metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cis-Bis(2,2′-bi­pyridine-κ2N,N′)carbonyl­chloridoruthenium(II) hexa­fluorido­phosphate

aCenter for Practical and Project-Based Learning, Cluster of Science and Technology, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan, bDepartment of Materials Science, Graduate School of Science and Technology, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan, and cDepartment of Industrial Systems Engineering, Cluster of Science and Technology, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan
*Correspondence e-mail: daio@sss.fukushima-u.ac.jp

(Received 15 November 2012; accepted 24 November 2012; online 5 December 2012)

In the title compound, [RuCl(C10H8N2)2(CO)]PF6, the RuII atom is coordinated in a distorted octa­hedral geometry by four N atoms of the bipyridine ligands, a carbonyl C atom and a chloride ion. The carbonyl and chloride ligands in the cation adopt a mutually cis arrangement and these are disordered over two sets of sites with site occupancies of 0.721 (6) and 0.279 (6). The Ru—N bond length [2.117 (2) Å] trans to the carbonyl ligand is slightly longer than the average of the other Ru—N bond lengths (2.08 Å), which can be explained by the expected trans influence of the carbonyl group. In the crystal, weak C—H⋯F inter­actions are observed between the complex cation and the PF6 anion, leading to the formation of a three-dimensional supramolecular structure. The crystal studied was an inversion twin with twin fractions of 0.78 (4) and 0.22 (4).

Related literature

For details of the synthesis, see: Oyama et al. (2012[Oyama, D., Suzuki, K., Yamanaka, T. & Takase, T. (2012). J. Coord. Chem. 65, 78-86.]). For a related structure, see: Clear et al. (1980[Clear, J. M., Kelly, J. M. O., Connell, C. M., Vos, J. G., Cardin, C. J., Costa, S. R. & Edwards, A. J. (1980). J. Chem. Soc. Chem. Commun. pp. 750-751.]). For general background to catalytic reactions using [Ru(bpy)2(CO)Cl]+, see: Ishida et al. (1986[Ishida, H., Tanaka, K., Morimoto, M. & Tanaka, T. (1986). Organometallics, 5, 724-730.]); Lehn & Ziessel (1990[Lehn, J.-M. & Ziessel, R. (1990). J. Organomet. Chem. 382, 157-173.]).

[Scheme 1]

Experimental

Crystal data
  • [RuCl(C10H8N2)2(CO)]·PF6

  • Mr = 621.87

  • Orthorhombic, P 21 21 21

  • a = 10.882 (5) Å

  • b = 12.063 (5) Å

  • c = 17.410 (7) Å

  • V = 2285.2 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.95 mm−1

  • T = 93 K

  • 0.20 × 0.10 × 0.02 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.897, Tmax = 0.981

  • 22875 measured reflections

  • 5177 independent reflections

  • 4689 reflections with F2 > 2σ(F2)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.062

  • S = 1.08

  • 5177 reflections

  • 330 parameters

  • H-atom parameters constrained

  • Δρmax = 1.37 e Å−3

  • Δρmin = −1.28 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2249 Friedel pairs

  • Flack parameter: 0.22 (4)

Table 1
Selected bond lengths (Å)

Ru1—Cl1 2.3521 (17)
Ru1—N1 2.086 (2)
Ru1—N2 2.070 (2)
Ru1—N3 2.070 (2)
Ru1—N4 2.117 (2)
Ru1—C21 1.890 (8)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯F2i 0.95 2.46 3.166 (4) 131
C4—H4⋯F1ii 0.95 2.41 3.257 (4) 148
C7—H5⋯F1ii 0.95 2.54 3.431 (4) 156
C8—H6⋯F2iii 0.95 2.50 3.265 (4) 138
C13—H11⋯F5iv 0.95 2.39 3.331 (4) 168
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: CrystalClear-SM (Rigaku, 2009[Rigaku (2009). CrystalClear-SM. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear-SM; data reduction: CrystalClear-SM; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: CrystalStructure (Rigaku, 2006[Rigaku (2006). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Comment top

Ruthenium(II) complexes containing both carbonyl and polypyridyl-based supporting ligands have been studied as catalysts for the reduction of carbon dioxide and in the water-gas shift reaction (Ishida et al., 1986; Lehn & Ziessel, 1990). Of the series complexes, [Ru(bpy)2(CO)Cl]+ (bpy = 2,2'-bipyridine) has been used not only as catalysts but also as a precursor to a family of [Ru(bpy)2(CO)L]n+-type complexes (L = monodentate ligand). We have used the complex as the starting point for the preparation of more complex functional systems, and we report here the crystal structure of its hexafluoridophosphate salt.

The RuII atom has a distorted octahedral geometry, with four N atoms of the bidentate bipyridine ligands, a carbonyl carbon, and a chloride ion completing the first coordination sphere. The CO and Cl ligands in the cation are mutually cis arrangement (Fig. 1) and these are disordered over two sets of sites with site occupancies of 0.721 (6) and 0.279 (6). The Ru—N length trans to the CO ligand [2.117 (2) Å] is slightly longer than the average of other Ru—N lengths (2.08 Å) (Table 1). This can be explained by the expected trans influence of the CO group. In the crystal, the complex cation and the PF6- anion are linked via a number of weak C—H···F interactions, leading to the formation of a three-dimensional supramolecular structure. The crystal studied was an inversion twin with twin fractions of 0.78 (4) and 0.22 (4). The bond parameters of the complex are closely comparable to those of the reported ClO4- salt, although the corresponding ClO4- salt was refined using anisotropic temperature factors for Ru and Cl only (Clear et al., 1980).

Related literature top

For details of the synthesis, see: Oyama et al. (2012). For a related structure, see: Clear et al. (1980). For general background to catalytic reactions using [Ru(bpy)2(CO)Cl]+, see: Ishida et al. (1986); Lehn & Ziessel (1990).

Experimental top

The title compound was prepared according to a literature procedure (Oyama et al., 2012). X-ray quality crystals were grown by the diffusion of diethyl ether into an acetone solution of the complex over a week.

Refinement top

Aromatic H atoms were fixed at C—H distances of 0.95 Å and refined as riding, with Uiso(H) = 1.2Ueq(C). The C and O atoms in the CO group and the Cl atom are disordered over two sets of sites, occupancies refining to 0.721 (6) and complement. Both the highest residual electron density peak and the deepest hole are located within 1 Å from atom Ru1. The Hooft y parameter was 0.228 (15).

Structure description top

Ruthenium(II) complexes containing both carbonyl and polypyridyl-based supporting ligands have been studied as catalysts for the reduction of carbon dioxide and in the water-gas shift reaction (Ishida et al., 1986; Lehn & Ziessel, 1990). Of the series complexes, [Ru(bpy)2(CO)Cl]+ (bpy = 2,2'-bipyridine) has been used not only as catalysts but also as a precursor to a family of [Ru(bpy)2(CO)L]n+-type complexes (L = monodentate ligand). We have used the complex as the starting point for the preparation of more complex functional systems, and we report here the crystal structure of its hexafluoridophosphate salt.

The RuII atom has a distorted octahedral geometry, with four N atoms of the bidentate bipyridine ligands, a carbonyl carbon, and a chloride ion completing the first coordination sphere. The CO and Cl ligands in the cation are mutually cis arrangement (Fig. 1) and these are disordered over two sets of sites with site occupancies of 0.721 (6) and 0.279 (6). The Ru—N length trans to the CO ligand [2.117 (2) Å] is slightly longer than the average of other Ru—N lengths (2.08 Å) (Table 1). This can be explained by the expected trans influence of the CO group. In the crystal, the complex cation and the PF6- anion are linked via a number of weak C—H···F interactions, leading to the formation of a three-dimensional supramolecular structure. The crystal studied was an inversion twin with twin fractions of 0.78 (4) and 0.22 (4). The bond parameters of the complex are closely comparable to those of the reported ClO4- salt, although the corresponding ClO4- salt was refined using anisotropic temperature factors for Ru and Cl only (Clear et al., 1980).

For details of the synthesis, see: Oyama et al. (2012). For a related structure, see: Clear et al. (1980). For general background to catalytic reactions using [Ru(bpy)2(CO)Cl]+, see: Ishida et al. (1986); Lehn & Ziessel (1990).

Computing details top

Data collection: CrystalClear-SM (Rigaku, 2009); cell refinement: CrystalClear-SM (Rigaku, 2009); data reduction: CrystalClear-SM (Rigaku, 2009); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: CrystalStructure (Rigaku, 2006).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms. Only major component of the disordered CO and Cl ligands is shown.
cis-Bis(2,2'-bipyridine- κ2N,N')carbonylchloridoruthenium(II) hexafluoridophosphate top
Crystal data top
[RuCl(C10H8N2)2(CO)]·PF6F(000) = 1232.00
Mr = 621.87Dx = 1.807 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71075 Å
Hall symbol: P 2ac 2abCell parameters from 6659 reflections
a = 10.882 (5) Åθ = 3.4–27.4°
b = 12.063 (5) ŵ = 0.95 mm1
c = 17.410 (7) ÅT = 93 K
V = 2285.2 (17) Å3Block, orange
Z = 40.20 × 0.10 × 0.02 mm
Data collection top
Rigaku Saturn
diffractometer
4689 reflections with F2 > 2σ(F2)
Detector resolution: 7.31 pixels mm-1Rint = 0.045
ω scansθmax = 27.4°
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
h = 1414
Tmin = 0.897, Tmax = 0.981k = 1515
22875 measured reflectionsl = 2222
5177 independent reflections
Refinement top
Refinement on F2 w = 1/[σ2(Fo2) + (0.0116P)2 + 2.2808P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.032(Δ/σ)max = 0.001
wR(F2) = 0.062Δρmax = 1.37 e Å3
S = 1.08Δρmin = 1.28 e Å3
5177 reflectionsAbsolute structure: Flack (1983), 2249 Friedel pairs
330 parametersAbsolute structure parameter: 0.22 (4)
H-atom parameters constrained
Crystal data top
[RuCl(C10H8N2)2(CO)]·PF6V = 2285.2 (17) Å3
Mr = 621.87Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 10.882 (5) ŵ = 0.95 mm1
b = 12.063 (5) ÅT = 93 K
c = 17.410 (7) Å0.20 × 0.10 × 0.02 mm
Data collection top
Rigaku Saturn
diffractometer
5177 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
4689 reflections with F2 > 2σ(F2)
Tmin = 0.897, Tmax = 0.981Rint = 0.045
22875 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.062Δρmax = 1.37 e Å3
S = 1.08Δρmin = 1.28 e Å3
5177 reflectionsAbsolute structure: Flack (1983), 2249 Friedel pairs
330 parametersAbsolute structure parameter: 0.22 (4)
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ru10.02797 (3)0.23729 (2)0.135509 (15)0.01786 (6)
Cl10.09514 (14)0.07702 (15)0.13630 (11)0.0212 (5)0.721 (6)
Cl20.1924 (6)0.1234 (4)0.1216 (3)0.0179 (16)*0.279 (6)
P10.43909 (9)0.30250 (7)0.35040 (5)0.0207 (2)
F10.3130 (2)0.35010 (18)0.38378 (14)0.0404 (6)
F20.56516 (17)0.25391 (18)0.31614 (11)0.0265 (4)
F30.4530 (2)0.41078 (15)0.29742 (11)0.0267 (4)
F40.5138 (2)0.36277 (16)0.41762 (12)0.0366 (6)
F50.4261 (2)0.19318 (16)0.40319 (12)0.0366 (6)
F60.36435 (17)0.24099 (19)0.28323 (11)0.0254 (4)
O10.2506 (4)0.0882 (3)0.1258 (2)0.0295 (10)0.721 (6)
O20.1251 (10)0.0222 (11)0.1282 (6)0.027 (2)*0.279 (6)
N10.1347 (2)0.3805 (2)0.12773 (18)0.0172 (6)
N20.0354 (2)0.2586 (2)0.01763 (13)0.0158 (5)
N30.0041 (2)0.2422 (2)0.25340 (14)0.0159 (5)
N40.1287 (2)0.3405 (2)0.14489 (17)0.0168 (6)
C10.1837 (3)0.4363 (3)0.1868 (2)0.0207 (7)
C20.2568 (3)0.5285 (3)0.1763 (2)0.0226 (8)
C30.2804 (3)0.5650 (2)0.1025 (2)0.0230 (8)
C40.2297 (3)0.5082 (2)0.0408 (2)0.0200 (7)
C50.1558 (3)0.4162 (2)0.05464 (19)0.0153 (7)
C60.0964 (3)0.3508 (2)0.00646 (19)0.0163 (7)
C70.0989 (3)0.3809 (2)0.0836 (2)0.0183 (7)
C80.0351 (3)0.3163 (2)0.1360 (2)0.0220 (6)
C90.0250 (3)0.2223 (2)0.11146 (18)0.0203 (6)
C100.0236 (3)0.1960 (2)0.03456 (19)0.0203 (7)
C110.0752 (3)0.1916 (2)0.3056 (2)0.0255 (8)
C120.0524 (3)0.1979 (2)0.3838 (2)0.0251 (8)
C130.0466 (3)0.2590 (3)0.40917 (18)0.0266 (7)
C140.1208 (3)0.3123 (2)0.3563 (2)0.0240 (7)
C150.0943 (3)0.3029 (2)0.27831 (19)0.0159 (7)
C160.1674 (3)0.3575 (2)0.2178 (2)0.0159 (7)
C170.2693 (3)0.4242 (2)0.2327 (2)0.0186 (7)
C180.3292 (3)0.4755 (2)0.1729 (2)0.0215 (8)
C190.2875 (3)0.4598 (3)0.0984 (2)0.0238 (8)
C200.1878 (3)0.3906 (3)0.0875 (2)0.0218 (8)
C210.1713 (8)0.1488 (6)0.1328 (5)0.0264 (19)0.721 (6)
C220.080 (2)0.1111 (17)0.1316 (15)0.033 (6)*0.279 (6)
H10.16740.41160.23760.025*
H20.29050.56640.21930.027*
H30.33070.62820.09400.028*
H40.24530.53190.01030.024*
H50.14340.44440.10000.022*
H60.03280.33680.18870.026*
H70.06680.17610.14710.024*
H80.06580.13150.01780.024*
H90.14390.14990.28840.031*
H100.10420.16060.41930.030*
H110.06370.26460.46260.032*
H120.18930.35480.37300.029*
H130.29710.43420.28400.022*
H140.39860.52120.18260.026*
H150.32620.49560.05620.029*
H160.16010.37810.03650.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.02530 (13)0.01498 (11)0.01331 (11)0.00333 (12)0.00509 (12)0.00234 (11)
Cl10.0230 (7)0.0190 (11)0.0215 (7)0.0062 (6)0.0010 (6)0.0016 (7)
P10.0266 (5)0.0181 (4)0.0175 (5)0.0013 (3)0.0036 (3)0.0010 (3)
F10.0323 (13)0.0377 (13)0.0512 (18)0.0069 (10)0.0251 (11)0.0185 (11)
F20.0229 (10)0.0255 (10)0.0311 (10)0.0082 (10)0.0030 (8)0.0033 (10)
F30.0298 (13)0.0196 (9)0.0306 (12)0.0037 (9)0.0006 (9)0.0086 (8)
F40.0600 (17)0.0284 (10)0.0215 (11)0.0152 (11)0.0104 (11)0.0022 (8)
F50.0713 (19)0.0218 (10)0.0167 (11)0.0173 (11)0.0028 (11)0.0042 (8)
F60.0251 (10)0.0268 (11)0.0244 (10)0.0022 (10)0.0034 (8)0.0066 (9)
O10.024 (2)0.026 (2)0.039 (2)0.0095 (19)0.0004 (19)0.0067 (18)
N10.0216 (15)0.0180 (13)0.0121 (15)0.0040 (11)0.0011 (13)0.0017 (12)
N20.0201 (14)0.0134 (12)0.0140 (12)0.0018 (14)0.0044 (11)0.0008 (10)
N30.0141 (14)0.0190 (13)0.0147 (12)0.0027 (11)0.0012 (9)0.0025 (11)
N40.0239 (15)0.0151 (13)0.0116 (15)0.0003 (11)0.0002 (13)0.0018 (11)
C10.0169 (19)0.0297 (19)0.0153 (18)0.0050 (15)0.0023 (14)0.0040 (15)
C20.026 (2)0.020 (2)0.022 (2)0.0020 (16)0.0089 (16)0.0070 (15)
C30.024 (2)0.0150 (17)0.030 (2)0.0003 (15)0.0088 (16)0.0019 (15)
C40.028 (2)0.0141 (17)0.0185 (18)0.0008 (15)0.0035 (15)0.0021 (13)
C50.0173 (18)0.0134 (16)0.0152 (17)0.0017 (13)0.0033 (14)0.0012 (13)
C60.0152 (17)0.0149 (16)0.0188 (18)0.0034 (13)0.0006 (13)0.0007 (13)
C70.0173 (18)0.0190 (17)0.0186 (18)0.0043 (14)0.0007 (14)0.0027 (13)
C80.0235 (17)0.0278 (15)0.0146 (16)0.0045 (15)0.0016 (19)0.0008 (14)
C90.0211 (16)0.0213 (15)0.0186 (16)0.0009 (17)0.0008 (14)0.0059 (12)
C100.0223 (17)0.0141 (14)0.0243 (18)0.0012 (16)0.0053 (16)0.0044 (12)
C110.026 (2)0.0279 (19)0.0225 (19)0.0012 (16)0.0009 (16)0.0075 (15)
C120.026 (2)0.0299 (18)0.0191 (19)0.0031 (15)0.0068 (14)0.0050 (13)
C130.038 (2)0.0280 (18)0.0140 (14)0.0004 (19)0.0012 (14)0.0008 (15)
C140.032 (2)0.0218 (16)0.0178 (18)0.0012 (14)0.0023 (17)0.0022 (15)
C150.0179 (17)0.0160 (15)0.0140 (16)0.0010 (13)0.0012 (13)0.0013 (12)
C160.0179 (18)0.0130 (16)0.0167 (17)0.0040 (13)0.0010 (13)0.0008 (12)
C170.0165 (17)0.0177 (17)0.0216 (19)0.0022 (13)0.0038 (14)0.0015 (14)
C180.0165 (19)0.0169 (17)0.031 (2)0.0016 (15)0.0014 (16)0.0010 (15)
C190.021 (2)0.0210 (18)0.029 (2)0.0009 (15)0.0025 (17)0.0074 (16)
C200.023 (2)0.0237 (19)0.0193 (19)0.0031 (15)0.0012 (15)0.0017 (15)
C210.042 (5)0.015 (3)0.022 (3)0.008 (3)0.001 (3)0.006 (3)
Geometric parameters (Å, º) top
Ru1—Cl12.3521 (17)C6—C71.391 (4)
Ru1—Cl22.269 (6)C7—C81.387 (4)
Ru1—N12.086 (2)C8—C91.377 (4)
Ru1—N22.070 (2)C9—C101.376 (4)
Ru1—N32.070 (2)C11—C121.385 (5)
Ru1—N42.117 (2)C12—C131.378 (5)
Ru1—C211.890 (8)C13—C141.382 (4)
Ru1—C221.93 (2)C14—C151.393 (4)
P1—F11.597 (2)C15—C161.476 (4)
P1—F21.607 (2)C16—C171.394 (4)
P1—F31.606 (2)C17—C181.376 (5)
P1—F41.600 (2)C18—C191.387 (5)
P1—F51.614 (2)C19—C201.382 (5)
P1—F61.606 (2)C1—H10.950
O1—C211.138 (9)C2—H20.950
O2—C221.18 (2)C3—H30.950
N1—C11.339 (4)C4—H40.950
N1—C51.363 (4)C7—H50.950
N2—C61.362 (4)C8—H60.950
N2—C101.344 (4)C9—H70.950
N3—C111.341 (4)C10—H80.950
N3—C151.368 (4)C11—H90.950
N4—C161.353 (4)C12—H100.950
N4—C201.334 (4)C13—H110.950
C1—C21.380 (5)C14—H120.950
C2—C31.383 (5)C17—H130.950
C3—C41.388 (5)C18—H140.950
C4—C51.391 (4)C19—H150.950
C5—C61.474 (4)C20—H160.950
Cl1—Ru1—N1176.52 (9)C4—C5—C6123.7 (3)
Cl1—Ru1—N297.47 (8)N2—C6—C5115.4 (2)
Cl1—Ru1—N386.91 (8)N2—C6—C7121.3 (2)
Cl1—Ru1—N491.41 (8)C5—C6—C7123.3 (2)
Cl1—Ru1—C2190.3 (2)C6—C7—C8118.6 (3)
Cl2—Ru1—N193.18 (18)C7—C8—C9119.7 (3)
Cl2—Ru1—N286.45 (17)C8—C9—C10119.1 (3)
Cl2—Ru1—N3102.85 (17)N2—C10—C9122.3 (2)
Cl2—Ru1—N4177.80 (17)N3—C11—C12122.5 (3)
Cl2—Ru1—C2290.0 (6)C11—C12—C13119.0 (3)
N1—Ru1—N279.12 (11)C12—C13—C14119.5 (3)
N1—Ru1—N396.35 (11)C13—C14—C15119.3 (3)
N1—Ru1—N488.06 (10)N3—C15—C14121.0 (2)
N1—Ru1—C2190.4 (2)N3—C15—C16115.8 (2)
N1—Ru1—C22173.1 (7)C14—C15—C16123.2 (3)
N2—Ru1—N3169.95 (10)N4—C16—C15115.7 (2)
N2—Ru1—N492.01 (11)N4—C16—C17120.7 (3)
N2—Ru1—C2190.8 (2)C15—C16—C17123.6 (3)
N2—Ru1—C2295.0 (7)C16—C17—C18119.7 (3)
N3—Ru1—N478.80 (10)C17—C18—C19119.4 (3)
N3—Ru1—C2198.3 (2)C18—C19—C20117.9 (3)
N3—Ru1—C2288.9 (7)N4—C20—C19123.3 (3)
N4—Ru1—C21176.5 (2)Ru1—C21—O1172.4 (7)
N4—Ru1—C2288.6 (6)Ru1—C22—O2166.8 (18)
F1—P1—F2179.39 (12)N1—C1—H1118.9
F1—P1—F389.87 (11)C2—C1—H1118.9
F1—P1—F490.40 (13)C1—C2—H2120.5
F1—P1—F590.64 (13)C3—C2—H2120.5
F1—P1—F689.76 (11)C2—C3—H3120.4
F2—P1—F390.16 (11)C4—C3—H3120.4
F2—P1—F490.20 (12)C3—C4—H4120.4
F2—P1—F589.32 (12)C5—C4—H4120.4
F2—P1—F689.63 (10)C6—C7—H5120.7
F3—P1—F490.14 (10)C8—C7—H5120.7
F3—P1—F5179.47 (13)C7—C8—H6120.1
F3—P1—F690.31 (11)C9—C8—H6120.1
F4—P1—F589.96 (11)C8—C9—H7120.4
F4—P1—F6179.52 (12)C10—C9—H7120.4
F5—P1—F689.58 (11)N2—C10—H8118.9
Ru1—N1—C1126.0 (2)C9—C10—H8118.9
Ru1—N1—C5114.6 (2)N3—C11—H9118.8
C1—N1—C5119.4 (2)C12—C11—H9118.7
Ru1—N2—C6115.2 (2)C11—C12—H10120.5
Ru1—N2—C10125.6 (2)C13—C12—H10120.5
C6—N2—C10118.9 (2)C12—C13—H11120.3
Ru1—N3—C11126.0 (2)C14—C13—H11120.3
Ru1—N3—C15115.3 (2)C13—C14—H12120.3
C11—N3—C15118.7 (2)C15—C14—H12120.3
Ru1—N4—C16114.4 (2)C16—C17—H13120.1
Ru1—N4—C20126.7 (2)C18—C17—H13120.2
C16—N4—C20118.9 (2)C17—C18—H14120.3
N1—C1—C2122.3 (3)C19—C18—H14120.3
C1—C2—C3119.1 (3)C18—C19—H15121.1
C2—C3—C4119.3 (3)C20—C19—H15121.1
C3—C4—C5119.3 (3)N4—C20—H16118.3
N1—C5—C4120.7 (3)C19—C20—H16118.3
N1—C5—C6115.5 (2)
Cl1—Ru1—N2—C6176.6 (2)C22—Ru1—N3—C1192.0 (7)
Cl1—Ru1—N2—C103.3 (2)C22—Ru1—N3—C1587.8 (6)
Cl1—Ru1—N3—C1188.8 (2)N4—Ru1—C22—Cl1137 (12)
Cl1—Ru1—N3—C1591.0 (2)N4—Ru1—C22—O2180 (8)
N3—Ru1—Cl1—O2150 (3)C22—Ru1—N4—C1688.3 (8)
N3—Ru1—Cl1—C22121 (12)C22—Ru1—N4—C2093.7 (8)
Cl1—Ru1—N4—C1685.7 (2)Ru1—N1—C1—C2177.8 (2)
Cl1—Ru1—N4—C2096.2 (2)Ru1—N1—C5—C4177.4 (2)
N4—Ru1—Cl1—O2131 (3)Ru1—N1—C5—C62.2 (3)
C21—Ru1—Cl1—O252 (3)C1—N1—C5—C41.5 (4)
Cl2—Ru1—N1—C192.9 (3)C1—N1—C5—C6178.9 (3)
Cl2—Ru1—N1—C585.9 (2)C5—N1—C1—C21.0 (5)
N1—Ru1—Cl2—O176 (3)Ru1—N2—C6—C54.6 (3)
N1—Ru1—Cl2—C2161 (3)Ru1—N2—C6—C7174.0 (2)
Cl2—Ru1—N2—C696.6 (2)Ru1—N2—C10—C9172.8 (2)
Cl2—Ru1—N2—C1090.0 (3)C6—N2—C10—C90.3 (5)
N2—Ru1—Cl2—O1155 (3)C10—N2—C6—C5178.5 (3)
N2—Ru1—Cl2—C21139 (3)C10—N2—C6—C70.2 (4)
Cl2—Ru1—N3—C112.3 (3)Ru1—N3—C11—C12179.3 (2)
Cl2—Ru1—N3—C15177.5 (2)Ru1—N3—C15—C14179.6 (2)
N3—Ru1—Cl2—O121 (3)Ru1—N3—C15—C161.0 (3)
N3—Ru1—Cl2—C2137 (3)C11—N3—C15—C140.2 (4)
Cl2—Ru1—C22—O22 (5)C11—N3—C15—C16179.2 (2)
N1—Ru1—N2—C62.7 (2)C15—N3—C11—C120.5 (5)
N1—Ru1—N2—C10176.0 (2)Ru1—N4—C16—C150.6 (3)
N2—Ru1—N1—C1178.6 (2)Ru1—N4—C16—C17179.7 (2)
N2—Ru1—N1—C50.2 (2)Ru1—N4—C20—C19177.9 (2)
N1—Ru1—N3—C1192.4 (2)C16—N4—C20—C190.1 (3)
N1—Ru1—N3—C1587.8 (2)C20—N4—C16—C15177.6 (2)
N3—Ru1—N1—C110.4 (2)C20—N4—C16—C171.5 (4)
N3—Ru1—N1—C5170.8 (2)N1—C1—C2—C30.2 (4)
N1—Ru1—N4—C1697.8 (2)C1—C2—C3—C40.1 (4)
N1—Ru1—N4—C2080.3 (2)C2—C3—C4—C50.4 (5)
N4—Ru1—N1—C188.9 (2)C3—C4—C5—N11.2 (5)
N4—Ru1—N1—C592.3 (2)C3—C4—C5—C6179.3 (3)
C21—Ru1—N1—C187.9 (3)N1—C5—C6—N24.5 (4)
C21—Ru1—N1—C590.9 (3)N1—C5—C6—C7174.1 (3)
N2—Ru1—N3—C11155.0 (5)C4—C5—C6—N2175.1 (3)
N2—Ru1—N3—C1525.2 (7)C4—C5—C6—C76.3 (5)
N3—Ru1—N2—C661.3 (6)N2—C6—C7—C81.5 (5)
N3—Ru1—N2—C10112.1 (5)C5—C6—C7—C8177.0 (3)
N2—Ru1—N4—C16176.8 (2)C6—C7—C8—C92.4 (4)
N2—Ru1—N4—C201.3 (2)C7—C8—C9—C102.0 (5)
N4—Ru1—N2—C685.0 (2)C8—C9—C10—N20.6 (5)
N4—Ru1—N2—C1088.4 (2)N3—C11—C12—C130.5 (5)
N2—Ru1—C21—Cl241 (3)C11—C12—C13—C140.2 (4)
C21—Ru1—N2—C692.9 (3)C12—C13—C14—C150.1 (3)
C21—Ru1—N2—C1093.7 (3)C13—C14—C15—N30.1 (3)
N2—Ru1—C22—O289 (9)C13—C14—C15—C16179.4 (3)
C22—Ru1—N2—C6173.7 (7)N3—C15—C16—N40.3 (4)
C22—Ru1—N2—C100.4 (7)N3—C15—C16—C17178.8 (3)
N3—Ru1—N4—C160.9 (2)C14—C15—C16—N4179.6 (3)
N3—Ru1—N4—C20177.2 (2)C14—C15—C16—C170.5 (5)
N4—Ru1—N3—C11179.2 (2)N4—C16—C17—C181.6 (5)
N4—Ru1—N3—C151.0 (2)C15—C16—C17—C18177.4 (3)
C21—Ru1—N3—C111.1 (3)C16—C17—C18—C190.1 (4)
C21—Ru1—N3—C15179.1 (3)C17—C18—C19—C201.4 (5)
N3—Ru1—C22—O2101 (9)C18—C19—C20—N41.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···F2i0.952.463.166 (4)131
C4—H4···F1ii0.952.413.257 (4)148
C7—H5···F1ii0.952.543.431 (4)156
C8—H6···F2iii0.952.503.265 (4)138
C13—H11···F5iv0.952.393.331 (4)168
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1/2, y+1, z1/2; (iii) x1/2, y+1/2, z; (iv) x1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[RuCl(C10H8N2)2(CO)]·PF6
Mr621.87
Crystal system, space groupOrthorhombic, P212121
Temperature (K)93
a, b, c (Å)10.882 (5), 12.063 (5), 17.410 (7)
V3)2285.2 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.95
Crystal size (mm)0.20 × 0.10 × 0.02
Data collection
DiffractometerRigaku Saturn
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.897, 0.981
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
22875, 5177, 4689
Rint0.045
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.062, 1.08
No. of reflections5177
No. of parameters330
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.37, 1.28
Absolute structureFlack (1983), 2249 Friedel pairs
Absolute structure parameter0.22 (4)

Computer programs: CrystalClear-SM (Rigaku, 2009), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), CrystalStructure (Rigaku, 2006).

Selected bond lengths (Å) top
Ru1—Cl12.3521 (17)Ru1—N32.070 (2)
Ru1—N12.086 (2)Ru1—N42.117 (2)
Ru1—N22.070 (2)Ru1—C211.890 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···F2i0.952.463.166 (4)131
C4—H4···F1ii0.952.413.257 (4)148
C7—H5···F1ii0.952.543.431 (4)156
C8—H6···F2iii0.952.503.265 (4)138
C13—H11···F5iv0.952.393.331 (4)168
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1/2, y+1, z1/2; (iii) x1/2, y+1/2, z; (iv) x1/2, y+1/2, z+1.
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationClear, J. M., Kelly, J. M. O., Connell, C. M., Vos, J. G., Cardin, C. J., Costa, S. R. & Edwards, A. J. (1980). J. Chem. Soc. Chem. Commun. pp. 750–751.  CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationIshida, H., Tanaka, K., Morimoto, M. & Tanaka, T. (1986). Organometallics, 5, 724–730.  CrossRef CAS Web of Science Google Scholar
First citationJacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLehn, J.-M. & Ziessel, R. (1990). J. Organomet. Chem. 382, 157–173.  CrossRef CAS Web of Science Google Scholar
First citationOyama, D., Suzuki, K., Yamanaka, T. & Takase, T. (2012). J. Coord. Chem. 65, 78–86.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2006). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2009). CrystalClear-SM. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds