organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1,3,3-Tetra-tert-butyl-2,2-diiso­propyl-4,4-di­phenyl­cyclo­tetra­silane

aDepartment of Chemistry and Chemical Biology, Graduate School of Engineering, Gunma University, Kiryu, Gunma 376-8515, Japan
*Correspondence e-mail: kyushin@gunma-u.ac.jp

(Received 22 November 2012; accepted 13 December 2012; online 22 December 2012)

The molecule in the structure of the title compound, C34H60Si4, lies on a twofold rotation axis that passes through the two Si atoms, resulting in a planar cyclo­tetra­silane ring. The dihedral angle between the cyclo­tetra­silane ring and the phenyl ring is 68.20 (5)°. The Si—Si bonds [2.4404 (8) and 2.4576 (8) Å] are longer than a standard Si—Si bond (2.34 Å) and the C—Si—C bond angle [97.07 (14)°] of the phenyl-substituted Si atom is smaller than the tetra­hedral bond angle (109.5°). These long bonds and small bond angle are favorable for reducing the steric hindrance among the bulky substituents.

Related literature

For background to and applications of phenyl-substituted oligosilanes, see: Hinch & Krc (1957[Hinch, R. J. & Krc, J. Jr (1957). Anal. Chem. 29, 1550-1551.]); Matsumoto & Tanaka (2008[Matsumoto, H. & Tanaka, R. (2008). Jpn Kokai Tokkyo Koho JP4132933.]). For a related structure of a cyclo­tetra­silane without phenyl groups, see: Kyushin et al. (1995[Kyushin, S., Sakurai, H. & Matsumoto, H. (1995). J. Organomet. Chem. 499, 235-240.]).

[Scheme 1]

Experimental

Crystal data
  • C34H60Si4

  • Mr = 581.18

  • Monoclinic, C 2/c

  • a = 11.9477 (9) Å

  • b = 17.6585 (12) Å

  • c = 17.0422 (13) Å

  • β = 104.9394 (8)°

  • V = 3474.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 173 K

  • 0.50 × 0.40 × 0.20 mm

Data collection
  • Rigaku R-AXIS IV imaging plate diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.910, Tmax = 0.963

  • 8534 measured reflections

  • 2917 independent reflections

  • 2899 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.095

  • S = 1.24

  • 2917 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: CrystalClear (Rigaku, 2003[Rigaku (2003). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and Yadokari-XG 2009 (Kabuto et al., 2009[Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Crystallogr. Soc. Jpn, 51, 218-224.]).

Supporting information


Comment top

Birefringent materials have a wide range of optical applications. Single crystals of calcium carbonate and barium borate have been well known as inorganic birefringent materials. Organic single crystals such as urea have also been known to show birefringence. Since birefringence is related to crystal structures, studies on molecular structures and packing in a crystal are important. In 1957, birefringence of tetrakis(4-phenylphenyl)silane was reported (Hinch & Krc, 1957). Recently, birefringence of single crystals of phenyl-substituted linear oligosilanes and their application to polarizers have been reported (Matsumoto & Tanaka, 2008). From these results, crystals of phenyl-substituted silicon compounds seem interesting as potential optical materials. We report herein the synthesis and X-ray crystal analysis of a phenyl-substituted cyclotetrasilane.

The coupling of 1,3-dibromo-1,1,3,3-tetra-tert-butyl-2,2-diphenyltrisilane and dichlorodiisopropylsilane with lithium in tetrahydrofuran (THF) gave 1,1,3,3-tetra-tert-butyl-2,2-diisopropyl-4,4-diphenylcyclotetrasilane (1) in 21% yield (Fig. 1). The molecular structure of 1 is shown in Fig. 2. Compound 1 has the crystallographic C2 symmetry, and therefore the cyclotetrasilane ring has a completely planar structure. The silicon–silicon bonds [2.4404 (8) and 2.4576 (8) Å] are longer than the standard silicon–silicon bond (2.34 Å). The C1—Si1—C1i bond angle [97.07 (14)°] is smaller than the tetrahedral bond angle (109.5°), while the C7—Si2—C11 [111.39 (10)°] and C15—Si3—C15i [106.97 (15)°] bond angles are within normal values. The long silicon–silicon bonds and the small carbon–silicon–carbon bond angle are favorable for reducing the steric hindrance among bulky substituents.

Packing diagram of 1 is shown in Fig. 3. Four molecules are present in a unit cell. All cyclotetrasilane rings are oriented toward the same direction with the line through the Si1 and Si3 atoms parallel to the b axis. There is no intermolecular ππ interaction among phenyl groups.

Related literature top

For background to and applications of phenyl-substituted oligosilanes, see: Hinch & Krc (1957); Matsumoto & Tanaka (2008). For the related structure of a cyclotetrasilane without phenyl groups, see: Kyushin et al. (1995).

Experimental top

A mixture of 1,3-dibromo-1,1,3,3-tetra-tert-butyl-2,2-diphenyltrisilane (5.00 g, 7.98 mmol), dichlorodiisopropylsilane (2.24 g, 12.1 mmol) and lithium (0.28 g, 40 mmol) in THF (50 ml) was stirred at room temperature for 1 day. The solvent was removed under reduced pressure. The residue was dissolved in hexane and passed through a short column of silica gel. After the silica gel was washed with hexane, the eluent was changed to diethyl ether. The diethyl ether eluate was evaporated. Recrystallization of the residue from methanol–THF (ca 1:1) gave 1 (0.956 g, 21%) as colorless crystals. Single crystals were obtained from methanol–THF (ca 1:1) by slow evaporation.

M.p.: 210–211 °C. 1H NMR (400 MHz, CDCl3): δ 1.21 (s, 36H), 1.46 (d, 12H, J = 7.4 Hz), 1.94 (sept, 2H, J = 7.4 Hz), 7.14–7.18 (m, 6H), 7.68–7.70 (m, 4H). 13C NMR (76 MHz, CDCl3): δ 17.5, 24.7, 25.4, 32.8, 127.1, 127.4, 138.6, 142.1. 29Si NMR (119 MHz, CDCl3): δ -6.2, 14.0, 20.4. IR (KBr): 3050, 2950, 2920, 2850, 1470, 1420, 1390, 1360, 810, 730, 700 cm-1. MS (EI, 70 eV): m/z 580 (M+, 17), 360 (100).

Refinement top

All hydrogen atoms were generated at calculated positions and refined as riding atoms, with C—H = 0.95 (phenyl), 0.98 (methyl) or 1.00 (methine) Å, and with Uiso(H) = 1.2Ueq(phenyl C), 1.5Ueq(methyl C) or 1.2Ueq(methine C).

Structure description top

Birefringent materials have a wide range of optical applications. Single crystals of calcium carbonate and barium borate have been well known as inorganic birefringent materials. Organic single crystals such as urea have also been known to show birefringence. Since birefringence is related to crystal structures, studies on molecular structures and packing in a crystal are important. In 1957, birefringence of tetrakis(4-phenylphenyl)silane was reported (Hinch & Krc, 1957). Recently, birefringence of single crystals of phenyl-substituted linear oligosilanes and their application to polarizers have been reported (Matsumoto & Tanaka, 2008). From these results, crystals of phenyl-substituted silicon compounds seem interesting as potential optical materials. We report herein the synthesis and X-ray crystal analysis of a phenyl-substituted cyclotetrasilane.

The coupling of 1,3-dibromo-1,1,3,3-tetra-tert-butyl-2,2-diphenyltrisilane and dichlorodiisopropylsilane with lithium in tetrahydrofuran (THF) gave 1,1,3,3-tetra-tert-butyl-2,2-diisopropyl-4,4-diphenylcyclotetrasilane (1) in 21% yield (Fig. 1). The molecular structure of 1 is shown in Fig. 2. Compound 1 has the crystallographic C2 symmetry, and therefore the cyclotetrasilane ring has a completely planar structure. The silicon–silicon bonds [2.4404 (8) and 2.4576 (8) Å] are longer than the standard silicon–silicon bond (2.34 Å). The C1—Si1—C1i bond angle [97.07 (14)°] is smaller than the tetrahedral bond angle (109.5°), while the C7—Si2—C11 [111.39 (10)°] and C15—Si3—C15i [106.97 (15)°] bond angles are within normal values. The long silicon–silicon bonds and the small carbon–silicon–carbon bond angle are favorable for reducing the steric hindrance among bulky substituents.

Packing diagram of 1 is shown in Fig. 3. Four molecules are present in a unit cell. All cyclotetrasilane rings are oriented toward the same direction with the line through the Si1 and Si3 atoms parallel to the b axis. There is no intermolecular ππ interaction among phenyl groups.

For background to and applications of phenyl-substituted oligosilanes, see: Hinch & Krc (1957); Matsumoto & Tanaka (2008). For the related structure of a cyclotetrasilane without phenyl groups, see: Kyushin et al. (1995).

Computing details top

Data collection: CrystalClear (Rigaku, 2003); cell refinement: CrystalClear (Rigaku, 2003); data reduction: CrystalClear (Rigaku, 2003); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and Yadokari-XG 2009 (Kabuto et al., 2009).

Figures top
[Figure 1] Fig. 1. Synthesis of 1.
[Figure 2] Fig. 2. The molecular structure of 1, showing 50% probability displacement ellipsoids. [Symmetry code: (i) –x, y, –z + 3/2.]
[Figure 3] Fig. 3. Packing diagram of 1, showing 50% probability displacement ellipsoids.
1,1,3,3-Tetra-tert-butyl-2,2-diisopropyl-4,4-diphenylcyclotetrasilane top
Crystal data top
C34H60Si4F(000) = 1280
Mr = 581.18Dx = 1.111 Mg m3
Monoclinic, C2/cMelting point = 483–484 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 11.9477 (9) ÅCell parameters from 7676 reflections
b = 17.6585 (12) Åθ = 1.2–28.3°
c = 17.0422 (13) ŵ = 0.19 mm1
β = 104.9394 (8)°T = 173 K
V = 3474.0 (4) Å3Prism, colourless
Z = 40.50 × 0.40 × 0.20 mm
Data collection top
Rigaku R-AXISIV imaging plate
diffractometer
2917 independent reflections
Radiation source: rotating anode2899 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 10.00 pixels mm-1θmax = 25.0°, θmin = 2.1°
ω scansh = 1414
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 1820
Tmin = 0.910, Tmax = 0.963l = 2020
8534 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.24 w = 1/[σ2(Fo2) + (0.0127P)2 + 7.2943P]
where P = (Fo2 + 2Fc2)/3
2917 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C34H60Si4V = 3474.0 (4) Å3
Mr = 581.18Z = 4
Monoclinic, C2/cMo Kα radiation
a = 11.9477 (9) ŵ = 0.19 mm1
b = 17.6585 (12) ÅT = 173 K
c = 17.0422 (13) Å0.50 × 0.40 × 0.20 mm
β = 104.9394 (8)°
Data collection top
Rigaku R-AXISIV imaging plate
diffractometer
2917 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
2899 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 0.963Rint = 0.025
8534 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.24Δρmax = 0.24 e Å3
2917 reflectionsΔρmin = 0.20 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si10.00000.32355 (5)0.75000.01350 (19)
Si20.09403 (5)0.22594 (3)0.68813 (3)0.01324 (15)
Si30.00000.12695 (5)0.75000.01475 (19)
C10.07934 (19)0.39557 (13)0.67052 (13)0.0179 (5)
C20.0078 (2)0.45046 (14)0.64962 (15)0.0269 (6)
H10.07250.44980.67630.032*
C30.0487 (2)0.50564 (15)0.59179 (17)0.0330 (6)
H20.00310.54160.57910.040*
C40.1657 (2)0.50818 (15)0.55245 (15)0.0307 (6)
H30.19470.54550.51220.037*
C50.2392 (2)0.45599 (15)0.57252 (16)0.0313 (6)
H40.31960.45760.54620.038*
C60.1968 (2)0.40088 (14)0.63102 (15)0.0262 (5)
H50.24940.36590.64440.031*
C70.03683 (19)0.22973 (13)0.56985 (13)0.0191 (5)
C80.0961 (2)0.23931 (15)0.54491 (14)0.0259 (5)
H60.12430.23560.48570.039*
H70.11650.28900.56290.039*
H80.13180.19940.57030.039*
C90.0639 (2)0.15671 (16)0.52878 (15)0.0331 (6)
H90.03730.16220.46970.050*
H100.02400.11390.54620.050*
H110.14760.14760.54440.050*
C100.0887 (2)0.29704 (15)0.53389 (15)0.0307 (6)
H120.17160.28840.54040.046*
H130.07790.34360.56230.046*
H140.04970.30200.47600.046*
C110.26218 (18)0.23095 (14)0.72206 (14)0.0204 (5)
C120.3017 (2)0.21501 (14)0.81400 (14)0.0253 (5)
H150.28660.16180.82420.038*
H160.25870.24770.84250.038*
H170.38480.22540.83380.038*
C130.3052 (2)0.31047 (16)0.70706 (17)0.0347 (6)
H180.38800.31480.73400.052*
H190.26210.34860.72910.052*
H200.29290.31860.64860.052*
C140.3208 (2)0.17278 (18)0.67839 (17)0.0379 (7)
H210.30640.18650.62090.057*
H220.28890.12230.68300.057*
H230.40440.17240.70340.057*
C150.0992 (2)0.06194 (13)0.82929 (15)0.0241 (5)
H240.13640.09480.87660.029*
C160.0306 (3)0.00034 (16)0.86183 (17)0.0387 (7)
H250.00680.03950.82090.058*
H260.03820.02310.87340.058*
H270.07980.02150.91180.058*
C170.1985 (2)0.02186 (16)0.80303 (19)0.0387 (7)
H280.25090.00200.85040.058*
H290.24140.05910.77960.058*
H300.16620.01700.76240.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si10.0139 (4)0.0121 (4)0.0151 (4)0.0000.0047 (3)0.000
Si20.0127 (3)0.0149 (3)0.0133 (3)0.0005 (2)0.0055 (2)0.0008 (2)
Si30.0165 (4)0.0118 (4)0.0169 (4)0.0000.0061 (4)0.000
C10.0219 (11)0.0167 (12)0.0162 (11)0.0022 (9)0.0072 (10)0.0007 (9)
C20.0260 (12)0.0273 (14)0.0279 (14)0.0013 (10)0.0081 (11)0.0074 (10)
C30.0415 (15)0.0258 (14)0.0367 (15)0.0008 (11)0.0189 (13)0.0106 (11)
C40.0465 (16)0.0230 (14)0.0230 (13)0.0109 (11)0.0101 (12)0.0100 (10)
C50.0273 (13)0.0336 (15)0.0298 (14)0.0095 (11)0.0012 (12)0.0062 (11)
C60.0227 (12)0.0271 (14)0.0276 (13)0.0002 (10)0.0044 (11)0.0060 (10)
C70.0236 (12)0.0209 (12)0.0143 (11)0.0012 (9)0.0078 (10)0.0023 (9)
C80.0242 (12)0.0346 (15)0.0179 (12)0.0005 (10)0.0033 (10)0.0002 (10)
C90.0410 (15)0.0343 (16)0.0232 (13)0.0076 (12)0.0070 (12)0.0095 (11)
C100.0375 (14)0.0359 (16)0.0219 (13)0.0041 (11)0.0135 (12)0.0068 (11)
C110.0144 (10)0.0271 (13)0.0210 (12)0.0006 (9)0.0068 (10)0.0040 (9)
C120.0192 (11)0.0299 (14)0.0240 (13)0.0013 (10)0.0005 (10)0.0042 (10)
C130.0288 (13)0.0431 (17)0.0327 (15)0.0176 (12)0.0086 (12)0.0011 (12)
C140.0210 (13)0.058 (2)0.0355 (16)0.0079 (12)0.0092 (12)0.0157 (14)
C150.0289 (12)0.0170 (12)0.0243 (13)0.0059 (10)0.0029 (11)0.0024 (9)
C160.0570 (18)0.0254 (15)0.0335 (15)0.0005 (13)0.0113 (14)0.0090 (12)
C170.0319 (14)0.0246 (15)0.058 (2)0.0119 (11)0.0084 (14)0.0004 (13)
Geometric parameters (Å, º) top
Si1—C11.921 (2)C9—H110.9800
Si1—Si22.4404 (8)C10—H120.9800
Si2—C111.944 (2)C10—H130.9800
Si2—C71.956 (2)C10—H140.9800
Si2—Si32.4576 (8)C11—C141.539 (3)
Si3—C151.929 (2)C11—C131.539 (3)
C1—C61.394 (3)C11—C121.541 (3)
C1—C21.398 (3)C12—H150.9800
C2—C31.382 (3)C12—H160.9800
C2—H10.9500C12—H170.9800
C3—C41.386 (4)C13—H180.9800
C3—H20.9500C13—H190.9800
C4—C51.376 (4)C13—H200.9800
C4—H30.9500C14—H210.9800
C5—C61.392 (3)C14—H220.9800
C5—H40.9500C14—H230.9800
C6—H50.9500C15—C171.543 (3)
C7—C101.539 (3)C15—C161.548 (3)
C7—C91.541 (3)C15—H241.0000
C7—C81.544 (3)C16—H250.9800
C8—H60.9800C16—H260.9800
C8—H70.9800C16—H270.9800
C8—H80.9800C17—H280.9800
C9—H90.9800C17—H290.9800
C9—H100.9800C17—H300.9800
C1i—Si1—C197.07 (14)H10—C9—H11109.5
C1i—Si1—Si2125.03 (7)C7—C10—H12109.5
C1—Si1—Si2111.19 (6)C7—C10—H13109.5
Si2i—Si1—Si290.13 (4)H12—C10—H13109.5
C11—Si2—C7111.39 (10)C7—C10—H14109.5
C11—Si2—Si1113.26 (7)H12—C10—H14109.5
C7—Si2—Si1110.10 (7)H13—C10—H14109.5
C11—Si2—Si3117.16 (8)C14—C11—C13108.4 (2)
C7—Si2—Si3112.93 (7)C14—C11—C12108.2 (2)
Si1—Si2—Si390.27 (3)C13—C11—C12107.92 (19)
C15i—Si3—C15106.97 (15)C14—C11—Si2112.95 (16)
C15i—Si3—Si2112.89 (7)C13—C11—Si2110.84 (17)
C15—Si3—Si2117.23 (7)C12—C11—Si2108.42 (14)
Si2i—Si3—Si289.33 (4)C11—C12—H15109.5
C6—C1—C2115.8 (2)C11—C12—H16109.5
C6—C1—Si1129.59 (18)H15—C12—H16109.5
C2—C1—Si1114.57 (17)C11—C12—H17109.5
C3—C2—C1122.9 (2)H15—C12—H17109.5
C3—C2—H1118.6H16—C12—H17109.5
C1—C2—H1118.6C11—C13—H18109.5
C2—C3—C4119.7 (2)C11—C13—H19109.5
C2—C3—H2120.2H18—C13—H19109.5
C4—C3—H2120.2C11—C13—H20109.5
C5—C4—C3119.1 (2)H18—C13—H20109.5
C5—C4—H3120.4H19—C13—H20109.5
C3—C4—H3120.4C11—C14—H21109.5
C4—C5—C6120.6 (2)C11—C14—H22109.5
C4—C5—H4119.7H21—C14—H22109.5
C6—C5—H4119.7C11—C14—H23109.5
C5—C6—C1121.9 (2)H21—C14—H23109.5
C5—C6—H5119.1H22—C14—H23109.5
C1—C6—H5119.1C17—C15—C16107.4 (2)
C10—C7—C9108.18 (19)C17—C15—Si3116.68 (18)
C10—C7—C8107.3 (2)C16—C15—Si3112.50 (17)
C9—C7—C8106.7 (2)C17—C15—H24106.6
C10—C7—Si2111.55 (16)C16—C15—H24106.6
C9—C7—Si2112.41 (16)Si3—C15—H24106.6
C8—C7—Si2110.42 (14)C15—C16—H25109.5
C7—C8—H6109.5C15—C16—H26109.5
C7—C8—H7109.5H25—C16—H26109.5
H6—C8—H7109.5C15—C16—H27109.5
C7—C8—H8109.5H25—C16—H27109.5
H6—C8—H8109.5H26—C16—H27109.5
H7—C8—H8109.5C15—C17—H28109.5
C7—C9—H9109.5C15—C17—H29109.5
C7—C9—H10109.5H28—C17—H29109.5
H9—C9—H10109.5C15—C17—H30109.5
C7—C9—H11109.5H28—C17—H30109.5
H9—C9—H11109.5H29—C17—H30109.5
C1i—Si1—Si2—C113.63 (12)C3—C4—C5—C60.6 (4)
C1—Si1—Si2—C11112.02 (11)C4—C5—C6—C10.9 (4)
Si2i—Si1—Si2—C11119.92 (8)C2—C1—C6—C52.0 (4)
C1i—Si1—Si2—C7129.08 (11)Si1—C1—C6—C5177.9 (2)
C1—Si1—Si2—C713.43 (11)C11—Si2—C7—C1051.24 (19)
Si2i—Si1—Si2—C7114.63 (8)Si1—Si2—C7—C1075.27 (16)
C1i—Si1—Si2—Si3116.29 (8)Si3—Si2—C7—C10174.50 (14)
C1—Si1—Si2—Si3128.06 (7)C11—Si2—C7—C970.49 (19)
Si2i—Si1—Si2—Si30.0Si1—Si2—C7—C9163.01 (15)
C11—Si2—Si3—C15i124.05 (11)Si3—Si2—C7—C963.78 (18)
C7—Si2—Si3—C15i7.41 (11)C11—Si2—C7—C8170.44 (16)
Si1—Si2—Si3—C15i119.45 (8)Si1—Si2—C7—C843.93 (18)
C11—Si2—Si3—C150.95 (12)Si3—Si2—C7—C855.30 (18)
C7—Si2—Si3—C15132.41 (11)C7—Si2—C11—C1451.3 (2)
Si1—Si2—Si3—C15115.55 (9)Si1—Si2—C11—C14176.05 (16)
C11—Si2—Si3—Si2i116.50 (8)Si3—Si2—C11—C1480.87 (19)
C7—Si2—Si3—Si2i112.04 (8)C7—Si2—C11—C1370.59 (18)
Si1—Si2—Si3—Si2i0.0Si1—Si2—C11—C1354.17 (17)
C1i—Si1—C1—C6127.9 (2)Si3—Si2—C11—C13157.25 (14)
Si2i—Si1—C1—C65.8 (3)C7—Si2—C11—C12171.14 (15)
Si2—Si1—C1—C6100.2 (2)Si1—Si2—C11—C1264.11 (17)
C1i—Si1—C1—C252.17 (16)Si3—Si2—C11—C1238.97 (18)
Si2i—Si1—C1—C2174.29 (14)C15i—Si3—C15—C1774.54 (19)
Si2—Si1—C1—C279.77 (18)Si2i—Si3—C15—C17155.06 (17)
C6—C1—C2—C31.9 (4)Si2—Si3—C15—C1753.4 (2)
Si1—C1—C2—C3178.1 (2)C15i—Si3—C15—C1650.24 (16)
C1—C2—C3—C40.5 (4)Si2i—Si3—C15—C1680.16 (18)
C2—C3—C4—C50.7 (4)Si2—Si3—C15—C16178.14 (15)
Symmetry code: (i) x, y, z+3/2.

Experimental details

Crystal data
Chemical formulaC34H60Si4
Mr581.18
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)11.9477 (9), 17.6585 (12), 17.0422 (13)
β (°) 104.9394 (8)
V3)3474.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.50 × 0.40 × 0.20
Data collection
DiffractometerRigaku R-AXISIV imaging plate
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.910, 0.963
No. of measured, independent and
observed [I > 2σ(I)] reflections
8534, 2917, 2899
Rint0.025
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.095, 1.24
No. of reflections2917
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.20

Computer programs: CrystalClear (Rigaku, 2003), SIR2004 (Burla et al., 2005), ORTEP-3 (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and Yadokari-XG 2009 (Kabuto et al., 2009).

 

Acknowledgements

This work was supported in part by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan, and the Japan Society for the Promotion of Science. This work was also supported by the Element Innovation Project of Gunma University.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHinch, R. J. & Krc, J. Jr (1957). Anal. Chem. 29, 1550–1551.  CSD CrossRef CAS Web of Science Google Scholar
First citationJacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Crystallogr. Soc. Jpn, 51, 218–224.  CrossRef Google Scholar
First citationKyushin, S., Sakurai, H. & Matsumoto, H. (1995). J. Organomet. Chem. 499, 235–240.  CSD CrossRef CAS Web of Science Google Scholar
First citationMatsumoto, H. & Tanaka, R. (2008). Jpn Kokai Tokkyo Koho JP4132933.  Google Scholar
First citationRigaku (2003). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds