organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-(3-Chloro­phen­yl)imidazo[2,1-b][1,3,4]thia­diazole

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 25 November 2012; accepted 4 December 2012; online 12 December 2012)

In the title compound, C10H8ClN3S, the dihedral angle between the mean planes of the benzene and imidazo[2,1-b][1,3,4]thia­diazole rings is 6.0 (9)°. In the crystal, mol­ecules are assembled by the formation of centrosymmetric dimers by π-stacking of the thia­diazole and benzene rings of neighboring mol­ecules [centroid–centroid distance = 3.6938 (11) Å] along [010].

Related literature

For related imidazothia­diazole derivatives and their pharmacological potential, see: Palagiano et al. (1995[Palagiano, F., Arenare, L., Laraschi, E., de Caprariis, P., Abignente, E., Amico, M. D., Filippelli, W. & Rossi, F. (1995). Eur. J. Med. Chem. 30, 901-910.]). For related structures, see: Banu et al. (2011a[Banu, A., Begum, N. S., Lamani, R. S. & Khazi, I. M. (2011a). Acta Cryst. E67, o779.],b[Banu, A., Ziaulla, M., Begum, N. S., Lamani, R. S. & Khazi, I. M. (2011b). Acta Cryst. E67, o617-o618.]); Fun et al. (2011a[Fun, H.-K., Yeap, C. S., Prasad, D. J., Castelino, P. A. & Anitha, V. V. (2011a). Acta Cryst. E67, o255.],b[Fun, H.-K., Hemamalini, M., Prasad, D. J., Nagaraja, G. K. & Anitha, V. V. (2011b). Acta Cryst. E67, o207.]). For standard bond lengths, see Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C10H6ClN3S

  • Mr = 235.70

  • Monoclinic, P 21 /n

  • a = 5.43804 (19) Å

  • b = 12.4222 (4) Å

  • c = 14.1684 (4) Å

  • β = 100.269 (3)°

  • V = 941.77 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 5.37 mm−1

  • T = 173 K

  • 0.26 × 0.12 × 0.06 mm

Data collection
  • Agilent Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED Agilent Technologies, Yarnton, England.]) Tmin = 0.691, Tmax = 1.000

  • 5495 measured reflections

  • 1846 independent reflections

  • 1650 reflections with I > 2σ(I))

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.100

  • S = 1.06

  • 1846 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Many imidazothiadiazole derivatives have been reported to possess diverse medicinal properties such as anthelmintic, antimicrobial, anti-inflammatory, antipyretic, analgesic properties and many other activities of therapeutic significance (Palagiano et al., 1995). The crystal structures of some imidazothiadiazole molecules, viz., 6-(4-bromophenyl)-2-(4-fluorobenzyl)imidazo[2,1-b][1,3,4] thiadiazole, 3-{[6-(4-Chlorophenyl)imidazo[2,1-b][1,3,4]thiadiazol-2-yl] methyl}-1,2-benzoxazole (Banu et al., 2011a,b), 2-isobutyl-6-(4-methoxyphenyl)imidazo[2,1-b][1,3,4]thiadiazole and 6-(4-chlorophenyl)-2-isobutylimidazo[2,1-b][1,3,4]thiadiazole (Fun et al., 2011a,b) have been reported.

In the title compound, C10H8N3SCl, the dihedral angle between the mean planes of the benzene and imidazo[2,1b][1,3,4]thiadiazole rings is 6.0 (9)° (Fig. 1). Bond lengths are in normal ranges (Allen et al., 1987). In the crystal, molecules are assembled by the formation of centrosymmetric dimers by π-stacking of thiadiazole and benzene rings of neighboring molecules (centroid–centroid distance = 3.6938 (11) Å) along [010] (Fig. 2). Additional weak π-stacking interactions involving nearby benzene rings (centroid-centroid distance = 3.7739 (11) Å) are also observed.

Related literature top

For related imidazothiadiazole derivatives and their pharmacological potential, see: Palagiano et al. (1995). For related structures, see: Banu et al. (2011a,b); Fun et al. (2011a,b). For standard bond lengths, see Allen et al. (1987).

Experimental top

A solution of 1,3,4-thiadiazol-2-amine (500 mg, 4.9 mmol) and 2-bromo-1-(3-chlorophenyl)ethanone (1.1 g, 4.9 mmol) in DMF (10 mL) was placed in a microwave pyrex tube which was introduced into a Biotage Initiator-microwave reactor fitted with a rotational system. Microwave irradiation was performed for 10 minutes at 373 K, then the mixture was cooled to ambient temperature. The reaction mass was poured into ice, the precipitated solid was filtered and dried. The single crystal was grown from a solution in ethyl acetate by slow evaporation of the solvent (yield: 97%; (m.p.: 437–440 K).

Refinement top

All H atoms were placed in their calculated positions and then refined using the riding model with C—H lengths of 0.93Å. Isotropic displacement parameters for hydrogen atoms were set to 1.18-1.21 (CH) times Ueq of the parent atom.

Structure description top

Many imidazothiadiazole derivatives have been reported to possess diverse medicinal properties such as anthelmintic, antimicrobial, anti-inflammatory, antipyretic, analgesic properties and many other activities of therapeutic significance (Palagiano et al., 1995). The crystal structures of some imidazothiadiazole molecules, viz., 6-(4-bromophenyl)-2-(4-fluorobenzyl)imidazo[2,1-b][1,3,4] thiadiazole, 3-{[6-(4-Chlorophenyl)imidazo[2,1-b][1,3,4]thiadiazol-2-yl] methyl}-1,2-benzoxazole (Banu et al., 2011a,b), 2-isobutyl-6-(4-methoxyphenyl)imidazo[2,1-b][1,3,4]thiadiazole and 6-(4-chlorophenyl)-2-isobutylimidazo[2,1-b][1,3,4]thiadiazole (Fun et al., 2011a,b) have been reported.

In the title compound, C10H8N3SCl, the dihedral angle between the mean planes of the benzene and imidazo[2,1b][1,3,4]thiadiazole rings is 6.0 (9)° (Fig. 1). Bond lengths are in normal ranges (Allen et al., 1987). In the crystal, molecules are assembled by the formation of centrosymmetric dimers by π-stacking of thiadiazole and benzene rings of neighboring molecules (centroid–centroid distance = 3.6938 (11) Å) along [010] (Fig. 2). Additional weak π-stacking interactions involving nearby benzene rings (centroid-centroid distance = 3.7739 (11) Å) are also observed.

For related imidazothiadiazole derivatives and their pharmacological potential, see: Palagiano et al. (1995). For related structures, see: Banu et al. (2011a,b); Fun et al. (2011a,b). For standard bond lengths, see Allen et al. (1987).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the a axis. Dashed lines indicate π-stacking of thiadiazole and benzene rings of neighboring molecules (centroid–centroid distance = 3.6938 (11)Å) into centrosymmetric dimers along [010]. Hydrogen atoms have been removed for clarity.
6-(3-Chlorophenyl)imidazo[2,1-b][1,3,4]thiadiazole top
Crystal data top
C10H6ClN3SF(000) = 480
Mr = 235.70Dx = 1.676 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ynCell parameters from 2788 reflections
a = 5.43804 (19) Åθ = 3.2–72.4°
b = 12.4222 (4) ŵ = 5.37 mm1
c = 14.1684 (4) ÅT = 173 K
β = 100.269 (3)°Chunk, colorless
V = 941.77 (5) Å30.26 × 0.12 × 0.06 mm
Z = 4
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
1846 independent reflections
Radiation source: Enhance (Cu) X-ray Source1650 reflections with I > 2σ(I))
Graphite monochromatorRint = 0.046
Detector resolution: 16.0416 pixels mm-1θmax = 72.5°, θmin = 4.8°
ω scansh = 66
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
k = 1215
Tmin = 0.691, Tmax = 1.000l = 1713
5495 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0559P)2 + 0.2711P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
1846 reflectionsΔρmax = 0.36 e Å3
137 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0028 (5)
Crystal data top
C10H6ClN3SV = 941.77 (5) Å3
Mr = 235.70Z = 4
Monoclinic, P21/nCu Kα radiation
a = 5.43804 (19) ŵ = 5.37 mm1
b = 12.4222 (4) ÅT = 173 K
c = 14.1684 (4) Å0.26 × 0.12 × 0.06 mm
β = 100.269 (3)°
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
1846 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
1650 reflections with I > 2σ(I))
Tmin = 0.691, Tmax = 1.000Rint = 0.046
5495 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.06Δρmax = 0.36 e Å3
1846 reflectionsΔρmin = 0.23 e Å3
137 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.35900 (10)0.10200 (4)0.67741 (4)0.02949 (18)
S10.39725 (10)0.62878 (4)0.24567 (3)0.02652 (18)
N10.0469 (3)0.61595 (14)0.34925 (13)0.0253 (4)
N20.2006 (3)0.52794 (13)0.36757 (12)0.0199 (4)
N30.5314 (3)0.43233 (13)0.34504 (12)0.0222 (4)
C10.1320 (4)0.67447 (17)0.28675 (15)0.0261 (4)
H10.05450.73860.26450.031*
C20.3979 (4)0.51895 (15)0.32099 (13)0.0208 (4)
C30.2043 (4)0.44025 (16)0.42652 (14)0.0217 (4)
H30.09290.42350.46710.026*
C40.4101 (4)0.38271 (15)0.41207 (13)0.0190 (4)
C50.5067 (3)0.28278 (15)0.46084 (13)0.0192 (4)
C60.3963 (3)0.24196 (15)0.53512 (14)0.0205 (4)
H60.26050.27690.55310.025*
C70.4911 (4)0.14891 (16)0.58176 (13)0.0213 (4)
C80.6921 (4)0.09440 (16)0.55644 (16)0.0258 (4)
H80.75260.03170.58810.031*
C90.8008 (4)0.13562 (16)0.48276 (15)0.0254 (4)
H90.93600.10010.46500.030*
C100.7107 (4)0.22930 (15)0.43499 (14)0.0219 (4)
H100.78610.25630.38600.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0325 (3)0.0305 (3)0.0269 (3)0.00059 (19)0.0091 (2)0.00925 (19)
S10.0346 (3)0.0247 (3)0.0222 (3)0.00174 (19)0.0104 (2)0.00440 (18)
N10.0239 (9)0.0224 (8)0.0297 (9)0.0063 (6)0.0050 (7)0.0021 (7)
N20.0198 (8)0.0193 (8)0.0212 (8)0.0029 (6)0.0052 (6)0.0002 (6)
N30.0228 (8)0.0234 (8)0.0221 (8)0.0031 (7)0.0087 (7)0.0004 (6)
C10.0292 (11)0.0235 (10)0.0246 (10)0.0033 (8)0.0019 (8)0.0003 (8)
C20.0243 (10)0.0224 (9)0.0167 (9)0.0007 (7)0.0069 (7)0.0006 (7)
C30.0237 (10)0.0215 (9)0.0220 (9)0.0030 (7)0.0096 (8)0.0032 (7)
C40.0195 (10)0.0208 (9)0.0166 (9)0.0000 (7)0.0027 (7)0.0023 (7)
C50.0190 (9)0.0200 (9)0.0181 (9)0.0005 (7)0.0021 (7)0.0034 (7)
C60.0194 (9)0.0220 (9)0.0203 (9)0.0013 (7)0.0045 (7)0.0021 (7)
C70.0212 (10)0.0228 (9)0.0197 (9)0.0031 (8)0.0035 (8)0.0002 (7)
C80.0256 (10)0.0220 (10)0.0289 (11)0.0044 (8)0.0023 (9)0.0022 (8)
C90.0220 (10)0.0258 (10)0.0292 (10)0.0043 (8)0.0069 (8)0.0028 (8)
C100.0229 (10)0.0221 (9)0.0214 (9)0.0003 (8)0.0063 (8)0.0023 (7)
Geometric parameters (Å, º) top
Cl1—C71.7432 (19)C4—C51.471 (3)
S1—C21.7318 (19)C5—C61.397 (3)
S1—C11.744 (2)C5—C101.397 (3)
N1—C11.293 (3)C6—C71.385 (3)
N1—N21.373 (2)C6—H60.9300
N2—C21.361 (3)C7—C81.386 (3)
N2—C31.371 (2)C8—C91.386 (3)
N3—C21.309 (2)C8—H80.9300
N3—C41.393 (2)C9—C101.391 (3)
C1—H10.9300C9—H90.9300
C3—C41.373 (3)C10—H100.9300
C3—H30.9300
C2—S1—C187.81 (9)C6—C5—C10119.54 (18)
C1—N1—N2107.27 (17)C6—C5—C4119.66 (17)
C2—N2—C3107.63 (16)C10—C5—C4120.79 (18)
C2—N2—N1118.68 (16)C7—C6—C5119.29 (17)
C3—N2—N1133.69 (17)C7—C6—H6120.4
C2—N3—C4103.49 (15)C5—C6—H6120.4
N1—C1—S1117.63 (16)C6—C7—C8121.87 (18)
N1—C1—H1121.2C6—C7—Cl1118.69 (15)
S1—C1—H1121.2C8—C7—Cl1119.41 (16)
N3—C2—N2112.95 (17)C9—C8—C7118.44 (19)
N3—C2—S1138.46 (15)C9—C8—H8120.8
N2—C2—S1108.59 (14)C7—C8—H8120.8
N2—C3—C4104.29 (16)C8—C9—C10121.00 (19)
N2—C3—H3127.9C8—C9—H9119.5
C4—C3—H3127.9C10—C9—H9119.5
C3—C4—N3111.64 (16)C9—C10—C5119.86 (18)
C3—C4—C5126.96 (18)C9—C10—H10120.1
N3—C4—C5121.37 (17)C5—C10—H10120.1
C1—N1—N2—C20.2 (2)C2—N3—C4—C30.4 (2)
C1—N1—N2—C3179.7 (2)C2—N3—C4—C5177.68 (17)
N2—N1—C1—S10.3 (2)C3—C4—C5—C64.9 (3)
C2—S1—C1—N10.45 (17)N3—C4—C5—C6172.90 (17)
C4—N3—C2—N20.1 (2)C3—C4—C5—C10176.33 (19)
C4—N3—C2—S1179.75 (18)N3—C4—C5—C105.9 (3)
C3—N2—C2—N30.2 (2)C10—C5—C6—C70.1 (3)
N1—N2—C2—N3179.44 (17)C4—C5—C6—C7178.88 (17)
C3—N2—C2—S1179.87 (13)C5—C6—C7—C80.4 (3)
N1—N2—C2—S10.5 (2)C5—C6—C7—Cl1177.50 (14)
C1—S1—C2—N3179.4 (2)C6—C7—C8—C90.5 (3)
C1—S1—C2—N20.47 (14)Cl1—C7—C8—C9177.37 (15)
C2—N2—C3—C40.5 (2)C7—C8—C9—C100.1 (3)
N1—N2—C3—C4179.12 (19)C8—C9—C10—C50.4 (3)
N2—C3—C4—N30.6 (2)C6—C5—C10—C90.5 (3)
N2—C3—C4—C5177.43 (17)C4—C5—C10—C9179.27 (18)

Experimental details

Crystal data
Chemical formulaC10H6ClN3S
Mr235.70
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)5.43804 (19), 12.4222 (4), 14.1684 (4)
β (°) 100.269 (3)
V3)941.77 (5)
Z4
Radiation typeCu Kα
µ (mm1)5.37
Crystal size (mm)0.26 × 0.12 × 0.06
Data collection
DiffractometerAgilent Xcalibur (Eos, Gemini)
Absorption correctionMulti-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
Tmin, Tmax0.691, 1.000
No. of measured, independent and
observed [I > 2σ(I))] reflections
5495, 1846, 1650
Rint0.046
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.100, 1.06
No. of reflections1846
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.23

Computer programs: CrysAlis PRO (Agilent, 2012), CrysAlis RED (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

ASP thanks the UOM for research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBanu, A., Begum, N. S., Lamani, R. S. & Khazi, I. M. (2011a). Acta Cryst. E67, o779.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBanu, A., Ziaulla, M., Begum, N. S., Lamani, R. S. & Khazi, I. M. (2011b). Acta Cryst. E67, o617–o618.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Prasad, D. J., Nagaraja, G. K. & Anitha, V. V. (2011b). Acta Cryst. E67, o207.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Yeap, C. S., Prasad, D. J., Castelino, P. A. & Anitha, V. V. (2011a). Acta Cryst. E67, o255.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPalagiano, F., Arenare, L., Laraschi, E., de Caprariis, P., Abignente, E., Amico, M. D., Filippelli, W. & Rossi, F. (1995). Eur. J. Med. Chem. 30, 901–910.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds