organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2,6-Di­chloro­phen­yl)-N-(1,5-di­methyl-3-oxo-2-phenyl-2,3-di­hydro-1H-pyrazol-4-yl)acetamide

aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, bLake Braddock Secondary School, 9200 Burke Lake Road, Burke, VA 22015, USA, cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and dDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: rbutcher99@yahoo.com

(Received 2 December 2012; accepted 3 December 2012; online 8 December 2012)

In the title compound, C19H17Cl2N3O2, the amide group is planar and, through N—H⋯O hydrogen bonding to an adjoining mol­ecule, forms dimers of the R22(10) type. As a result of steric repulsion, the amide group is rotated with respect to both the dichloro­phenyl and 2,3-dihydro-1H-pyrazol-4-yl rings, making dihedral angles of 71.63 (11) and 57.93 (10)°, respectively. The dihedral angle between the dichloro­phenyl and 2,3-dihydro-1H-pyrazol-4-yl rings is 76.60 (10)° while that between the 2,3-dihydro-1H-pyrazol-4-yl and phenyl rings is 49.29 (7)°. The crystal structure also features weak C—H⋯O inter­actions.

Related literature

N-Substituted 2-aryl­acetamides are of inter­est because of their structural similarity to the lateral chain of natural benzyl­penicillin, see: Mijin & Marinkovic (2006[Mijin, D. & Marinkovic, A. (2006). Synth. Commun. 36, 193-198.]); Mijin et al. (2008[Mijin, D. Z., Prascevic, M. & Petrovic, S. D. (2008). J. Serb. Chem. Soc. 73, 945-950.]). For amides as ligands, see: Wu et al. (2008[Wu, W.-N., Cheng, F.-X., Yan, L. & Tang, N. (2008). J. Coord. Chem. 61, 2207-2215.], 2010[Wu, W.-N., Wang, Y., Zhang, A.-Y., Zhao, R.-Q. & Wang, Q.-F. (2010). Acta Cryst. E66, m288.]). For the structures of acetamide derivatives, see: Fun et al. (2011a[Fun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011a). Acta Cryst. E67, o2926-o2927.],b[Fun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011b). Acta Cryst. E67, o2941-o2942.], 2012a[Fun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012a). Acta Cryst. E68, o2677.],b[Fun, H.-K., Shahani, T., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012b). Acta Cryst. E68, o519.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C19H17Cl2N3O2

  • Mr = 390.26

  • Monoclinic, C 2/c

  • a = 20.3442 (11) Å

  • b = 12.1080 (8) Å

  • c = 14.9500 (8) Å

  • β = 93.837 (5)°

  • V = 3674.3 (4) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 3.34 mm−1

  • T = 123 K

  • 0.60 × 0.55 × 0.24 mm

Data collection
  • Agilent Xcalibur (Ruby, Gemini) diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Agilent, 2011[Agilent. (2011). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.276, Tmax = 0.560

  • 6894 measured reflections

  • 3692 independent reflections

  • 2836 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.185

  • S = 1.05

  • 3692 reflections

  • 237 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.62 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.88 1.99 2.845 (3) 164
C7—H7A⋯O2i 0.99 2.47 3.249 (3) 135
C12—H12A⋯O1ii 0.98 2.43 3.104 (3) 126
Symmetry codes: (i) [-x+1, y, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent. (2011). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO (Agilent, 2011[Agilent. (2011). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

N-Substituted 2-arylacetamides are very interesting compounds because of their structural similarity to the lateral chain of natural benzylpenicillin (Mijin et al., 2006, 2008). Amides are also used as ligands due to their excellent coordination abilities (Wu et al., 2008, 2010). Crystal structures of some acetamide derivatives viz., (2E)-1-(2,5-dimethoxyphenyl)-3-(3-nitrophenyl)prop-2-en-1-one, N-(4-bromophenyl)-2-(naphthalen-1-yl)acetamide, N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)-2-[4-(methylsulfanyl)phenyl]acetamide, N-(4-Bromophenyl)-2-(4-chlorophenyl)acetamide (Fun et al., 2011a,b, 2012a,b) have been reported. In view of the importance of amides we report herein the crystal structure of the title compound (I).

In the title compound, I, C19H17Cl2N3O2 the amide group is planar and through N—H···O hydrogen bonding to an adjoining molecule forms dimers of the R22(10) type (Bernstein et al., 1995). Due to steric repulsion the amide group is rotated with respect to both the dichlorophenyl and 2,3-dihydro-1H-pyrazol-4-yl rings with dihedral angles of 71.63 (11)° and 57.93 (10)° respectively. The dihedral angles between the three rings are 76.60 (10)° for the dichlorophenyl and 2,3-dihydro-1H-pyrazol-4-yl rings and and 49.29 (7)° for the 2,3-dihydro-1H-pyrazol-4-yl and phenyl rings, respectively. In addition there are weak intermolecular C—H···O interactions. All other metrical prameters are in the normal ranges (Allen, 2002).

Related literature top

N-Substituted 2-arylacetamides are of interest because of their structural similarity to the lateral chain of natural benzylpenicillin, see: Mijin & Marinkovic (2006); Mijin et al. (2008). For amides as ligands, see: Wu et al. (2008, 2010). For the structures of acetamide derivatives, see: Fun et al. (2011a,b, 2012a,b). For a description of the Cambridge Structural Database, see: Allen (2002). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

2,6-Dichlorophenylacetic acid (0.240 g, 1 mmol), 4-aminoantipyrine (0.203 g, 1 mmol) and 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (1.0 g, 0.01 mol) were dissolved in dichloromethane (20 ml). The mixture was stirred in presence of triethylamine at 273 K for about 3 h. The contents were poured into 100 ml of ice-cold aqueous hydrochloric acid with stirring, which was extracted thrice with dichloromethane. Organic layer was washed with saturated NaHCO3 solution and brine solution, dried and concentrated under reduced pressure to give the title compound (I). Single crystals were grown from methanol and acetone mixture (1:1) by the slow evaporation method (m.p.: 501–503 K).

Refinement top

The H atoms were placed in calculated positions and refined in the riding mode: N—H = 0.88 Å, C—H = 0.95–0.99 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(O,C) for other H atoms.

Structure description top

N-Substituted 2-arylacetamides are very interesting compounds because of their structural similarity to the lateral chain of natural benzylpenicillin (Mijin et al., 2006, 2008). Amides are also used as ligands due to their excellent coordination abilities (Wu et al., 2008, 2010). Crystal structures of some acetamide derivatives viz., (2E)-1-(2,5-dimethoxyphenyl)-3-(3-nitrophenyl)prop-2-en-1-one, N-(4-bromophenyl)-2-(naphthalen-1-yl)acetamide, N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)-2-[4-(methylsulfanyl)phenyl]acetamide, N-(4-Bromophenyl)-2-(4-chlorophenyl)acetamide (Fun et al., 2011a,b, 2012a,b) have been reported. In view of the importance of amides we report herein the crystal structure of the title compound (I).

In the title compound, I, C19H17Cl2N3O2 the amide group is planar and through N—H···O hydrogen bonding to an adjoining molecule forms dimers of the R22(10) type (Bernstein et al., 1995). Due to steric repulsion the amide group is rotated with respect to both the dichlorophenyl and 2,3-dihydro-1H-pyrazol-4-yl rings with dihedral angles of 71.63 (11)° and 57.93 (10)° respectively. The dihedral angles between the three rings are 76.60 (10)° for the dichlorophenyl and 2,3-dihydro-1H-pyrazol-4-yl rings and and 49.29 (7)° for the 2,3-dihydro-1H-pyrazol-4-yl and phenyl rings, respectively. In addition there are weak intermolecular C—H···O interactions. All other metrical prameters are in the normal ranges (Allen, 2002).

N-Substituted 2-arylacetamides are of interest because of their structural similarity to the lateral chain of natural benzylpenicillin, see: Mijin & Marinkovic (2006); Mijin et al. (2008). For amides as ligands, see: Wu et al. (2008, 2010). For the structures of acetamide derivatives, see: Fun et al. (2011a,b, 2012a,b). For a description of the Cambridge Structural Database, see: Allen (2002). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom numbering. The displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines - see Table 1 for details.
2-(2,6-Dichlorophenyl)-N-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro- 1H-pyrazol-4-yl)acetamide top
Crystal data top
C19H17Cl2N3O2F(000) = 1616
Mr = 390.26Dx = 1.411 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54184 Å
Hall symbol: -C 2ycCell parameters from 2393 reflections
a = 20.3442 (11) Åθ = 3.0–75.9°
b = 12.1080 (8) ŵ = 3.34 mm1
c = 14.9500 (8) ÅT = 123 K
β = 93.837 (5)°Prism, colorless
V = 3674.3 (4) Å30.60 × 0.55 × 0.24 mm
Z = 8
Data collection top
Agilent Xcalibur (Ruby, Gemini)
diffractometer
3692 independent reflections
Radiation source: Enhance (Cu) X-ray Source2836 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
Detector resolution: 10.5081 pixels mm-1θmax = 76.1°, θmin = 4.3°
ω scansh = 2517
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2011) based on expressions derived by Clark & Reid (1995)]
k = 1413
Tmin = 0.276, Tmax = 0.560l = 1818
6894 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.185H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0919P)2 + 2.7039P]
where P = (Fo2 + 2Fc2)/3
3692 reflections(Δ/σ)max < 0.001
237 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.62 e Å3
Crystal data top
C19H17Cl2N3O2V = 3674.3 (4) Å3
Mr = 390.26Z = 8
Monoclinic, C2/cCu Kα radiation
a = 20.3442 (11) ŵ = 3.34 mm1
b = 12.1080 (8) ÅT = 123 K
c = 14.9500 (8) Å0.60 × 0.55 × 0.24 mm
β = 93.837 (5)°
Data collection top
Agilent Xcalibur (Ruby, Gemini)
diffractometer
3692 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2011) based on expressions derived by Clark & Reid (1995)]
2836 reflections with I > 2σ(I)
Tmin = 0.276, Tmax = 0.560Rint = 0.065
6894 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.185H-atom parameters constrained
S = 1.05Δρmax = 0.51 e Å3
3692 reflectionsΔρmin = 0.62 e Å3
237 parameters
Special details top

Experimental. CrysAlisPro (Agilent Technologies, 2011) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.60120 (7)0.75806 (10)0.05511 (9)0.0942 (4)
Cl20.55602 (5)1.09130 (9)0.17378 (6)0.0674 (3)
O10.65197 (10)0.84440 (18)0.21156 (15)0.0483 (5)
O20.53366 (8)0.62011 (15)0.38199 (13)0.0384 (4)
N10.58629 (10)0.69208 (19)0.20824 (15)0.0368 (5)
H1A0.55320.65800.17910.044*
N20.70088 (10)0.56877 (19)0.37326 (16)0.0389 (5)
N30.64116 (10)0.56119 (18)0.41658 (15)0.0361 (5)
C10.57761 (12)0.9297 (2)0.05381 (19)0.0401 (6)
C20.59995 (15)0.8983 (3)0.0287 (2)0.0517 (7)
C30.62067 (15)0.9765 (4)0.0903 (2)0.0673 (11)
H3A0.63480.95330.14660.081*
C40.62042 (16)1.0866 (4)0.0685 (3)0.0630 (10)
H4A0.63431.13970.11000.076*
C50.60035 (15)1.1204 (3)0.0123 (3)0.0560 (8)
H5A0.60051.19650.02760.067*
C60.57985 (13)1.0419 (2)0.0715 (2)0.0432 (6)
C70.55062 (14)0.8480 (3)0.1174 (2)0.0485 (7)
H7A0.52770.78860.08200.058*
H7B0.51750.88560.15220.058*
C80.60213 (12)0.7957 (2)0.18258 (18)0.0396 (6)
C90.62085 (12)0.6371 (2)0.27977 (17)0.0345 (5)
C100.68553 (13)0.6078 (2)0.28850 (19)0.0386 (5)
C110.73533 (15)0.6115 (3)0.2201 (2)0.0500 (7)
H11A0.71500.64130.16390.075*
H11B0.75160.53670.20980.075*
H11C0.77210.65890.24150.075*
C120.74646 (13)0.4761 (3)0.3919 (2)0.0474 (7)
H12A0.78650.48760.36000.071*
H12B0.72520.40710.37160.071*
H12C0.75810.47200.45650.071*
C130.59091 (12)0.60777 (19)0.36049 (17)0.0328 (5)
C140.64444 (13)0.5810 (2)0.51087 (18)0.0366 (5)
C150.69919 (13)0.6324 (2)0.55341 (19)0.0392 (6)
H15A0.73640.64950.52090.047*
C160.69888 (14)0.6585 (2)0.6438 (2)0.0447 (6)
H16A0.73660.69170.67360.054*
C170.64403 (15)0.6366 (2)0.6907 (2)0.0466 (6)
H17A0.64330.65760.75190.056*
C180.58991 (14)0.5837 (2)0.6480 (2)0.0441 (6)
H18A0.55220.56880.68020.053*
C190.59051 (13)0.5527 (2)0.55887 (19)0.0406 (6)
H19A0.55460.51270.53080.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0878 (8)0.0868 (7)0.1062 (9)0.0214 (6)0.0073 (7)0.0455 (7)
Cl20.0517 (5)0.0811 (6)0.0699 (5)0.0068 (4)0.0073 (4)0.0209 (4)
O10.0335 (10)0.0511 (11)0.0600 (12)0.0147 (8)0.0014 (9)0.0098 (9)
O20.0220 (8)0.0463 (10)0.0477 (10)0.0035 (7)0.0085 (7)0.0055 (8)
N10.0264 (10)0.0412 (11)0.0431 (11)0.0065 (8)0.0058 (8)0.0012 (9)
N20.0223 (10)0.0439 (11)0.0515 (12)0.0034 (8)0.0097 (9)0.0044 (9)
N30.0215 (9)0.0405 (11)0.0472 (12)0.0016 (8)0.0083 (8)0.0018 (9)
C10.0233 (11)0.0518 (15)0.0453 (14)0.0026 (10)0.0036 (10)0.0061 (11)
C20.0337 (14)0.071 (2)0.0501 (16)0.0045 (13)0.0039 (12)0.0048 (14)
C30.0317 (14)0.130 (4)0.0406 (15)0.0040 (18)0.0074 (11)0.0080 (19)
C40.0306 (14)0.088 (3)0.070 (2)0.0103 (15)0.0014 (14)0.0365 (19)
C50.0331 (14)0.0568 (17)0.077 (2)0.0092 (12)0.0039 (14)0.0207 (15)
C60.0254 (11)0.0506 (15)0.0537 (15)0.0020 (11)0.0039 (10)0.0050 (12)
C70.0298 (13)0.0562 (16)0.0595 (17)0.0094 (12)0.0033 (12)0.0137 (13)
C80.0280 (12)0.0448 (13)0.0467 (14)0.0078 (10)0.0085 (10)0.0042 (11)
C90.0266 (11)0.0348 (11)0.0430 (12)0.0039 (9)0.0082 (9)0.0037 (9)
C100.0282 (12)0.0409 (12)0.0475 (14)0.0041 (10)0.0100 (10)0.0082 (10)
C110.0355 (14)0.0576 (16)0.0593 (17)0.0042 (12)0.0209 (13)0.0130 (13)
C120.0279 (12)0.0502 (15)0.0635 (17)0.0105 (11)0.0004 (11)0.0120 (13)
C130.0252 (11)0.0279 (10)0.0461 (13)0.0019 (8)0.0065 (9)0.0012 (9)
C140.0294 (12)0.0336 (11)0.0473 (14)0.0026 (9)0.0060 (10)0.0025 (10)
C150.0302 (12)0.0343 (12)0.0537 (15)0.0016 (9)0.0073 (11)0.0012 (10)
C160.0391 (14)0.0386 (13)0.0559 (16)0.0003 (11)0.0005 (12)0.0042 (11)
C170.0465 (16)0.0466 (14)0.0469 (14)0.0079 (12)0.0047 (12)0.0010 (12)
C180.0369 (14)0.0475 (14)0.0490 (15)0.0046 (11)0.0101 (11)0.0093 (11)
C190.0281 (12)0.0433 (13)0.0506 (14)0.0003 (10)0.0052 (10)0.0074 (11)
Geometric parameters (Å, º) top
Cl1—C21.744 (4)C7—H7A0.9900
Cl2—C61.741 (3)C7—H7B0.9900
O1—C81.227 (3)C9—C101.361 (4)
O2—C131.238 (3)C9—C131.433 (3)
N1—C81.357 (4)C10—C111.487 (4)
N1—C91.407 (3)C11—H11A0.9800
N1—H1A0.8800C11—H11B0.9800
N2—C101.369 (4)C11—H11C0.9800
N2—N31.417 (3)C12—H12A0.9800
N2—C121.470 (3)C12—H12B0.9800
N3—C131.397 (3)C12—H12C0.9800
N3—C141.427 (4)C14—C151.392 (4)
C1—C61.384 (4)C14—C191.393 (4)
C1—C21.395 (4)C15—C161.387 (4)
C1—C71.502 (4)C15—H15A0.9500
C2—C31.405 (5)C16—C171.383 (4)
C3—C41.373 (6)C16—H16A0.9500
C3—H3A0.9500C17—C181.391 (4)
C4—C51.363 (6)C17—H17A0.9500
C4—H4A0.9500C18—C191.385 (4)
C5—C61.381 (4)C18—H18A0.9500
C5—H5A0.9500C19—H19A0.9500
C7—C81.520 (4)
C8—N1—C9122.4 (2)N1—C9—C13122.6 (2)
C8—N1—H1A118.8C9—C10—N2109.7 (2)
C9—N1—H1A118.8C9—C10—C11128.7 (3)
C10—N2—N3107.2 (2)N2—C10—C11121.5 (3)
C10—N2—C12122.8 (2)C10—C11—H11A109.5
N3—N2—C12114.4 (2)C10—C11—H11B109.5
C13—N3—N2108.4 (2)H11A—C11—H11B109.5
C13—N3—C14120.6 (2)C10—C11—H11C109.5
N2—N3—C14117.1 (2)H11A—C11—H11C109.5
C6—C1—C2115.4 (3)H11B—C11—H11C109.5
C6—C1—C7122.3 (3)N2—C12—H12A109.5
C2—C1—C7122.3 (3)N2—C12—H12B109.5
C1—C2—C3121.6 (3)H12A—C12—H12B109.5
C1—C2—Cl1118.5 (3)N2—C12—H12C109.5
C3—C2—Cl1119.9 (3)H12A—C12—H12C109.5
C4—C3—C2119.6 (3)H12B—C12—H12C109.5
C4—C3—H3A120.2O2—C13—N3123.8 (2)
C2—C3—H3A120.2O2—C13—C9130.5 (2)
C5—C4—C3120.5 (3)N3—C13—C9105.7 (2)
C5—C4—H4A119.8C15—C14—C19120.6 (3)
C3—C4—H4A119.8C15—C14—N3120.6 (2)
C4—C5—C6118.9 (3)C19—C14—N3118.7 (2)
C4—C5—H5A120.6C16—C15—C14119.4 (2)
C6—C5—H5A120.6C16—C15—H15A120.3
C5—C6—C1124.1 (3)C14—C15—H15A120.3
C5—C6—Cl2116.1 (3)C17—C16—C15120.5 (3)
C1—C6—Cl2119.8 (2)C17—C16—H16A119.8
C1—C7—C8114.5 (2)C15—C16—H16A119.8
C1—C7—H7A108.6C16—C17—C18119.7 (3)
C8—C7—H7A108.6C16—C17—H17A120.1
C1—C7—H7B108.6C18—C17—H17A120.1
C8—C7—H7B108.6C19—C18—C17120.6 (3)
H7A—C7—H7B107.6C19—C18—H18A119.7
O1—C8—N1123.4 (3)C17—C18—H18A119.7
O1—C8—C7123.0 (2)C18—C19—C14119.1 (3)
N1—C8—C7113.5 (2)C18—C19—H19A120.4
C10—C9—N1128.8 (2)C14—C19—H19A120.4
C10—C9—C13108.5 (2)
C10—N2—N3—C136.6 (3)C13—C9—C10—N24.7 (3)
C12—N2—N3—C13146.3 (2)N1—C9—C10—C119.5 (5)
C10—N2—N3—C14147.1 (2)C13—C9—C10—C11173.6 (3)
C12—N2—N3—C1473.2 (3)N3—N2—C10—C97.0 (3)
C6—C1—C2—C32.4 (4)C12—N2—C10—C9142.5 (2)
C7—C1—C2—C3175.4 (3)N3—N2—C10—C11171.5 (2)
C6—C1—C2—Cl1178.1 (2)C12—N2—C10—C1136.0 (4)
C7—C1—C2—Cl14.1 (4)N2—N3—C13—O2175.1 (2)
C1—C2—C3—C41.4 (5)C14—N3—C13—O236.2 (4)
Cl1—C2—C3—C4179.1 (3)N2—N3—C13—C93.7 (3)
C2—C3—C4—C50.1 (5)C14—N3—C13—C9142.6 (2)
C3—C4—C5—C60.5 (5)C10—C9—C13—O2179.2 (3)
C4—C5—C6—C10.7 (5)N1—C9—C13—O22.1 (4)
C4—C5—C6—Cl2179.2 (2)C10—C9—C13—N30.5 (3)
C2—C1—C6—C52.1 (4)N1—C9—C13—N3176.6 (2)
C7—C1—C6—C5175.7 (3)C13—N3—C14—C15119.6 (3)
C2—C1—C6—Cl2177.8 (2)N2—N3—C14—C1515.9 (3)
C7—C1—C6—Cl24.5 (4)C13—N3—C14—C1957.4 (3)
C6—C1—C7—C893.9 (3)N2—N3—C14—C19167.0 (2)
C2—C1—C7—C888.5 (4)C19—C14—C15—C162.0 (4)
C9—N1—C8—O19.2 (4)N3—C14—C15—C16175.0 (2)
C9—N1—C8—C7168.3 (2)C14—C15—C16—C171.8 (4)
C1—C7—C8—O132.0 (4)C15—C16—C17—C182.8 (4)
C1—C7—C8—N1150.6 (3)C16—C17—C18—C190.1 (4)
C8—N1—C9—C1061.4 (4)C17—C18—C19—C143.8 (4)
C8—N1—C9—C13115.1 (3)C15—C14—C19—C184.8 (4)
N1—C9—C10—N2172.2 (2)N3—C14—C19—C18172.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.881.992.845 (3)164
C7—H7A···O2i0.992.473.249 (3)135
C12—H12A···O1ii0.982.433.104 (3)126
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H17Cl2N3O2
Mr390.26
Crystal system, space groupMonoclinic, C2/c
Temperature (K)123
a, b, c (Å)20.3442 (11), 12.1080 (8), 14.9500 (8)
β (°) 93.837 (5)
V3)3674.3 (4)
Z8
Radiation typeCu Kα
µ (mm1)3.34
Crystal size (mm)0.60 × 0.55 × 0.24
Data collection
DiffractometerAgilent Xcalibur (Ruby, Gemini)
Absorption correctionAnalytical
[CrysAlis PRO (Agilent, 2011) based on expressions derived by Clark & Reid (1995)]
Tmin, Tmax0.276, 0.560
No. of measured, independent and
observed [I > 2σ(I)] reflections
6894, 3692, 2836
Rint0.065
(sin θ/λ)max1)0.629
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.185, 1.05
No. of reflections3692
No. of parameters237
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.62

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.881.992.845 (3)164.4
C7—H7A···O2i0.992.473.249 (3)135.2
C12—H12A···O1ii0.982.433.104 (3)125.6
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+3/2, y1/2, z+1/2.
 

Acknowledgements

BN thanks the UGC for financial assistance through a BSR one-time grant for the purchase of chemicals. PSN thanks Mangalore University for research facilities and the DST–PURSE financial assistance. RJB acknowledges the NSF–MRI program (grant No. CHE-0619278) for funds to purchase the diffractometer.

References

First citationAgilent. (2011). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011a). Acta Cryst. E67, o2926–o2927.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Narayana, B., Nayak, P. S. & Sarojini, B. K. (2011b). Acta Cryst. E67, o2941–o2942.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012a). Acta Cryst. E68, o2677.  CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Shahani, T., Nayak, P. S., Narayana, B. & Sarojini, B. K. (2012b). Acta Cryst. E68, o519.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMijin, D. & Marinkovic, A. (2006). Synth. Commun. 36, 193–198.  Web of Science CrossRef CAS Google Scholar
First citationMijin, D. Z., Prascevic, M. & Petrovic, S. D. (2008). J. Serb. Chem. Soc. 73, 945–950.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, W.-N., Cheng, F.-X., Yan, L. & Tang, N. (2008). J. Coord. Chem. 61, 2207–2215.  Web of Science CrossRef CAS Google Scholar
First citationWu, W.-N., Wang, Y., Zhang, A.-Y., Zhao, R.-Q. & Wang, Q.-F. (2010). Acta Cryst. E66, m288.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds