metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1′-Bis(tert-butyl­di­methyl­sil­yl)ferrocene

aDepartment of Chemistry, Azarbaijan Shahid Madani University, Tabriz, Iran, bDepartment of Chemistry, University of Akron, Akron, OH, USA, and cDepartment of Chemistry, Science and Rsearch Branch, Islamic Azad University, Tehran, Iran
*Correspondence e-mail: Ar.abri@azaruniv.edu

(Received 21 November 2012; accepted 29 November 2012; online 12 December 2012)

The asymmetric unit of the title compound, [Fe(C11H19Si)2], consists of one half of a ferrocene derivative. The FeII atom lies on a twofold rotation axis, giving an eclipsed conformation for the cyclo­penta­dienyl ligands. No significant inter­molecular inter­actions are observed in the crystal structure.

Related literature

For background to ferrocene derivatives and their applications, see: Hudson et al. (2001[Hudson, R. D. A. (2001). J. Organomet. Chem. 637, 47-50.]); Liu et al. (2000[Liu, J., Castro, R., Abboud, K. A. & Kaifer, A. E. (2000). J. Org. Chem. 65, 6973-6976.]). For a related structure, see: Ren et al. (2012[Ren, X., Wang, L. & Li, Y. (2012). Acta Cryst. E68, m922.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C11H19Si)2]

  • Mr = 414.55

  • Orthorhombic, P b c n

  • a = 7.1282 (6) Å

  • b = 12.1466 (10) Å

  • c = 26.363 (2) Å

  • V = 2282.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.77 mm−1

  • T = 100 K

  • 0.20 × 0.20 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.861, Tmax = 0.927

  • 17220 measured reflections

  • 2529 independent reflections

  • 2323 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.067

  • S = 1.05

  • 2529 reflections

  • 114 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Ferrocene has attracted the interest of many scientists and research groups worldwide because of its applications in materials science (Hudson et al., 2001; Liu et al., 2000). Ferrocene as a starting material in synthetic organometallic systems and its derivatives in industrial applications have become a great area of interest for many researchers and industrial chemists.

The asymmetric unit of the title compound comprises a half of a ferrocene drivative (Fig. 1). The FeII atom lies on a twofold rotation axis, giving an eclipsed conformation for the cyclopentadienyl ligands. The bond lengths and angles are within the normal ranges and are comparable to the related structure (Ren et al., 2012).

Related literature top

For background to ferrocene derivatives and their applications, see: Hudson et al. (2001); Liu et al. (2000). For a related structure, see: Ren et al. (2012).

Experimental top

To a stirred solution of ferrocene (5.00 g, 26.88 mmol) in 100 ml of n-hexane, a solution containing 9.2 ml (60 mmol) tetramethylethylenediamine (tmeda) and 35 ml (56 mmol) of a 1.6 M of n-BuLi in 30 ml of n-hexane was added dropwise over 5 min, and mixture was stirred overnight. The orange precipitate of FcLi2 was collected. A THF solution (20 ml) containing FcLi2 (0.67 g, 3.5 mmol) was added dropwise to a THF solution (10 ml) of 1.67 ml t-butyldimethylchlorosilane (13.9 mmol) at -30 °C, and were kept for 30 min at -30 °C and then stirred over night at room temperature. The solvent THF was evaporated together with the excess of chlorosilane under vacuum, then, the orange residue dissolved in n-hexane (30 ml) and the solution filtered over Na2SO4. The solvent n-hexane was removed under vacuum and the product heated up for 1 h in order to sublime the impurities of ferrocene off. The remaining dark-orange oil or solid (0.69 g, 55% yield) was obtained. Single Crystals suitable for X-ray analysis were obtained by slow evaporation from a n-hexane solution at room temperature.

Refinement top

All hydrogen atoms were positioned geometrically with C—H = 0.95 or 0.98 Å and included in a riding model approximation with Uiso (H) = 1.2Ueq(C).

Structure description top

Ferrocene has attracted the interest of many scientists and research groups worldwide because of its applications in materials science (Hudson et al., 2001; Liu et al., 2000). Ferrocene as a starting material in synthetic organometallic systems and its derivatives in industrial applications have become a great area of interest for many researchers and industrial chemists.

The asymmetric unit of the title compound comprises a half of a ferrocene drivative (Fig. 1). The FeII atom lies on a twofold rotation axis, giving an eclipsed conformation for the cyclopentadienyl ligands. The bond lengths and angles are within the normal ranges and are comparable to the related structure (Ren et al., 2012).

For background to ferrocene derivatives and their applications, see: Hudson et al. (2001); Liu et al. (2000). For a related structure, see: Ren et al. (2012).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The ORTEP plot of the title compound, showing 40% probability displacement ellipsoids and the atomic numbering [symmetry code for suffix A: -x + 2, y, -z + 1/2]. The H atoms were omitted for clarity.
1,1'-Bis(tert-butyldimethylsilyl)ferrocene top
Crystal data top
[Fe(C11H19Si)2]F(000) = 896
Mr = 414.55Dx = 1.206 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 9976 reflections
a = 7.1282 (6) Åθ = 2.3–27.2°
b = 12.1466 (10) ŵ = 0.77 mm1
c = 26.363 (2) ÅT = 100 K
V = 2282.6 (3) Å3Block, orange
Z = 40.20 × 0.20 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
2529 independent reflections
Radiation source: fine-focus sealed tube2323 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
φ and ω scansθmax = 27.2°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 99
Tmin = 0.861, Tmax = 0.927k = 1515
17220 measured reflectionsl = 3333
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0312P)2 + 1.1338P]
where P = (Fo2 + 2Fc2)/3
2529 reflections(Δ/σ)max = 0.001
114 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
[Fe(C11H19Si)2]V = 2282.6 (3) Å3
Mr = 414.55Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 7.1282 (6) ŵ = 0.77 mm1
b = 12.1466 (10) ÅT = 100 K
c = 26.363 (2) Å0.20 × 0.20 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
2529 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2323 reflections with I > 2σ(I)
Tmin = 0.861, Tmax = 0.927Rint = 0.037
17220 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.067H-atom parameters constrained
S = 1.05Δρmax = 0.36 e Å3
2529 reflectionsΔρmin = 0.24 e Å3
114 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe11.00000.03916 (2)0.25000.01182 (9)
Si10.96501 (5)0.11765 (3)0.122364 (13)0.01274 (10)
C10.7486 (2)0.04225 (12)0.24866 (5)0.0212 (3)
H10.71610.10510.26820.025*
C20.8338 (2)0.04320 (11)0.19970 (5)0.0181 (3)
H20.86740.10720.18110.022*
C30.86070 (18)0.06855 (10)0.18305 (5)0.0143 (3)
C40.78856 (18)0.13706 (11)0.22318 (5)0.0167 (3)
H40.78660.21530.22300.020*
C50.72076 (18)0.06891 (12)0.26299 (5)0.0197 (3)
H50.66630.09360.29380.024*
C61.14332 (19)0.01654 (11)0.09925 (5)0.0198 (3)
H6A1.24460.01030.12420.030*
H6B1.19490.04190.06680.030*
H6C1.08390.05550.09460.030*
C71.0752 (2)0.25562 (11)0.13317 (5)0.0203 (3)
H7A1.17640.24860.15810.030*
H7B0.98030.30710.14590.030*
H7C1.12660.28330.10120.030*
C80.76825 (18)0.13000 (10)0.07396 (5)0.0156 (3)
C90.6877 (2)0.01524 (12)0.06271 (5)0.0231 (3)
H9A0.58640.02160.03780.035*
H9B0.63840.01700.09410.035*
H9D0.78700.03210.04910.035*
C100.61107 (19)0.20356 (12)0.09496 (5)0.0212 (3)
H10A0.51030.20950.06980.032*
H10D0.66130.27700.10220.032*
H10B0.56130.17110.12620.032*
C110.8419 (2)0.18068 (12)0.02429 (5)0.0233 (3)
H11D0.73890.18640.00020.035*
H11A0.94090.13370.01030.035*
H11B0.89270.25420.03110.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01172 (14)0.01365 (14)0.01008 (14)0.0000.00130 (9)0.000
Si10.01328 (17)0.01321 (18)0.01173 (17)0.00049 (13)0.00074 (13)0.00000 (12)
C10.0187 (7)0.0279 (8)0.0170 (7)0.0100 (6)0.0031 (5)0.0032 (5)
C20.0212 (7)0.0189 (7)0.0142 (6)0.0060 (5)0.0039 (5)0.0003 (5)
C30.0130 (6)0.0168 (6)0.0130 (6)0.0010 (5)0.0042 (5)0.0004 (5)
C40.0135 (6)0.0221 (7)0.0146 (6)0.0036 (5)0.0030 (5)0.0009 (5)
C50.0107 (6)0.0339 (8)0.0145 (6)0.0004 (6)0.0010 (5)0.0009 (5)
C60.0175 (6)0.0218 (7)0.0202 (7)0.0021 (6)0.0002 (5)0.0022 (5)
C70.0217 (7)0.0179 (7)0.0212 (7)0.0034 (6)0.0016 (6)0.0004 (5)
C80.0171 (6)0.0177 (6)0.0121 (6)0.0005 (5)0.0012 (5)0.0011 (5)
C90.0236 (7)0.0245 (7)0.0213 (7)0.0034 (6)0.0079 (6)0.0021 (5)
C100.0185 (7)0.0271 (7)0.0179 (6)0.0051 (6)0.0019 (5)0.0022 (5)
C110.0244 (7)0.0309 (8)0.0146 (6)0.0029 (6)0.0009 (6)0.0043 (5)
Geometric parameters (Å, º) top
Fe1—C2i2.0401 (13)C4—H40.9500
Fe1—C22.0402 (13)C5—H50.9500
Fe1—C42.0460 (13)C6—H6A0.9800
Fe1—C4i2.0460 (13)C6—H6B0.9800
Fe1—C1i2.0473 (15)C6—H6C0.9800
Fe1—C12.0473 (15)C7—H7A0.9800
Fe1—C5i2.0518 (13)C7—H7B0.9800
Fe1—C52.0518 (13)C7—H7C0.9800
Fe1—C32.0564 (12)C8—C91.5363 (19)
Fe1—C3i2.0565 (12)C8—C101.5364 (18)
Si1—C31.8622 (13)C8—C111.5391 (17)
Si1—C61.8696 (14)C9—H9A0.9800
Si1—C71.8726 (14)C9—H9B0.9800
Si1—C81.9022 (13)C9—H9D0.9800
C1—C51.416 (2)C10—H10A0.9800
C1—C21.4267 (19)C10—H10D0.9800
C1—H10.9500C10—H10B0.9800
C2—C31.4394 (17)C11—H11D0.9800
C2—H20.9500C11—H11A0.9800
C3—C41.4409 (17)C11—H11B0.9800
C4—C51.4214 (19)
C2i—Fe1—C2121.27 (8)C3—C2—Fe170.04 (7)
C2i—Fe1—C4159.61 (5)C1—C2—H2125.5
C2—Fe1—C468.45 (5)C3—C2—H2125.5
C2i—Fe1—C4i68.45 (5)Fe1—C2—H2126.2
C2—Fe1—C4i159.61 (5)C2—C3—C4105.85 (11)
C4—Fe1—C4i108.92 (8)C2—C3—Si1128.11 (10)
C2i—Fe1—C1i40.86 (5)C4—C3—Si1126.04 (10)
C2—Fe1—C1i106.42 (6)C2—C3—Fe168.82 (7)
C4—Fe1—C1i158.69 (5)C4—C3—Fe169.05 (7)
C4i—Fe1—C1i68.27 (6)Si1—C3—Fe1126.88 (7)
C2i—Fe1—C1106.42 (6)C5—C4—C3109.09 (12)
C2—Fe1—C140.86 (5)C5—C4—Fe169.92 (7)
C4—Fe1—C168.27 (6)C3—C4—Fe169.83 (7)
C4i—Fe1—C1158.69 (5)C5—C4—H4125.5
C1i—Fe1—C1122.24 (9)C3—C4—H4125.5
C2i—Fe1—C5i68.38 (6)Fe1—C4—H4126.4
C2—Fe1—C5i122.76 (6)C1—C5—C4108.11 (12)
C4—Fe1—C5i123.69 (6)C1—C5—Fe169.62 (8)
C4i—Fe1—C5i40.59 (5)C4—C5—Fe169.48 (7)
C1i—Fe1—C5i40.42 (6)C1—C5—H5125.9
C1—Fe1—C5i158.67 (6)C4—C5—H5125.9
C2i—Fe1—C5122.76 (6)Fe1—C5—H5126.5
C2—Fe1—C568.38 (6)Si1—C6—H6A109.5
C4—Fe1—C540.59 (5)Si1—C6—H6B109.5
C4i—Fe1—C5123.68 (6)H6A—C6—H6B109.5
C1i—Fe1—C5158.67 (6)Si1—C6—H6C109.5
C1—Fe1—C540.42 (6)H6A—C6—H6C109.5
C5i—Fe1—C5159.71 (9)H6B—C6—H6C109.5
C2i—Fe1—C3157.42 (5)Si1—C7—H7A109.5
C2—Fe1—C341.14 (5)Si1—C7—H7B109.5
C4—Fe1—C341.13 (5)H7A—C7—H7B109.5
C4i—Fe1—C3123.47 (5)Si1—C7—H7C109.5
C1i—Fe1—C3121.43 (5)H7A—C7—H7C109.5
C1—Fe1—C369.29 (5)H7B—C7—H7C109.5
C5i—Fe1—C3107.13 (5)C9—C8—C10108.95 (11)
C5—Fe1—C369.16 (5)C9—C8—C11109.03 (11)
C2i—Fe1—C3i41.14 (5)C10—C8—C11108.82 (11)
C2—Fe1—C3i157.42 (5)C9—C8—Si1109.48 (9)
C4—Fe1—C3i123.46 (5)C10—C8—Si1109.98 (9)
C4i—Fe1—C3i41.13 (5)C11—C8—Si1110.54 (9)
C1i—Fe1—C3i69.29 (5)C8—C9—H9A109.5
C1—Fe1—C3i121.42 (5)C8—C9—H9B109.5
C5i—Fe1—C3i69.16 (5)H9A—C9—H9B109.5
C5—Fe1—C3i107.13 (5)C8—C9—H9D109.5
C3—Fe1—C3i160.00 (7)H9A—C9—H9D109.5
C3—Si1—C6109.94 (6)H9B—C9—H9D109.5
C3—Si1—C7108.87 (6)C8—C10—H10A109.5
C6—Si1—C7110.63 (6)C8—C10—H10D109.5
C3—Si1—C8107.89 (6)H10A—C10—H10D109.5
C6—Si1—C8109.53 (6)C8—C10—H10B109.5
C7—Si1—C8109.93 (6)H10A—C10—H10B109.5
C5—C1—C2107.98 (12)H10D—C10—H10B109.5
C5—C1—Fe169.96 (8)C8—C11—H11D109.5
C2—C1—Fe169.30 (8)C8—C11—H11A109.5
C5—C1—H1126.0H11D—C11—H11A109.5
C2—C1—H1126.0C8—C11—H11B109.5
Fe1—C1—H1126.3H11D—C11—H11B109.5
C1—C2—C3108.96 (12)H11A—C11—H11B109.5
C1—C2—Fe169.84 (8)
C2i—Fe1—C1—C5121.60 (8)C5—Fe1—C3—C436.93 (8)
C2—Fe1—C1—C5119.28 (11)C3i—Fe1—C3—C445.93 (7)
C4—Fe1—C1—C537.55 (8)C2i—Fe1—C3—Si176.71 (17)
C4i—Fe1—C1—C548.96 (18)C2—Fe1—C3—Si1122.46 (12)
C1i—Fe1—C1—C5163.33 (9)C4—Fe1—C3—Si1120.02 (12)
C5i—Fe1—C1—C5165.93 (10)C4i—Fe1—C3—Si139.57 (11)
C3—Fe1—C1—C581.80 (8)C1i—Fe1—C3—Si143.76 (11)
C3i—Fe1—C1—C579.33 (9)C1—Fe1—C3—Si1159.69 (10)
C2i—Fe1—C1—C2119.12 (9)C5i—Fe1—C3—Si11.95 (10)
C4—Fe1—C1—C281.73 (8)C5—Fe1—C3—Si1156.94 (10)
C4i—Fe1—C1—C2168.24 (14)C3i—Fe1—C3—Si174.08 (7)
C1i—Fe1—C1—C277.39 (8)C2—C3—C4—C50.22 (14)
C5i—Fe1—C1—C246.65 (18)Si1—C3—C4—C5179.86 (9)
C5—Fe1—C1—C2119.28 (11)Fe1—C3—C4—C559.06 (9)
C3—Fe1—C1—C237.48 (8)C2—C3—C4—Fe159.28 (9)
C3i—Fe1—C1—C2161.39 (8)Si1—C3—C4—Fe1121.08 (10)
C5—C1—C2—C30.20 (16)C2i—Fe1—C4—C541.15 (19)
Fe1—C1—C2—C359.29 (10)C2—Fe1—C4—C581.50 (9)
C5—C1—C2—Fe159.49 (10)C4i—Fe1—C4—C5120.06 (9)
C2i—Fe1—C2—C178.66 (8)C1i—Fe1—C4—C5161.35 (15)
C4—Fe1—C2—C181.27 (9)C1—Fe1—C4—C537.39 (8)
C4i—Fe1—C2—C1167.72 (15)C5i—Fe1—C4—C5162.65 (8)
C1i—Fe1—C2—C1120.62 (11)C3—Fe1—C4—C5120.35 (11)
C5i—Fe1—C2—C1161.66 (9)C3i—Fe1—C4—C576.78 (10)
C5—Fe1—C2—C137.47 (8)C2i—Fe1—C4—C3161.50 (15)
C3—Fe1—C2—C1120.11 (12)C2—Fe1—C4—C338.85 (8)
C3i—Fe1—C2—C145.19 (18)C4i—Fe1—C4—C3119.58 (8)
C2i—Fe1—C2—C3161.23 (9)C1i—Fe1—C4—C341.00 (19)
C4—Fe1—C2—C338.84 (8)C1—Fe1—C4—C382.96 (8)
C4i—Fe1—C2—C347.61 (19)C5i—Fe1—C4—C376.99 (9)
C1i—Fe1—C2—C3119.27 (8)C5—Fe1—C4—C3120.35 (11)
C1—Fe1—C2—C3120.11 (12)C3i—Fe1—C4—C3162.87 (7)
C5i—Fe1—C2—C378.22 (10)C2—C1—C5—C40.06 (16)
C5—Fe1—C2—C382.65 (8)Fe1—C1—C5—C459.01 (9)
C3i—Fe1—C2—C3165.30 (9)C2—C1—C5—Fe159.08 (10)
C1—C2—C3—C40.26 (15)C3—C4—C5—C10.10 (15)
Fe1—C2—C3—C459.42 (8)Fe1—C4—C5—C159.10 (10)
C1—C2—C3—Si1179.89 (10)C3—C4—C5—Fe159.00 (9)
Fe1—C2—C3—Si1120.94 (11)C2i—Fe1—C5—C176.28 (9)
C1—C2—C3—Fe159.17 (10)C2—Fe1—C5—C137.86 (8)
C6—Si1—C3—C230.07 (14)C4—Fe1—C5—C1119.54 (11)
C7—Si1—C3—C2151.41 (12)C4i—Fe1—C5—C1160.77 (7)
C8—Si1—C3—C289.33 (13)C1i—Fe1—C5—C141.8 (2)
C6—Si1—C3—C4150.36 (11)C5i—Fe1—C5—C1165.22 (8)
C7—Si1—C3—C429.03 (13)C3—Fe1—C5—C182.14 (8)
C8—Si1—C3—C490.24 (12)C3i—Fe1—C5—C1118.66 (8)
C6—Si1—C3—Fe160.76 (9)C2i—Fe1—C5—C4164.18 (8)
C7—Si1—C3—Fe160.57 (10)C2—Fe1—C5—C481.67 (8)
C8—Si1—C3—Fe1179.84 (7)C4i—Fe1—C5—C479.69 (11)
C2i—Fe1—C3—C245.8 (2)C1i—Fe1—C5—C4161.38 (13)
C4—Fe1—C3—C2117.52 (11)C1—Fe1—C5—C4119.54 (11)
C4i—Fe1—C3—C2162.04 (8)C5i—Fe1—C5—C445.68 (7)
C1i—Fe1—C3—C278.70 (10)C3—Fe1—C5—C437.39 (8)
C1—Fe1—C3—C237.23 (8)C3i—Fe1—C5—C4121.81 (8)
C5i—Fe1—C3—C2120.52 (9)C3—Si1—C8—C965.20 (10)
C5—Fe1—C3—C280.59 (9)C6—Si1—C8—C954.46 (11)
C3i—Fe1—C3—C2163.45 (8)C7—Si1—C8—C9176.22 (9)
C2i—Fe1—C3—C4163.27 (13)C3—Si1—C8—C1054.48 (10)
C2—Fe1—C3—C4117.52 (11)C6—Si1—C8—C10174.14 (9)
C4i—Fe1—C3—C480.44 (11)C7—Si1—C8—C1064.10 (11)
C1i—Fe1—C3—C4163.78 (8)C3—Si1—C8—C11174.68 (9)
C1—Fe1—C3—C480.29 (8)C6—Si1—C8—C1165.67 (11)
C5i—Fe1—C3—C4121.96 (8)C7—Si1—C8—C1156.09 (11)
Symmetry code: (i) x+2, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Fe(C11H19Si)2]
Mr414.55
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)100
a, b, c (Å)7.1282 (6), 12.1466 (10), 26.363 (2)
V3)2282.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.77
Crystal size (mm)0.20 × 0.20 × 0.10
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.861, 0.927
No. of measured, independent and
observed [I > 2σ(I)] reflections
17220, 2529, 2323
Rint0.037
(sin θ/λ)max1)0.643
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.067, 1.05
No. of reflections2529
No. of parameters114
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.24

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

AA thanks Aza­rbaijan Shahid Madani University for financial support. CJZ and JTE thank University of Akron for the X-ray facility.

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHudson, R. D. A. (2001). J. Organomet. Chem. 637, 47–50.  Web of Science CrossRef Google Scholar
First citationLiu, J., Castro, R., Abboud, K. A. & Kaifer, A. E. (2000). J. Org. Chem. 65, 6973–6976.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRen, X., Wang, L. & Li, Y. (2012). Acta Cryst. E68, m922.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds