organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-O-Acetyl-3,4,6-tri-O-benzyl-2-C-bromo­methyl-2-de­­oxy-α-D-gluco­pyran­ose

aResearch Center for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg (APK Campus), PO Box 524, Auckland Park, Johannesburg, 2006, South Africa
*Correspondence e-mail: zhphasha@uj.ac.za

(Received 16 November 2012; accepted 26 November 2012; online 12 December 2012)

In the title compound, C30H33BrO6, the pyran­ose ring adopts a chair conformation. Two of the O-benzyl phenyl rings lie almost perpendicular to C/C/C/O plane formed by the ring atoms not attached to these O-benzyl phenyl rings, and form dihedral angles of 85.1 (2) and 64.6 (2)°, while the third O-benzyl phenyl ring is twisted so that it makes a dihedral angle 34.9 (2)° to this C/C/C/O plane. This twist is ascribed to the formation of an S(8) loop stabilized by a weak intra­molecular C—H⋯O hydrogen bond.

Related literature

For background to derivatization of cyclo­propyl carbohydrates, see: Halton & Harvey (2006[Halton, B. & Harvey, J. (2006). Synlett, pp. 1975-2000.]); Beyer & Madsen (1998[Beyer, J. & Madsen, R. (1998). J. Am. Chem. Soc. 120, 12137-12138.]). For details of the synthesis of the title compound, see: Gammon et al. (2007[Gammon, D. W., Kinfe, H. H., De Vos, D. E., Jacobs, P. A. & Sels, B. F. (2007). J. Carbohydr. Chem. 26, 141-157.]). For ring puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C30H33BrO6

  • Mr = 569.47

  • Orthorhombic, P 21 21 21

  • a = 5.5097 (4) Å

  • b = 19.9357 (11) Å

  • c = 24.4597 (16) Å

  • V = 2686.6 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.43 mm−1

  • T = 100 K

  • 0.43 × 0.05 × 0.05 mm

Data collection
  • Bruker APEX DUO 4K-CCD diffractometer

  • Absorption correction: multi-scan (SADABS, Bruker, 2008[Bruker (2008). SADABS and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.613, Tmax = 0.753

  • 51826 measured reflections

  • 4637 independent reflections

  • 4177 reflections with I > 2σ(I)

  • Rint = 0.097

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.096

  • S = 1.04

  • 4637 reflections

  • 335 parameters

  • H-atom parameters constrained

  • Δρmax = 1.04 e Å−3

  • Δρmin = −0.61 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1893 Friedel pairs

  • Flack parameter: −0.01 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯O4 0.95 2.85 3.663 (7) 144

Data collection: APEX2 (Bruker, 2011[Bruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SADABS and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT (Bruker, 2008[Bruker (2008). SADABS and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al. 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

The derivatization of cyclopropyl carbohydrates remains a relatively small area of research and, of this work, only a small proportion is devoted to reactions of the cyclopropyl moiety (Halton et al., 2006). Nucleophilic attack by a range of alcohols, including monosaccharides afforded 2-C-branched glycosides (Beyer et al., 1998). The compound of interest is a useful glycosyl donor and a precursor for the extension of the C–2 side chain (Gammon et al., 2007).

In the title compound the pyranose ring adopts a chair conformation with ring puckering parameters of q2 = 0.0601 Å, q3 = 0.5555 Å, Q = 0.5587 Å, θ = 6.17 ° and φ2 = 280.0707° (see Cremer & Pople, 1975) (see Figure 1). The C10 – C15 and C25 – C30 rings, lie almost perpendicular to the C1 C3 C4 O1 plane of the pyranose ring, with dihedral angles of 85.1 (2) and 64.6 (2) ° respectively. The C17 – C22 phenyl ring is twisted to an almost parallel position to the C1 C3 C4 O1 plane with a dihedral angle of 34.9 (2)°. The twist is ascribed to the formation of an S(8) loop stabilized by weak intramolecular C–H···O hydrogen bond (see Figure 1; Table 1).

Related literature top

For background to derivatization of cyclopropyl carbohydrates, see: Halton & Harvey (2006); Beyer & Madsen (1998). For details of the synthesis of the title compound, see: Gammon et al. (2007). For ring puckering analysis, see: Cremer & Pople (1975).

Experimental top

The cyclopropane, 3,4,6–Tri–O–benzyl–1,5–anhydro–2–deoxy–1,2– C–methylene–D–glycero–D–gulo–hexitol (120 mg, 0.28 mmol) was suspended in 1:1 mixture of water and 1,4–dioxane (2 mL), N-Bromosuccinamide(NBS) (163 mg, 0.84 mmol) was added, then stirring was allowed overnight at room temperature. The reaction mixture was diluted with 10% aqueous solution of sodium thiosulfate, Na2S2O3, and the aqueous phase extracted with ethyl acetate; the combined organic extracts were dried over MgSO4, and concentrated in vacuo. The residue was acetylated without purification, acetic anhydride (0.5 ml) in pyridine (1 mL) at room temperature. After 1 h, water was added to the reaction, and the mixture was extracted with dichloromethane. The combined extracts were washed with 1M HCl and saturated aqueous NaHCO3, dried over MgSO4, concentrated under reduced pressure, and purified by flash chromatography to afford the title compound as a white solid.

Analytical data: mp: 115 – 117 °C; 1H NMR (CDCl3, 400 MHz): σ 7.45 – 7.10 (m, 15H, Aromatic), 6.39 (d, J = 2.4Hz, 1H, H-1), 4.92 (d, J = 11.2Hz, 1H, CH2Ph), 4.78 (d, J = 10.8Hz, 1H, CH2Ph), 4.70 – 4.40 (m, 4H, CH2Ph), 3.90 – 3.55 (m , 6H, H–3, H–4, H–5, H–6a, H–6b, H–7a), 3.12 (t, J = 10.6Hz, 1H, H7b), 2.45 – 2.25 (m, 1H, H–2), 2.09 (s, 3H, OCOCH3); 13C NMR (CDCl3, 100 MHz): σ 168.9 (OCOCH3), 137.8, 128.6, 128.5, 128.4, 128.0, 128.0, 127.9, 127.8, 127.8, 127.7( Aromatic), 92.1 (C–1), 79.7 (C–3), 78.8 (C–4), 75.4 (C–5), 75.0 (CH2Ph), 73.6 (CH2Ph), 73.3 (CH2Ph), 68.1(C–6), 46.8 (C–2), 29.1(C–7), 20.9 (OCOCH3).

Refinement top

All hydrogen atoms were positioned in geometrically idealized positions with C–H = 1.00 Å (methine), 0.99 Å (methylene), 0.95 Å aromatic and 0.98 Å (methyl). All hydrogen atoms were allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq, except for the methyl where Uiso(H) = 1.5Ueq was utilized. The initial positions of methyl hydrogen atoms were located from a Fourier difference map and refined as a fixed rotor.The D enantiomer refined to a final Flack parameter of -0.01 (2). The highest residual electron density of 1.04 e.Å-3 is 0.93 Å from Br1.

Structure description top

The derivatization of cyclopropyl carbohydrates remains a relatively small area of research and, of this work, only a small proportion is devoted to reactions of the cyclopropyl moiety (Halton et al., 2006). Nucleophilic attack by a range of alcohols, including monosaccharides afforded 2-C-branched glycosides (Beyer et al., 1998). The compound of interest is a useful glycosyl donor and a precursor for the extension of the C–2 side chain (Gammon et al., 2007).

In the title compound the pyranose ring adopts a chair conformation with ring puckering parameters of q2 = 0.0601 Å, q3 = 0.5555 Å, Q = 0.5587 Å, θ = 6.17 ° and φ2 = 280.0707° (see Cremer & Pople, 1975) (see Figure 1). The C10 – C15 and C25 – C30 rings, lie almost perpendicular to the C1 C3 C4 O1 plane of the pyranose ring, with dihedral angles of 85.1 (2) and 64.6 (2) ° respectively. The C17 – C22 phenyl ring is twisted to an almost parallel position to the C1 C3 C4 O1 plane with a dihedral angle of 34.9 (2)°. The twist is ascribed to the formation of an S(8) loop stabilized by weak intramolecular C–H···O hydrogen bond (see Figure 1; Table 1).

For background to derivatization of cyclopropyl carbohydrates, see: Halton & Harvey (2006); Beyer & Madsen (1998). For details of the synthesis of the title compound, see: Gammon et al. (2007). For ring puckering analysis, see: Cremer & Pople (1975).

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al. 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al. 2009).

Figures top
[Figure 1] Fig. 1. Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level.
1-O-Acetyl-3,4,6-tri-O-benzyl-2-C-bromomethyl- 2-deoxy-α-D-glucopyranose top
Crystal data top
C30H33BrO6F(000) = 1184
Mr = 569.47Dx = 1.408 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2abCell parameters from 9957 reflections
a = 5.5097 (4) Åθ = 4.2–65.2°
b = 19.9357 (11) ŵ = 2.43 mm1
c = 24.4597 (16) ÅT = 100 K
V = 2686.6 (3) Å3Needle, colourless
Z = 40.43 × 0.05 × 0.05 mm
Data collection top
Bruker APEX DUO 4K-CCD
diffractometer
4637 independent reflections
Radiation source: fine-focus sealed tube4177 reflections with I > 2σ(I)
Incoatec Quazar Multilayer Mirror monochromatorRint = 0.097
Detector resolution: 8.4 pixels mm-1θmax = 66.2°, θmin = 4.2°
φ and ω scansh = 65
Absorption correction: multi-scan
(SADABS, Bruker, 2008)
k = 2323
Tmin = 0.613, Tmax = 0.753l = 2828
51826 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0448P)2 + 1.595P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4637 reflectionsΔρmax = 1.04 e Å3
335 parametersΔρmin = 0.61 e Å3
0 restraintsAbsolute structure: Flack (1983), 1893 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (2)
Crystal data top
C30H33BrO6V = 2686.6 (3) Å3
Mr = 569.47Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 5.5097 (4) ŵ = 2.43 mm1
b = 19.9357 (11) ÅT = 100 K
c = 24.4597 (16) Å0.43 × 0.05 × 0.05 mm
Data collection top
Bruker APEX DUO 4K-CCD
diffractometer
4637 independent reflections
Absorption correction: multi-scan
(SADABS, Bruker, 2008)
4177 reflections with I > 2σ(I)
Tmin = 0.613, Tmax = 0.753Rint = 0.097
51826 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.096Δρmax = 1.04 e Å3
S = 1.04Δρmin = 0.61 e Å3
4637 reflectionsAbsolute structure: Flack (1983), 1893 Friedel pairs
335 parametersAbsolute structure parameter: 0.01 (2)
0 restraints
Special details top

Experimental. Absorption correction: SADABS-2008/1 (Bruker,2008) was used for absorption correction. wR2(int) was 0.1272 before and 0.0933 after correction. The Ratio of minimum to maximum transmission is 0.8137. The λ/2 correction factor is 0.0015.

The intensity data was collected on a Bruker Apex DUO 4 K CCD diffractometer using an exposure time of 5 s/frame. A total of 4554 frames were collected with a frame width of 1° covering up to θ = 66.16° with 99.6% completeness accomplished.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.52718 (7)0.657227 (17)0.318194 (16)0.03952 (13)
O11.1736 (6)0.61572 (12)0.48483 (10)0.0340 (6)
O21.0466 (5)0.68570 (10)0.41379 (9)0.0326 (6)
O31.2526 (6)0.76628 (11)0.45934 (11)0.0400 (7)
O41.0000 (6)0.48064 (10)0.36332 (9)0.0351 (6)
O50.7051 (6)0.48859 (11)0.45817 (11)0.0392 (7)
O61.0735 (6)0.52549 (12)0.57192 (10)0.0396 (7)
C11.2250 (8)0.63710 (16)0.43169 (15)0.0316 (9)
H11.38960.65820.4310.038*
C21.2183 (8)0.57915 (16)0.39091 (15)0.0330 (9)
H21.35720.54850.39920.04*
C30.9832 (8)0.53928 (14)0.39714 (13)0.0297 (8)
H30.84480.56750.3840.036*
C40.9363 (7)0.51944 (16)0.45609 (14)0.0319 (8)
H41.06380.48730.46880.038*
C50.9433 (8)0.58369 (16)0.49090 (14)0.0338 (9)
H50.81510.61490.47710.041*
C61.0804 (8)0.74997 (16)0.43301 (15)0.0312 (9)
C70.8758 (8)0.79337 (17)0.41525 (16)0.0366 (10)
H7A0.90380.83940.42790.055*
H7B0.72390.77650.43090.055*
H7C0.86460.79290.37530.055*
C81.2419 (8)0.60206 (17)0.33175 (15)0.0375 (10)
H8A1.09520.62790.32170.045*
H8B1.2490.5620.30780.045*
C90.7950 (8)0.46920 (17)0.33029 (15)0.0355 (9)
H9A0.76450.50890.30690.043*
H9B0.65050.4620.35360.043*
C100.8379 (8)0.40787 (17)0.29466 (15)0.0325 (9)
C110.6658 (8)0.39109 (18)0.25596 (15)0.0384 (10)
H110.52510.41810.25150.046*
C120.6995 (9)0.3342 (2)0.22338 (16)0.0443 (10)
H120.58080.32240.19690.053*
C130.9042 (9)0.29499 (18)0.22953 (17)0.0436 (11)
H130.92690.25650.20720.052*
C141.0756 (9)0.31201 (18)0.26817 (17)0.0425 (11)
H141.21650.28510.27260.051*
C151.0426 (9)0.36864 (16)0.30087 (15)0.0371 (9)
H151.16120.38020.32740.045*
C160.6728 (10)0.43619 (19)0.49772 (17)0.0467 (11)
H16A0.58360.45370.52980.056*
H16B0.83290.41970.51020.056*
C170.5316 (9)0.37961 (16)0.47184 (15)0.0367 (9)
C180.6145 (8)0.35048 (19)0.42360 (16)0.0412 (10)
H180.76110.36570.40730.049*
C190.4844 (11)0.29972 (18)0.39955 (17)0.0517 (12)
H190.53870.28120.36590.062*
C200.2765 (11)0.2752 (2)0.4234 (2)0.0604 (15)
H200.18860.23980.40660.072*
C210.1970 (10)0.3025 (2)0.4719 (2)0.0552 (13)
H210.05440.28580.48890.066*
C220.3263 (9)0.35477 (19)0.49587 (17)0.0441 (10)
H220.27120.37340.52940.053*
C230.9028 (8)0.57286 (17)0.55147 (15)0.0371 (10)
H23A0.92140.6160.57110.045*
H23B0.73590.55620.55770.045*
C241.0720 (10)0.5265 (2)0.62974 (16)0.0533 (12)
H24A0.90420.51990.64320.064*
H24B1.13060.57050.6430.064*
C251.2327 (9)0.4717 (2)0.65142 (16)0.0442 (11)
C261.1766 (9)0.4043 (2)0.64257 (18)0.0504 (11)
H261.03540.39250.62250.06*
C271.3272 (9)0.3549 (2)0.66308 (18)0.0511 (11)
H271.2880.3090.65720.061*
C281.5319 (10)0.37129 (19)0.69168 (16)0.0496 (11)
H281.6350.33710.70560.06*
C291.5872 (10)0.4378 (2)0.70016 (17)0.0524 (12)
H291.73050.44960.71950.063*
C301.4362 (9)0.48721 (18)0.68078 (17)0.0470 (10)
H301.47370.53290.68790.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0362 (2)0.02898 (18)0.0534 (2)0.00229 (17)0.00030 (19)0.00481 (16)
O10.0390 (18)0.0234 (12)0.0397 (14)0.0005 (11)0.0060 (13)0.0011 (10)
O20.0385 (17)0.0174 (10)0.0419 (12)0.0030 (11)0.0051 (13)0.0026 (9)
O30.0414 (19)0.0239 (12)0.0546 (16)0.0036 (12)0.0056 (14)0.0026 (11)
O40.0393 (17)0.0219 (10)0.0442 (12)0.0038 (12)0.0062 (14)0.0071 (9)
O50.0436 (19)0.0251 (12)0.0488 (15)0.0033 (12)0.0060 (13)0.0063 (11)
O60.050 (2)0.0314 (13)0.0374 (13)0.0091 (12)0.0003 (13)0.0005 (10)
C10.031 (2)0.0222 (16)0.041 (2)0.0025 (15)0.0038 (17)0.0011 (14)
C20.036 (2)0.0192 (16)0.044 (2)0.0052 (15)0.0054 (18)0.0032 (14)
C30.029 (2)0.0164 (13)0.0433 (18)0.0013 (16)0.0066 (19)0.0051 (12)
C40.030 (2)0.0226 (16)0.0433 (19)0.0013 (15)0.0044 (17)0.0017 (14)
C50.035 (3)0.0235 (16)0.0432 (19)0.0036 (16)0.0019 (18)0.0001 (14)
C60.034 (3)0.0189 (15)0.0402 (19)0.0019 (15)0.0061 (18)0.0009 (14)
C70.042 (3)0.0223 (17)0.045 (2)0.0051 (16)0.0039 (19)0.0017 (15)
C80.045 (3)0.0234 (17)0.044 (2)0.0029 (17)0.0037 (19)0.0003 (15)
C90.040 (2)0.0240 (17)0.043 (2)0.0009 (16)0.0043 (18)0.0046 (15)
C100.035 (2)0.0242 (17)0.0384 (19)0.0051 (16)0.0012 (18)0.0012 (15)
C110.044 (3)0.0278 (18)0.044 (2)0.0050 (17)0.000 (2)0.0003 (16)
C120.053 (3)0.036 (2)0.044 (2)0.011 (2)0.005 (2)0.0057 (17)
C130.056 (3)0.0254 (18)0.049 (2)0.0059 (18)0.005 (2)0.0069 (16)
C140.043 (3)0.0265 (18)0.058 (2)0.0018 (17)0.003 (2)0.0060 (17)
C150.039 (3)0.0280 (16)0.0443 (19)0.0057 (17)0.0024 (19)0.0044 (14)
C160.058 (3)0.033 (2)0.049 (2)0.010 (2)0.005 (2)0.0031 (18)
C170.039 (3)0.0245 (16)0.047 (2)0.0043 (18)0.002 (2)0.0058 (14)
C180.040 (3)0.034 (2)0.049 (2)0.0060 (19)0.0005 (18)0.0030 (18)
C190.068 (4)0.0322 (19)0.055 (2)0.012 (2)0.008 (3)0.0039 (17)
C200.082 (4)0.027 (2)0.072 (3)0.007 (2)0.031 (3)0.007 (2)
C210.045 (3)0.042 (2)0.078 (3)0.011 (2)0.006 (3)0.021 (2)
C220.047 (3)0.035 (2)0.050 (2)0.0075 (19)0.004 (2)0.0066 (18)
C230.040 (3)0.0254 (17)0.046 (2)0.0060 (16)0.0008 (18)0.0004 (15)
C240.057 (4)0.060 (3)0.042 (2)0.015 (2)0.001 (2)0.0043 (19)
C250.055 (3)0.041 (2)0.036 (2)0.011 (2)0.011 (2)0.0016 (17)
C260.045 (3)0.055 (3)0.051 (2)0.004 (2)0.006 (2)0.009 (2)
C270.054 (3)0.034 (2)0.065 (3)0.001 (2)0.002 (2)0.0014 (19)
C280.062 (3)0.0396 (19)0.047 (2)0.010 (2)0.003 (2)0.0092 (16)
C290.062 (4)0.047 (2)0.049 (2)0.000 (2)0.011 (2)0.0013 (19)
C300.062 (3)0.0329 (18)0.046 (2)0.0002 (19)0.000 (3)0.0022 (18)
Geometric parameters (Å, º) top
Br1—C81.947 (4)C12—C131.381 (6)
O1—C11.397 (4)C13—H130.95
O1—C51.428 (5)C13—C141.378 (6)
O2—C11.448 (4)C14—H140.95
O2—C61.377 (4)C14—C151.395 (5)
O3—C61.192 (5)C15—H150.95
O4—C31.435 (3)C16—H16A0.99
O4—C91.407 (5)C16—H16B0.99
O5—C41.415 (5)C16—C171.510 (6)
O5—C161.435 (5)C17—C181.392 (6)
O6—C231.423 (5)C17—C221.367 (6)
O6—C241.414 (5)C18—H180.95
C1—H11C18—C191.373 (6)
C1—C21.527 (5)C19—H190.95
C2—H21C19—C201.375 (8)
C2—C31.528 (6)C20—H200.95
C2—C81.523 (5)C20—C211.375 (7)
C3—H31C21—H210.95
C3—C41.517 (5)C21—C221.392 (6)
C4—H41C22—H220.95
C4—C51.538 (5)C23—H23A0.99
C5—H51C23—H23B0.99
C5—C231.514 (5)C24—H24A0.99
C6—C71.486 (5)C24—H24B0.99
C7—H7A0.98C24—C251.503 (6)
C7—H7B0.98C25—C261.394 (6)
C7—H7C0.98C25—C301.367 (7)
C8—H8A0.99C26—H260.95
C8—H8B0.99C26—C271.383 (7)
C9—H9A0.99C27—H270.95
C9—H9B0.99C27—C281.367 (7)
C9—C101.520 (5)C28—H280.95
C10—C111.381 (6)C28—C291.377 (6)
C10—C151.381 (6)C29—H290.95
C11—H110.95C29—C301.373 (6)
C11—C121.399 (5)C30—H300.95
C12—H120.95
C1—O1—C5114.4 (3)C13—C12—H12119.8
C6—O2—C1115.3 (3)C12—C13—H13120.2
C9—O4—C3114.3 (3)C14—C13—C12119.7 (4)
C4—O5—C16116.9 (3)C14—C13—H13120.2
C24—O6—C23109.8 (3)C13—C14—H14119.9
O1—C1—O2110.3 (3)C13—C14—C15120.2 (4)
O1—C1—H1109.2C15—C14—H14119.9
O1—C1—C2111.8 (3)C10—C15—C14120.1 (4)
O2—C1—H1109.2C10—C15—H15119.9
O2—C1—C2107.0 (3)C14—C15—H15119.9
C2—C1—H1109.2O5—C16—H16A109.9
C1—C2—H2108.1O5—C16—H16B109.9
C1—C2—C3110.4 (3)O5—C16—C17109.0 (3)
C3—C2—H2108.1H16A—C16—H16B108.3
C8—C2—C1113.1 (3)C17—C16—H16A109.9
C8—C2—H2108.1C17—C16—H16B109.9
C8—C2—C3108.9 (3)C18—C17—C16119.9 (4)
O4—C3—C2108.1 (3)C22—C17—C16121.1 (4)
O4—C3—H3108.8C22—C17—C18119.0 (4)
O4—C3—C4110.3 (2)C17—C18—H18120
C2—C3—H3108.8C19—C18—C17119.9 (4)
C4—C3—C2112.0 (3)C19—C18—H18120
C4—C3—H3108.8C18—C19—H19119.5
O5—C4—C3107.5 (3)C18—C19—C20121.0 (4)
O5—C4—H4110.1C20—C19—H19119.5
O5—C4—C5111.4 (3)C19—C20—H20120.3
C3—C4—H4110.1C19—C20—C21119.4 (4)
C3—C4—C5107.7 (3)C21—C20—H20120.3
C5—C4—H4110.1C20—C21—H21120.1
O1—C5—C4109.7 (3)C20—C21—C22119.8 (5)
O1—C5—H5108.3C22—C21—H21120.1
O1—C5—C23107.3 (3)C17—C22—C21120.8 (4)
C4—C5—H5108.3C17—C22—H22119.6
C23—C5—C4114.8 (3)C21—C22—H22119.6
C23—C5—H5108.3O6—C23—C5109.9 (3)
O2—C6—C7109.8 (3)O6—C23—H23A109.7
O3—C6—O2123.1 (3)O6—C23—H23B109.7
O3—C6—C7127.1 (3)C5—C23—H23A109.7
C6—C7—H7A109.5C5—C23—H23B109.7
C6—C7—H7B109.5H23A—C23—H23B108.2
C6—C7—H7C109.5O6—C24—H24A109.7
H7A—C7—H7B109.5O6—C24—H24B109.7
H7A—C7—H7C109.5O6—C24—C25109.8 (3)
H7B—C7—H7C109.5H24A—C24—H24B108.2
Br1—C8—H8A108.8C25—C24—H24A109.7
Br1—C8—H8B108.8C25—C24—H24B109.7
C2—C8—Br1113.6 (3)C26—C25—C24121.0 (5)
C2—C8—H8A108.8C30—C25—C24120.3 (4)
C2—C8—H8B108.8C30—C25—C26118.8 (4)
H8A—C8—H8B107.7C25—C26—H26120.1
O4—C9—H9A109.8C27—C26—C25119.8 (5)
O4—C9—H9B109.8C27—C26—H26120.1
O4—C9—C10109.6 (3)C26—C27—H27119.7
H9A—C9—H9B108.2C28—C27—C26120.6 (4)
C10—C9—H9A109.8C28—C27—H27119.7
C10—C9—H9B109.8C27—C28—H28120.3
C11—C10—C9118.8 (4)C27—C28—C29119.4 (4)
C15—C10—C9121.3 (3)C29—C28—H28120.3
C15—C10—C11119.9 (3)C28—C29—H29119.8
C10—C11—H11120.1C30—C29—C28120.3 (5)
C10—C11—C12119.7 (4)C30—C29—H29119.8
C12—C11—H11120.1C25—C30—C29121.0 (4)
C11—C12—H12119.8C25—C30—H30119.5
C13—C12—C11120.4 (4)C29—C30—H30119.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O40.952.853.663 (7)144

Experimental details

Crystal data
Chemical formulaC30H33BrO6
Mr569.47
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)5.5097 (4), 19.9357 (11), 24.4597 (16)
V3)2686.6 (3)
Z4
Radiation typeCu Kα
µ (mm1)2.43
Crystal size (mm)0.43 × 0.05 × 0.05
Data collection
DiffractometerBruker APEX DUO 4K-CCD
Absorption correctionMulti-scan
(SADABS, Bruker, 2008)
Tmin, Tmax0.613, 0.753
No. of measured, independent and
observed [I > 2σ(I)] reflections
51826, 4637, 4177
Rint0.097
(sin θ/λ)max1)0.593
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.096, 1.04
No. of reflections4637
No. of parameters335
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.04, 0.61
Absolute structureFlack (1983), 1893 Friedel pairs
Absolute structure parameter0.01 (2)

Computer programs: APEX2 (Bruker, 2011), SAINT (Bruker, 2008), SAINT (Bruker, 2008), SUPERFLIP (Palatinus & Chapuis, 2007), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al. 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O40.952.853.663 (7)143.8
 

Acknowledgements

Support by the research funds of the University of Johannesburg is gratefully acknowledged.

References

First citationBeyer, J. & Madsen, R. (1998). J. Am. Chem. Soc. 120, 12137–12138.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2008). SADABS and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2011). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGammon, D. W., Kinfe, H. H., De Vos, D. E., Jacobs, P. A. & Sels, B. F. (2007). J. Carbohydr. Chem. 26, 141–157.  Web of Science CrossRef CAS Google Scholar
First citationHalton, B. & Harvey, J. (2006). Synlett, pp. 1975–2000.  Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds