C8—H8B108.6C19—C20—H20119.3
H8A—C8—H8B107.6C15—C20—H20119.3
C14—C9—C10117.62 (12)N3—C21—C16177.11 (16)
C14—C9—C8121.26 (12)
C7—O1—C4—C558.34 (19)C10—C9—C14—C130.67 (19)
C8—N2—C5—C4177.40 (11)C8—C9—C14—C13177.75 (12)
C6—N2—C5—C456.40 (14)C13—C12—C15—C20128.35 (15)
O1—C4—C5—N258.71 (18)C11—C12—C15—C2051.08 (18)
C5—N2—C6—C756.05 (15)C13—C12—C15—C1653.85 (18)
C8—N2—C6—C7177.18 (12)C11—C12—C15—C16126.71 (14)
C4—O1—C7—C658.19 (17)C20—C15—C16—C170.0 (2)
N2—C6—C7—O158.11 (16)C12—C15—C16—C17177.92 (13)
C5—N2—C8—C973.85 (14)C20—C15—C16—C21176.91 (13)
C6—N2—C8—C9166.14 (11)C12—C15—C16—C211.0 (2)
N2—C8—C9—C14130.98 (13)C15—C16—C17—C180.0 (2)
N2—C8—C9—C1052.04 (16)C21—C16—C17—C18177.05 (15)
C14—C9—C10—C110.17 (18)C16—C17—C18—C190.2 (3)
C8—C9—C10—C11177.25 (11)C17—C18—C19—C200.3 (3)
C9—C10—C11—C120.45 (18)C18—C19—C20—C150.2 (2)
C10—C11—C12—C130.56 (18)C16—C15—C20—C190.1 (2)
C10—C11—C12—C15179.98 (11)C12—C15—C20—C19177.84 (13)
C11—C12—C13—C140.05 (19)C17—C16—C21—N325 (3)
C15—C12—C13—C14179.50 (12)C15—C16—C21—N3152 (3)
C12—C13—C14—C90.6 (2)

Experimental details

Crystal data
Chemical formulaC18H18N2O
Mr278.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)21.1079 (5), 8.1358 (1), 9.0793 (2)
β (°) 100.833 (1)
V3)1531.40 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.24 × 0.20 × 0.12
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.770, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10319, 2387, 1948
Rint0.021
(sin θ/λ)max1)0.575
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.083, 1.03
No. of reflections2387
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.11, 0.10

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012).

 

Acknowledgements

The authors thank the Universities Sophisticated Instrumental Centre, Karnatak University, Dharwad, for the data collection. The authors are also grateful to University Grants Commission, New Delhi for financial assistance [letter No. 37-248/2009 (SR)].

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChan, W., Butler, R. G. & Smith, R. G. (1994). J. Med. Chem. 37, 897–906.  PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHadizad, T., Kirkpatrick, A. S., Mason, S., Burns, K., Beanlands, R. S. & Dasilva, J. N. (2009). Bioorg. Med. Chem. 23, 7971–7977.  Web of Science CrossRef Google Scholar
First citationKamble, R. R., Biradar, D. B., Meti, G. Y., Tasneem, T., Tegginamath, G., Khazi, I. M., Vaidynathan, S. T., Mohandoss, R. & Balasubramanian, S. V. P. (2011). J. Chem. Sci. 123, 393–401.  CSD CrossRef CAS Google Scholar
First citationLarsen, R. D., King, A. O., Chen, C. Y., Corley, E. G., Foster, B. S., Roberts, F. E., Yang, C., Lieberman, D. R. & Reamer, R. A. (1994). J. Org. Chem. 59, 6391–6394.  CrossRef CAS Web of Science Google Scholar
First citationLi, W., Xu, Z., Sun, P., Jiang, X. & Fang, M. (2011). Org. Lett. 13, 1286–1289.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, H., Yang, B., Zheng, Y., Yang, G., Ye, L., Ma, Y., Chen, X., Cheng, G. & Liu, S. (2004). J. Phys. Chem. B, 108, 9571–9573.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds