organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9-(3-Bromo-5-chloro-2-hy­dr­oxy­phen­yl)-10-(2-hy­dr­oxy­eth­yl)-1,2,3,4,5,6,7,8,9,10-deca­hydro­acridine-1,8-dione

aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, bChemistry Department, Faculty of Science, Minia University, El-Minia, Egypt, cDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, dSchool of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, England, and eDepartment of Chemistry, Sohag University, 82524 Sohag, Egypt
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 3 December 2012; accepted 9 December 2012; online 15 December 2012)

In the title compound, C21H21BrClNO4, the dihydro­pyridine ring adopts a flattened boat conformation. The 3-bromo-5-chloro-2-hy­droxy­phenyl ring forms a dihedral angles of 84.44 (7)° with the dihydro­pyridine mean plane. The mol­ecular conformation is stabilized by an intra­molecular O—H⋯O hydrogen bond, with an S(8) ring motif. In the crystal, O—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules, forming a three-dimensional network.

Related literature

For the synthesis and bioactivity of acridines, see, for example: Karolak-Wojciechowska et al. (1996[Karolak-Wojciechowska, J., Mrozek, A., Amiel, P., Brouant, P. & Barbe, J. (1996). Acta Cryst. C52, 2939-2941.]). For related structures, see: Abdelhamid et al. (2011a[Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011a). Acta Cryst. E67, o744.],b[Abdelhamid, A. A., Mohamed, S. K., Allahverdiyev, M. A., Gurbanov, A. V. & Ng, S. W. (2011b). Acta Cryst. E67, o785.]); Mohamed et al. (2012[Mohamed, S. K., Abdelhamid, A. A., Maharramov, A. M., Khalilov, A. N., Gurbanov, A. V. & Allahverdiyev, M. A. (2012). J. Chem. Pharm. Res. 4, 955-965.]); Guo et al. (2004[Guo, C., Tu, S., Li, T. & Zhu, S. (2004). Acta Cryst. E60, o2035-o2037.]); Sughanya & Sureshbabu (2012[Sughanya, V. & Sureshbabu, N. (2012). Acta Cryst. E68, o2755.]); Yogavel et al. (2005[Yogavel, M., Velmurugan, D., Murugan, P., Shanmuga Sundara Raj, S. & Fun, H.-K. (2005). Acta Cryst. E61, o2761-o2763.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C21H21BrClNO4

  • Mr = 466.74

  • Monoclinic, P 21 /n

  • a = 8.810 (2) Å

  • b = 13.809 (3) Å

  • c = 15.797 (4) Å

  • β = 100.026 (4)°

  • V = 1892.5 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.34 mm−1

  • T = 100 K

  • 0.22 × 0.14 × 0.03 mm

Data collection
  • Rigaku AFC12 (Right) diffractometer

  • Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2012[Rigaku (2012). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.627, Tmax = 0.933

  • 14959 measured reflections

  • 4299 independent reflections

  • 4126 reflections with I > 2σ(i)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.077

  • S = 1.03

  • 4299 reflections

  • 255 parameters

  • H-atom parameters constrained

  • Δρmax = 0.86 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2 0.84 1.88 2.6749 (19) 158
O4—H4⋯O2i 0.84 1.94 2.782 (2) 176
C6—H6B⋯O3ii 0.99 2.33 3.051 (2) 129
C20—H20A⋯O3ii 0.99 2.53 3.486 (2) 163
C20—H20B⋯O1i 0.99 2.57 3.492 (2) 154
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear-SM Expert (Rigaku, 2012[Rigaku (2012). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Acridine derivatives are one of the oldest and most successful classes of bioactive agents (Karolak-Wojciechowska et al., 1996). Further to our on-going study on the synthesis and biological assessment of accridines (Mohamed et al., 2012; Abdelhamid et al., 2011a,b), we report herein the synthesis and crystal structure determination of the title compound (I).

In the title compound (I), (Fig. 1), the dihydropyridine ring (N1/C1/C2/C7/C8/C13) is almost planar with a maximum deviation of 0.160 (2) Å for C1. The C14–C19 phenyl ring forms a dihedral angle of 84.44 (7)° with the dihydropyridine mean plane. In the 1,2,3,4,5,6,7,8,9,10-decahydroacridine ring system, the puckering parameters (Cremer & Pople, 1975) for the A(C2–C7), B(N1/C1/C2/C7/C8/C13) and C(C8–C13) rings are QT = 0.4695 (18) Å, θ = 121.6 (2) °, φ = 341.3 (2)° (for A); QT = 0.2607 (16) Å, θ = 77.7 (4) °, φ = 167.6 (4) ° (for B) and QT = 0.4511 (19) Å, θ = 126.1 (2) °, φ = 351.9 (3) ° (for C), respectively. The cyclohexenone rings A and C adopt sofa conformations, whereas the central ring B adopts flattened boat conformation. In (I), the bond lengths and angles are within normal ranges and and comparable with those in related similar compounds (Sughanya & Sureshbabu, 2012; Yogavel et al., 2005; Guo et al., 2004). The ethanol group is not coplanar with the attached 1,4-dihydropyridine ring, with a N1—C20—C21—O4 torsion angle of -174.31 (14)°.

The molecular conformation is stabilized by an intramolecular O—H···O hydrogen bond (Table 1), which forms a pseudo-eight-membered ring with graph set S(8) (Bernstein et al., 1995).

In the crystal, molecules are linked by O—H···O and C—H···O hydrogen bonds, forming three dimensional network (Fig. 2, Table 1).

Related literature top

For the synthesis and bioactivity of acridines, see, for example: Karolak-Wojciechowska et al. (1996). For related structures, see: Abdelhamid et al. (2011a,b); Mohamed et al. (2012); Guo et al. (2004); Sughanya & Sureshbabu (2012); Yogavel et al. (2005). For ring puckering parameters, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of 112 mg (0.001 mol) cyclohexane-1,3-dione, 236 mg (0.001 mol) 3-bromo-5-chloro-2-hydroxybenzaldehyde and 61 mg (0.001 mol) 2-aminoethanol in 50 ml ethanol was refluxed at 350 K and monitored by TLC till completion after 2 h. A mass solid precipitate was deposited on cooling, filtered and dried under vacuum then washed with cold ethanol and dried again.. The raw product was recrystallized from dimethyl formamide then triturated with ether to afford a good yield (73%) of high quality yellow plats (m.p. 483 K) that were suitable for X-ray difraction.

Refinement top

All H-atoms were placed in calculated positions with O—H = 0.84 Å, and C—H = 0.95 for aromatic, 0.99 for methylene and 1.00 Å for methine C—H = 0.97 Å for methylene Uiso(H) = 1.2 Ueq(C). They were refined using a riding model approximation with Uiso(H) = 1.5Ueq(O) for hydroxyl and Uiso(H) = 1.2 Ueq(C) for the other H atoms.

Structure description top

Acridine derivatives are one of the oldest and most successful classes of bioactive agents (Karolak-Wojciechowska et al., 1996). Further to our on-going study on the synthesis and biological assessment of accridines (Mohamed et al., 2012; Abdelhamid et al., 2011a,b), we report herein the synthesis and crystal structure determination of the title compound (I).

In the title compound (I), (Fig. 1), the dihydropyridine ring (N1/C1/C2/C7/C8/C13) is almost planar with a maximum deviation of 0.160 (2) Å for C1. The C14–C19 phenyl ring forms a dihedral angle of 84.44 (7)° with the dihydropyridine mean plane. In the 1,2,3,4,5,6,7,8,9,10-decahydroacridine ring system, the puckering parameters (Cremer & Pople, 1975) for the A(C2–C7), B(N1/C1/C2/C7/C8/C13) and C(C8–C13) rings are QT = 0.4695 (18) Å, θ = 121.6 (2) °, φ = 341.3 (2)° (for A); QT = 0.2607 (16) Å, θ = 77.7 (4) °, φ = 167.6 (4) ° (for B) and QT = 0.4511 (19) Å, θ = 126.1 (2) °, φ = 351.9 (3) ° (for C), respectively. The cyclohexenone rings A and C adopt sofa conformations, whereas the central ring B adopts flattened boat conformation. In (I), the bond lengths and angles are within normal ranges and and comparable with those in related similar compounds (Sughanya & Sureshbabu, 2012; Yogavel et al., 2005; Guo et al., 2004). The ethanol group is not coplanar with the attached 1,4-dihydropyridine ring, with a N1—C20—C21—O4 torsion angle of -174.31 (14)°.

The molecular conformation is stabilized by an intramolecular O—H···O hydrogen bond (Table 1), which forms a pseudo-eight-membered ring with graph set S(8) (Bernstein et al., 1995).

In the crystal, molecules are linked by O—H···O and C—H···O hydrogen bonds, forming three dimensional network (Fig. 2, Table 1).

For the synthesis and bioactivity of acridines, see, for example: Karolak-Wojciechowska et al. (1996). For related structures, see: Abdelhamid et al. (2011a,b); Mohamed et al. (2012); Guo et al. (2004); Sughanya & Sureshbabu (2012); Yogavel et al. (2005). For ring puckering parameters, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2012); cell refinement: CrystalClear-SM Expert (Rigaku, 2012); data reduction: CrystalClear-SM Expert Expert (Rigaku, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The title compound (I) with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. View of the packing and hydrogen bonding of (I) down the a axis. The hydrogen atoms not involved in the hydrogen bonds have been omitted for clarity.
9-(3-Bromo-5-chloro-2-hydroxyphenyl)-10-(2-hydroxyethyl)-1,2,3,4,5,6,7,8,9,10- decahydroacridine-1,8-dione top
Crystal data top
C21H21BrClNO4F(000) = 952
Mr = 466.74Dx = 1.638 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ynCell parameters from 4812 reflections
a = 8.810 (2) Åθ = 2.5–27.5°
b = 13.809 (3) ŵ = 2.34 mm1
c = 15.797 (4) ÅT = 100 K
β = 100.026 (4)°Plate, yellow
V = 1892.5 (8) Å30.22 × 0.14 × 0.03 mm
Z = 4
Data collection top
Rigaku AFC12 (Right)
diffractometer
4299 independent reflections
Radiation source: Rotating Anode4126 reflections with I > 2σ(i)
Detector resolution: 28.5714 pixels mm-1Rint = 0.024
profile data from ω–scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2012)
h = 1011
Tmin = 0.627, Tmax = 0.933k = 1714
14959 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0485P)2 + 1.1263P]
where P = (Fo2 + 2Fc2)/3
4299 reflections(Δ/σ)max = 0.003
255 parametersΔρmax = 0.86 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C21H21BrClNO4V = 1892.5 (8) Å3
Mr = 466.74Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.810 (2) ŵ = 2.34 mm1
b = 13.809 (3) ÅT = 100 K
c = 15.797 (4) Å0.22 × 0.14 × 0.03 mm
β = 100.026 (4)°
Data collection top
Rigaku AFC12 (Right)
diffractometer
4299 independent reflections
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2012)
4126 reflections with I > 2σ(i)
Tmin = 0.627, Tmax = 0.933Rint = 0.024
14959 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 1.03Δρmax = 0.86 e Å3
4299 reflectionsΔρmin = 0.38 e Å3
255 parameters
Special details top

Experimental. Rigaku CrystalClear-SM Expert 3.1 b5

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.02039 (2)1.02608 (1)0.11100 (1)0.0178 (1)
Cl20.89028 (5)1.13026 (3)0.42922 (3)0.0206 (1)
O10.85205 (14)0.84648 (9)0.14843 (8)0.0171 (3)
O20.91879 (13)0.68133 (9)0.23546 (7)0.0155 (3)
O30.44222 (13)0.87300 (9)0.18903 (8)0.0175 (3)
O40.69992 (16)0.85677 (12)0.68490 (9)0.0294 (4)
N10.65599 (15)0.75304 (10)0.46456 (8)0.0125 (4)
C10.69843 (17)0.79777 (11)0.29224 (10)0.0113 (4)
C20.79574 (17)0.72563 (11)0.34966 (10)0.0114 (4)
C30.90436 (17)0.66869 (11)0.31212 (10)0.0124 (4)
C40.99634 (19)0.59201 (12)0.36547 (11)0.0169 (4)
C51.03428 (19)0.62450 (13)0.45893 (11)0.0165 (4)
C60.88912 (18)0.65080 (12)0.49409 (11)0.0152 (4)
C70.77954 (17)0.71276 (11)0.43370 (10)0.0121 (4)
C80.54946 (17)0.81352 (11)0.32480 (10)0.0114 (4)
C90.42314 (18)0.85498 (12)0.26225 (10)0.0134 (4)
C100.27404 (19)0.87759 (14)0.29195 (11)0.0202 (5)
C110.24551 (19)0.80920 (14)0.36209 (11)0.0203 (5)
C120.38110 (18)0.80674 (14)0.43714 (11)0.0165 (4)
C130.53272 (17)0.79239 (11)0.40620 (10)0.0122 (4)
C140.78575 (17)0.89267 (11)0.28563 (10)0.0113 (4)
C150.85590 (17)0.91091 (12)0.21354 (10)0.0128 (4)
C160.93144 (18)0.99934 (13)0.20933 (10)0.0135 (4)
C170.94463 (17)1.06742 (12)0.27456 (11)0.0143 (4)
C180.87751 (19)1.04633 (12)0.34544 (11)0.0146 (4)
C190.79829 (18)0.96063 (12)0.35129 (10)0.0131 (4)
C200.65018 (19)0.75423 (14)0.55771 (10)0.0168 (4)
C210.6898 (2)0.85513 (15)0.59499 (12)0.0242 (5)
H10.673200.769100.233300.0140*
H1A0.851000.789900.167900.0260*
H40.613100.844300.697400.0440*
H4A1.093000.579700.343300.0200*
H4B0.936600.531000.361500.0200*
H5A1.103500.681400.463400.0200*
H5B1.089300.571800.494100.0200*
H6A0.835700.590500.505900.0180*
H6B0.919000.685700.549200.0180*
H10A0.188000.872600.242700.0240*
H10B0.277100.944900.313700.0240*
H11A0.227500.743200.338000.0240*
H11B0.151400.829700.383500.0240*
H12A0.384500.868300.469600.0200*
H12B0.365800.753300.476600.0200*
H170.998001.126600.270800.0170*
H190.752400.948300.400400.0160*
H20A0.724300.706400.587800.0200*
H20B0.545700.735700.566800.0200*
H21A0.789400.876200.580300.0290*
H21B0.609700.901500.568600.0290*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0204 (1)0.0193 (1)0.0158 (1)0.0017 (1)0.0089 (1)0.0053 (1)
Cl20.0244 (2)0.0190 (2)0.0201 (2)0.0061 (2)0.0086 (2)0.0083 (2)
O10.0224 (6)0.0168 (6)0.0136 (5)0.0002 (5)0.0072 (5)0.0009 (5)
O20.0148 (5)0.0180 (6)0.0145 (5)0.0010 (4)0.0048 (4)0.0014 (5)
O30.0163 (6)0.0228 (6)0.0126 (5)0.0012 (5)0.0006 (4)0.0024 (5)
O40.0222 (7)0.0506 (9)0.0163 (6)0.0094 (6)0.0056 (5)0.0090 (6)
N10.0129 (6)0.0163 (7)0.0084 (6)0.0000 (5)0.0021 (5)0.0004 (5)
C10.0106 (7)0.0136 (7)0.0096 (7)0.0000 (5)0.0016 (5)0.0002 (6)
C20.0101 (7)0.0114 (7)0.0123 (7)0.0003 (5)0.0011 (5)0.0008 (6)
C30.0107 (7)0.0114 (7)0.0150 (7)0.0021 (5)0.0020 (5)0.0024 (6)
C40.0164 (7)0.0155 (8)0.0192 (8)0.0035 (6)0.0045 (6)0.0019 (7)
C50.0138 (7)0.0182 (8)0.0168 (8)0.0026 (6)0.0005 (6)0.0028 (6)
C60.0154 (7)0.0158 (8)0.0142 (7)0.0012 (6)0.0020 (6)0.0026 (6)
C70.0106 (7)0.0116 (7)0.0137 (7)0.0021 (5)0.0013 (5)0.0012 (6)
C80.0108 (7)0.0117 (7)0.0116 (7)0.0006 (5)0.0020 (5)0.0017 (6)
C90.0126 (7)0.0134 (7)0.0136 (7)0.0010 (6)0.0009 (6)0.0012 (6)
C100.0130 (7)0.0288 (9)0.0183 (8)0.0048 (7)0.0017 (6)0.0013 (7)
C110.0134 (7)0.0293 (9)0.0182 (8)0.0011 (7)0.0027 (6)0.0009 (7)
C120.0116 (7)0.0262 (9)0.0127 (7)0.0004 (6)0.0047 (6)0.0018 (7)
C130.0110 (7)0.0120 (7)0.0132 (7)0.0010 (5)0.0011 (6)0.0020 (6)
C140.0085 (6)0.0134 (7)0.0115 (7)0.0013 (5)0.0005 (5)0.0018 (6)
C150.0105 (7)0.0166 (8)0.0110 (7)0.0027 (6)0.0012 (5)0.0001 (6)
C160.0114 (7)0.0170 (7)0.0126 (7)0.0031 (6)0.0038 (6)0.0059 (6)
C170.0109 (7)0.0141 (7)0.0176 (8)0.0011 (6)0.0015 (6)0.0025 (6)
C180.0138 (7)0.0155 (7)0.0142 (7)0.0012 (6)0.0015 (6)0.0029 (6)
C190.0114 (7)0.0168 (8)0.0114 (7)0.0007 (6)0.0029 (6)0.0008 (6)
C200.0149 (7)0.0271 (9)0.0083 (7)0.0013 (6)0.0018 (6)0.0002 (6)
C210.0209 (9)0.0358 (11)0.0163 (8)0.0070 (7)0.0044 (7)0.0073 (8)
Geometric parameters (Å, º) top
Br1—C161.8939 (17)C14—C191.389 (2)
Cl2—C181.7480 (18)C14—C151.410 (2)
O1—C151.356 (2)C15—C161.398 (2)
O2—C31.2517 (19)C16—C171.385 (2)
O3—C91.223 (2)C17—C181.385 (2)
O4—C211.408 (2)C18—C191.385 (2)
O1—H1A0.8400C20—C211.529 (3)
O4—H40.8400C1—H11.0000
N1—C201.481 (2)C4—H4A0.9900
N1—C71.384 (2)C4—H4B0.9900
N1—C131.406 (2)C5—H5A0.9900
C1—C141.532 (2)C5—H5B0.9900
C1—C21.510 (2)C6—H6A0.9900
C1—C81.506 (2)C6—H6B0.9900
C2—C31.443 (2)C10—H10A0.9900
C2—C71.371 (2)C10—H10B0.9900
C3—C41.500 (2)C11—H11A0.9900
C4—C51.524 (2)C11—H11B0.9900
C5—C61.524 (2)C12—H12A0.9900
C6—C71.501 (2)C12—H12B0.9900
C8—C131.351 (2)C17—H170.9500
C8—C91.470 (2)C19—H190.9500
C9—C101.503 (2)C20—H20A0.9900
C10—C111.510 (3)C20—H20B0.9900
C11—C121.530 (2)C21—H21A0.9900
C12—C131.513 (2)C21—H21B0.9900
C15—O1—H1A109.00C2—C1—H1108.00
C21—O4—H4109.00C8—C1—H1108.00
C13—N1—C20119.40 (13)C14—C1—H1108.00
C7—N1—C20121.30 (13)C3—C4—H4A110.00
C7—N1—C13119.30 (13)C3—C4—H4B110.00
C2—C1—C14111.47 (13)C5—C4—H4A110.00
C2—C1—C8109.12 (13)C5—C4—H4B110.00
C8—C1—C14112.17 (13)H4A—C4—H4B108.00
C1—C2—C7121.55 (14)C4—C5—H5A109.00
C1—C2—C3117.41 (13)C4—C5—H5B109.00
C3—C2—C7121.02 (14)C6—C5—H5A109.00
O2—C3—C4120.40 (14)C6—C5—H5B109.00
C2—C3—C4119.06 (14)H5A—C5—H5B108.00
O2—C3—C2120.52 (14)C5—C6—H6A109.00
C3—C4—C5110.03 (14)C5—C6—H6B109.00
C4—C5—C6111.52 (14)C7—C6—H6A109.00
C5—C6—C7113.07 (14)C7—C6—H6B109.00
C2—C7—C6121.69 (14)H6A—C6—H6B108.00
N1—C7—C6117.60 (13)C9—C10—H10A109.00
N1—C7—C2120.64 (14)C9—C10—H10B109.00
C1—C8—C13122.65 (14)C11—C10—H10A109.00
C9—C8—C13121.91 (14)C11—C10—H10B109.00
C1—C8—C9115.43 (13)H10A—C10—H10B108.00
C8—C9—C10118.16 (14)C10—C11—H11A109.00
O3—C9—C8120.16 (15)C10—C11—H11B109.00
O3—C9—C10121.64 (15)C12—C11—H11A109.00
C9—C10—C11111.44 (15)C12—C11—H11B109.00
C10—C11—C12112.04 (14)H11A—C11—H11B108.00
C11—C12—C13111.51 (14)C11—C12—H12A109.00
N1—C13—C8120.51 (14)C11—C12—H12B109.00
N1—C13—C12117.61 (13)C13—C12—H12A109.00
C8—C13—C12121.85 (14)C13—C12—H12B109.00
C1—C14—C15120.25 (14)H12A—C12—H12B108.00
C15—C14—C19119.57 (14)C16—C17—H17121.00
C1—C14—C19120.17 (14)C18—C17—H17121.00
O1—C15—C16119.10 (14)C14—C19—H19120.00
C14—C15—C16118.28 (14)C18—C19—H19120.00
O1—C15—C14122.61 (14)N1—C20—H20A110.00
C15—C16—C17122.46 (15)N1—C20—H20B110.00
Br1—C16—C15118.54 (12)C21—C20—H20A110.00
Br1—C16—C17119.00 (13)C21—C20—H20B110.00
C16—C17—C18117.80 (15)H20A—C20—H20B108.00
Cl2—C18—C19118.86 (13)O4—C21—H21A109.00
C17—C18—C19121.64 (15)O4—C21—H21B109.00
Cl2—C18—C17119.50 (13)C20—C21—H21A109.00
C14—C19—C18120.20 (15)C20—C21—H21B109.00
N1—C20—C21110.34 (14)H21A—C21—H21B108.00
O4—C21—C20111.92 (16)
C7—N1—C13—C12161.29 (14)C5—C6—C7—C212.9 (2)
C7—N1—C20—C21103.01 (17)C5—C6—C7—N1170.23 (14)
C13—N1—C20—C2177.86 (18)C1—C8—C13—C12178.67 (15)
C7—N1—C13—C816.8 (2)C9—C8—C13—N1179.81 (14)
C13—N1—C7—C211.4 (2)C1—C8—C9—O31.0 (2)
C20—N1—C7—C2169.52 (15)C1—C8—C9—C10176.73 (14)
C20—N1—C13—C1217.9 (2)C13—C8—C9—O3179.82 (15)
C20—N1—C13—C8164.11 (15)C9—C8—C13—C122.2 (2)
C20—N1—C7—C613.6 (2)C13—C8—C9—C102.4 (2)
C13—N1—C7—C6165.53 (14)C1—C8—C13—N10.7 (2)
C14—C1—C2—C798.95 (17)O3—C9—C10—C11151.65 (16)
C8—C1—C14—C15137.57 (15)C8—C9—C10—C1130.6 (2)
C2—C1—C8—C1320.3 (2)C9—C10—C11—C1254.0 (2)
C14—C1—C8—C975.41 (17)C10—C11—C12—C1349.4 (2)
C2—C1—C8—C9160.57 (13)C11—C12—C13—N1156.62 (15)
C2—C1—C14—C1599.74 (17)C11—C12—C13—C821.4 (2)
C2—C1—C14—C1979.27 (18)C1—C14—C15—O11.0 (2)
C8—C1—C14—C1943.4 (2)C19—C14—C15—C162.4 (2)
C8—C1—C2—C725.5 (2)C1—C14—C19—C18179.85 (15)
C14—C1—C2—C382.55 (17)C15—C14—C19—C180.8 (2)
C14—C1—C8—C13103.74 (17)C1—C14—C15—C16178.62 (14)
C8—C1—C2—C3153.02 (13)C19—C14—C15—O1177.99 (15)
C1—C2—C7—C6172.02 (14)C14—C15—C16—Br1178.05 (12)
C1—C2—C3—O21.8 (2)O1—C15—C16—Br11.6 (2)
C7—C2—C3—C42.2 (2)O1—C15—C16—C17177.82 (15)
C1—C2—C7—N111.2 (2)C14—C15—C16—C172.5 (2)
C7—C2—C3—O2179.65 (15)C15—C16—C17—C181.1 (2)
C3—C2—C7—C69.5 (2)Br1—C16—C17—C18179.52 (12)
C1—C2—C3—C4176.32 (14)C16—C17—C18—Cl2179.70 (13)
C3—C2—C7—N1167.22 (14)C16—C17—C18—C190.6 (2)
C2—C3—C4—C534.7 (2)C17—C18—C19—C140.7 (3)
O2—C3—C4—C5147.20 (15)Cl2—C18—C19—C14179.80 (12)
C3—C4—C5—C655.54 (18)N1—C20—C21—O4174.31 (14)
C4—C5—C6—C745.49 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O20.841.882.6749 (19)158
O4—H4···O2i0.841.942.782 (2)176
C1—H1···O11.002.482.918 (2)106
C6—H6B···O3ii0.992.333.051 (2)129
C20—H20A···O3ii0.992.533.486 (2)163
C20—H20B···O1i0.992.573.492 (2)154
Symmetry codes: (i) x1/2, y+3/2, z+1/2; (ii) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H21BrClNO4
Mr466.74
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)8.810 (2), 13.809 (3), 15.797 (4)
β (°) 100.026 (4)
V3)1892.5 (8)
Z4
Radiation typeMo Kα
µ (mm1)2.34
Crystal size (mm)0.22 × 0.14 × 0.03
Data collection
DiffractometerRigaku AFC12 (Right)
Absorption correctionMulti-scan
(CrystalClear-SM Expert; Rigaku, 2012)
Tmin, Tmax0.627, 0.933
No. of measured, independent and
observed [I > 2σ(i)] reflections
14959, 4299, 4126
Rint0.024
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.077, 1.03
No. of reflections4299
No. of parameters255
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.86, 0.38

Computer programs: CrystalClear-SM Expert (Rigaku, 2012), CrystalClear-SM Expert Expert (Rigaku, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O20.841.882.6749 (19)158
O4—H4···O2i0.841.942.782 (2)176
C6—H6B···O3ii0.992.333.051 (2)129
C20—H20A···O3ii0.992.533.486 (2)163
C20—H20B···O1i0.992.573.492 (2)154
Symmetry codes: (i) x1/2, y+3/2, z+1/2; (ii) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

The EPSRC National Crystallography Service is gratefully acknowledged for the data collection. The authors are thankful to Manchester Metropolitan University, Sohag University and Erciyes University for supporting this study.

References

First citationAbdelhamid, A. A., Mohamed, S. K., Allahverdiyev, M. A., Gurbanov, A. V. & Ng, S. W. (2011b). Acta Cryst. E67, o785.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAbdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011a). Acta Cryst. E67, o744.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGuo, C., Tu, S., Li, T. & Zhu, S. (2004). Acta Cryst. E60, o2035–o2037.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKarolak-Wojciechowska, J., Mrozek, A., Amiel, P., Brouant, P. & Barbe, J. (1996). Acta Cryst. C52, 2939–2941.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMohamed, S. K., Abdelhamid, A. A., Maharramov, A. M., Khalilov, A. N., Gurbanov, A. V. & Allahverdiyev, M. A. (2012). J. Chem. Pharm. Res. 4, 955–965.  CAS Google Scholar
First citationRigaku (2012). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSughanya, V. & Sureshbabu, N. (2012). Acta Cryst. E68, o2755.  CSD CrossRef IUCr Journals Google Scholar
First citationYogavel, M., Velmurugan, D., Murugan, P., Shanmuga Sundara Raj, S. & Fun, H.-K. (2005). Acta Cryst. E61, o2761–o2763.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds