organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Furfuryl­amino)­tri­phenyl­phospho­nium bromide

aCentro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos. Av. Universidad 1001 Col., Chamilpa, CP 62100, Cuernavaca Mor., Mexico, and bDepartamento de Química, Cinvestav México, 07000 Mexico DF, Mexico
*Correspondence e-mail: jeanmichelg@gmail.com

(Received 30 November 2012; accepted 13 December 2012; online 22 December 2012)

In the title salt, C23H21NOP+·Br, the dihedral angles between the phenyl rings are 70.41 (18), 73.6 (2) and 80.85 (19)°. In the crystal, neighboring mol­ecules are linked through an N—H⋯Br hydrogen bond and four weak C—H⋯Br contacts, forming a three-dimensional network.

Related literature

For (amino)­phospho­nium bromides derived from primary amines, see: Cao et al. (2010[Cao, T. P. A., Payet, E., Auffrant, A., Le Goff, X. F. & Le Floch, P. (2010). Organometallics, 29, 3991-3996.]); Boubekeur et al. (2006[Boubekeur, L., Ulmer, S., Ricard, L., Mézailles, N. & Le Floch, P. (2006). Organometallics, 25, 315-317.]); Dyer et al. (2011[Dyer, H., Picot, A., Vendier, L., Auffrant, A., Le Floch, P. & Sabo-Etienne, S. (2011). Organometallics, 30, 1478-1486.]); Horner & Oediger (1959[Horner, L. & Oediger, H. (1959). Liebigs Ann. Chem. 627, 142-162.]). For C—H⋯X hydrogen bonds, see: Jeffrey (1997[Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding, ch. 5. New York: Oxford University Press Inc.]); Zhang et al. (2003[Zhang, F., Lerner, H.-W. & Bolte, M. (2003). Acta Cryst. E59, o1181-o1182.]). For graph-set motifs, see: Bernstein, et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C23H21NOP+·Br

  • Mr = 438.29

  • Triclinic, [P \overline 1]

  • a = 9.5190 (19) Å

  • b = 9.812 (2) Å

  • c = 12.726 (3) Å

  • α = 110.30 (3)°

  • β = 104.89 (3)°

  • γ = 96.81 (3)°

  • V = 1048.7 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.05 mm−1

  • T = 293 K

  • 0.20 × 0.17 × 0.13 mm

Data collection
  • Siemens P4 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.685, Tmax = 0.777

  • 11498 measured reflections

  • 3673 independent reflections

  • 3213 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.129

  • S = 1.02

  • 3673 reflections

  • 247 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Br1 0.81 (3) 2.49 (3) 3.293 (3) 170 (4)
C8—H8⋯Br1i 0.93 2.98 3.835 (4) 153
C15—H15⋯Br1ii 0.93 3.00 3.728 (4) 137
C21—H21⋯Br1iii 0.93 2.94 3.829 (6) 161
C23—H23⋯Br1iv 0.93 2.97 3.782 (4) 147
Symmetry codes: (i) x+1, y, z; (ii) -x, -y+1, -z+1; (iii) x, y+1, z; (iv) -x, -y+1, -z.

Data collection: XSCANS (Siemens, 1994[Siemens (1994). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: SAINT-Plus NT (Bruker, 2001[Bruker (2001). SAINT-Plus NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact, Bonn, Germany.]).

Supporting information


Comment top

Aminophosphonium salts are important species because of their reactivity and their role as intermediates in numerous organophosphorus reactions. For instance, aminophosphonium derived from primary amine are key intermediates in the preparation of iminophosphoranes through the Horner-Oediger reaction (Horner & Oediger, 1959). Apart from their use in the aza-Wittig reaction, this class of compounds became very important ligands during the past few years due to their good activity in various catalytic processes when coordinated to transition metals (Dyer et al., 2011). Here we report the structure of the (furfurylamino) triphenylphosphonium bromide obtained as an intermediate during the synthesis of the corresponding iminophosphorane.

In the crystal structure, neighboring molecules are linked through an N—H···Br hydrogen bond and four weak C—H···Br contacts (Jeffrey, 1997; Zhang, et al., 2003; Table 1), forming a three-dimensional network. In the hydrogen-bond pattern, the C—H···Br contacts form corrugated sheets. These sheets are composed of R24(12), R24(18), R24(22) and R24(24) graph set motifs (Bernstein, et al. 1995; Fig. 2). Neighboring sheets are further linked by N—H···Br hydrogen bonds, generating the three-dimensional network.

Related literature top

For related literature with (amino)phosphonium bromides derived from primary amines, see: Cao et al. (2010); Boubekeur et al. (2006); Dyer et al. (2011); Horner & Oediger (1959). For C—H···X hydrogen bonds, see: Jeffrey (1997); Zhang et al. (2003). For graph-set motifs, see: Bernstein, et al. (1995).

Experimental top

A mixture of 630 mg of DABCO (5.65 mmol) and 1 ml of furfurylamine (11.31 mmol) in 10 ml of dry benzene was added dropwise through canula between 0 and 5 °C to a stirred suspension of Ph3PBr2 (11.31 mmol) in 20 ml of dry benzene. After 3 h of stirring at ambient temperature, 10 ml of distilled water were added to the medium and the compound extracted with 20 ml of methylene chloride. The organic phase was further washed with 10 ml of water, dried over MgSO4 and all volatiles were eliminated under vacuum. The off white powder obtained was suspended in Et2O and left under stirring overnight. After filtration of the suspension, the solid was crystallized from hot THF giving 4.05 g (81%) of colorless crystals of the title compound, which were suitable for X-ray crystal structure analysis and fully characterized by standard analytical methods. 31P NMR (CH2Cl2) 30.03 p.p.m.; m. p. 420 K.

Refinement top

H atoms were positioned geometrically and constrained using the riding-model approximation [C—Haryl = 0.93 Å, Uiso(Haryl)= 1.2 Ueq(C); C—Hmethylene = 0.97 Å, Uiso(Hmethylene) = 1.2Ueq(C)]. The hydrogen atom bonded to N1 was located in a difference Fourier map. Its coordinates were refined with a distance restraint N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(N).

Structure description top

Aminophosphonium salts are important species because of their reactivity and their role as intermediates in numerous organophosphorus reactions. For instance, aminophosphonium derived from primary amine are key intermediates in the preparation of iminophosphoranes through the Horner-Oediger reaction (Horner & Oediger, 1959). Apart from their use in the aza-Wittig reaction, this class of compounds became very important ligands during the past few years due to their good activity in various catalytic processes when coordinated to transition metals (Dyer et al., 2011). Here we report the structure of the (furfurylamino) triphenylphosphonium bromide obtained as an intermediate during the synthesis of the corresponding iminophosphorane.

In the crystal structure, neighboring molecules are linked through an N—H···Br hydrogen bond and four weak C—H···Br contacts (Jeffrey, 1997; Zhang, et al., 2003; Table 1), forming a three-dimensional network. In the hydrogen-bond pattern, the C—H···Br contacts form corrugated sheets. These sheets are composed of R24(12), R24(18), R24(22) and R24(24) graph set motifs (Bernstein, et al. 1995; Fig. 2). Neighboring sheets are further linked by N—H···Br hydrogen bonds, generating the three-dimensional network.

For related literature with (amino)phosphonium bromides derived from primary amines, see: Cao et al. (2010); Boubekeur et al. (2006); Dyer et al. (2011); Horner & Oediger (1959). For C—H···X hydrogen bonds, see: Jeffrey (1997); Zhang et al. (2003). For graph-set motifs, see: Bernstein, et al. (1995).

Computing details top

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS (Siemens, 1994); data reduction: SAINT-Plus NT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009), publCIF (Westrip, 2010) and DIAMOND (Brandenburg, 2006).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C—H···Br interactions (dashed lines), showing the R24(12), R24(18), R24(22) and R24(24) graph set motifs. The furfuryl group and hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.
(Furfurylamino)triphenylphosphonium bromide top
Crystal data top
C23H21NOP+·BrZ = 2
Mr = 438.29F(000) = 448
Triclinic, P1Dx = 1.388 Mg m3
Hall symbol: -P 1Melting point: 420 K
a = 9.5190 (19) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.812 (2) ÅCell parameters from 3600 reflections
c = 12.726 (3) Åθ = 4.2–30°
α = 110.30 (3)°µ = 2.05 mm1
β = 104.89 (3)°T = 293 K
γ = 96.81 (3)°Plate, colourless
V = 1048.7 (4) Å30.20 × 0.17 × 0.13 mm
Data collection top
Siemens P4
diffractometer
3673 independent reflections
Radiation source: fine-focus sealed tube3213 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 8.3 pixels mm-1θmax = 25.0°, θmin = 4.2°
ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1111
Tmin = 0.685, Tmax = 0.777l = 1515
11498 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.1P)2 + 0.001P]
where P = (Fo2 + 2Fc2)/3
3673 reflections(Δ/σ)max = 0.001
247 parametersΔρmax = 0.32 e Å3
1 restraintΔρmin = 0.46 e Å3
Crystal data top
C23H21NOP+·Brγ = 96.81 (3)°
Mr = 438.29V = 1048.7 (4) Å3
Triclinic, P1Z = 2
a = 9.5190 (19) ÅMo Kα radiation
b = 9.812 (2) ŵ = 2.05 mm1
c = 12.726 (3) ÅT = 293 K
α = 110.30 (3)°0.20 × 0.17 × 0.13 mm
β = 104.89 (3)°
Data collection top
Siemens P4
diffractometer
3673 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3213 reflections with I > 2σ(I)
Tmin = 0.685, Tmax = 0.777Rint = 0.046
11498 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0381 restraint
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.32 e Å3
3673 reflectionsΔρmin = 0.46 e Å3
247 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.09719 (3)0.34393 (3)0.15232 (3)0.05548 (17)
C10.3290 (6)0.1167 (5)0.0155 (5)0.0990 (16)
H10.30380.01600.00150.119*
C20.4595 (5)0.1890 (6)0.0228 (4)0.0888 (13)
H20.54250.14950.01630.107*
C30.4491 (4)0.3371 (4)0.0425 (3)0.0671 (9)
H30.52300.41310.04850.081*
C40.3156 (4)0.3483 (3)0.0509 (3)0.0562 (8)
C50.2489 (4)0.4800 (4)0.0737 (3)0.0582 (8)
H5A0.31080.55920.06540.070*
H5B0.15080.45390.01570.070*
C60.4994 (3)0.7451 (3)0.2917 (2)0.0435 (6)
C70.5865 (4)0.6410 (3)0.2895 (3)0.0564 (7)
H70.54960.55150.29360.068*
C80.7281 (4)0.6699 (4)0.2812 (4)0.0693 (9)
H80.78610.59960.27880.083*
C90.7826 (4)0.8027 (4)0.2765 (3)0.0690 (10)
H90.87790.82250.27110.083*
C100.6976 (4)0.9062 (4)0.2797 (3)0.0651 (9)
H100.73600.99630.27710.078*
C110.5550 (4)0.8782 (3)0.2867 (3)0.0523 (7)
H110.49730.94850.28800.063*
C120.3181 (3)0.6870 (3)0.4351 (3)0.0447 (6)
C130.1854 (4)0.6505 (4)0.4558 (3)0.0623 (8)
H130.09460.62670.39650.075*
C140.1884 (4)0.6497 (4)0.5642 (3)0.0690 (9)
H140.09920.62580.57810.083*
C150.3221 (4)0.6841 (4)0.6525 (3)0.0638 (9)
H150.32280.68320.72550.077*
C160.4526 (4)0.7190 (4)0.6332 (3)0.0659 (9)
H160.54270.74200.69300.079*
C170.4520 (4)0.7205 (4)0.5243 (3)0.0545 (7)
H170.54180.74400.51130.065*
C180.2227 (3)0.8445 (3)0.2856 (2)0.0443 (6)
C190.2166 (4)0.9579 (4)0.3855 (3)0.0545 (7)
H190.25570.95580.45970.065*
C200.1531 (4)1.0735 (4)0.3751 (4)0.0727 (10)
H200.14911.14900.44230.087*
C210.0956 (4)1.0780 (5)0.2661 (5)0.0790 (12)
H210.05341.15650.25910.095*
C220.1011 (5)0.9652 (6)0.1673 (4)0.0837 (12)
H220.06300.96850.09350.100*
C230.1620 (4)0.8474 (4)0.1758 (3)0.0660 (9)
H230.16210.77030.10800.079*
H1A0.157 (3)0.490 (4)0.193 (4)0.079*
N10.2354 (3)0.5341 (3)0.1936 (2)0.0576 (7)
O10.2369 (3)0.2133 (3)0.0317 (3)0.0935 (9)
P10.31407 (8)0.69765 (8)0.29668 (6)0.0415 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0476 (2)0.0683 (2)0.0579 (2)0.01512 (15)0.02311 (15)0.02845 (17)
C10.118 (4)0.070 (2)0.147 (4)0.049 (3)0.080 (4)0.049 (3)
C20.078 (3)0.106 (3)0.085 (3)0.041 (3)0.038 (2)0.026 (2)
C30.058 (2)0.064 (2)0.068 (2)0.0066 (16)0.0343 (16)0.0094 (16)
C40.071 (2)0.0468 (15)0.0448 (16)0.0052 (14)0.0174 (14)0.0147 (13)
C50.071 (2)0.0541 (17)0.0449 (16)0.0118 (15)0.0177 (14)0.0151 (13)
C60.0419 (14)0.0445 (14)0.0417 (14)0.0072 (11)0.0166 (11)0.0128 (11)
C70.0508 (17)0.0490 (15)0.072 (2)0.0138 (13)0.0261 (14)0.0223 (14)
C80.0502 (18)0.069 (2)0.088 (2)0.0212 (16)0.0285 (17)0.0226 (19)
C90.0449 (17)0.075 (2)0.075 (2)0.0001 (16)0.0280 (16)0.0140 (18)
C100.058 (2)0.0620 (19)0.070 (2)0.0046 (15)0.0287 (17)0.0207 (17)
C110.0536 (17)0.0487 (15)0.0551 (17)0.0071 (13)0.0227 (14)0.0187 (13)
C120.0485 (16)0.0439 (14)0.0486 (15)0.0119 (11)0.0203 (12)0.0223 (12)
C130.0513 (18)0.085 (2)0.0552 (18)0.0065 (16)0.0207 (14)0.0328 (17)
C140.069 (2)0.082 (2)0.071 (2)0.0107 (18)0.0389 (18)0.0381 (19)
C150.084 (2)0.0650 (19)0.0555 (18)0.0161 (17)0.0283 (17)0.0353 (16)
C160.064 (2)0.079 (2)0.058 (2)0.0146 (17)0.0115 (16)0.0368 (18)
C170.0498 (17)0.0644 (18)0.0545 (17)0.0096 (14)0.0173 (13)0.0303 (15)
C180.0375 (14)0.0532 (15)0.0461 (15)0.0113 (12)0.0138 (11)0.0234 (13)
C190.0508 (17)0.0547 (16)0.0538 (17)0.0143 (13)0.0115 (13)0.0196 (14)
C200.061 (2)0.0589 (19)0.092 (3)0.0228 (16)0.0202 (19)0.0232 (19)
C210.058 (2)0.080 (2)0.117 (4)0.0233 (19)0.022 (2)0.063 (3)
C220.074 (3)0.121 (3)0.086 (3)0.034 (2)0.023 (2)0.075 (3)
C230.064 (2)0.092 (2)0.0545 (19)0.0258 (18)0.0226 (16)0.0379 (18)
N10.0556 (16)0.0542 (14)0.0539 (15)0.0049 (12)0.0266 (12)0.0099 (12)
O10.0757 (18)0.0658 (15)0.141 (3)0.0168 (13)0.0499 (18)0.0326 (17)
P10.0393 (4)0.0451 (4)0.0424 (4)0.0081 (3)0.0177 (3)0.0171 (3)
Geometric parameters (Å, º) top
Br1—H1A2.49 (2)C12—C131.387 (4)
C1—C21.319 (7)C12—P11.791 (3)
C1—O11.365 (5)C13—C141.376 (5)
C1—H10.9300C13—H130.9300
C2—C31.407 (6)C14—C151.377 (6)
C2—H20.9300C14—H140.9300
C3—C41.317 (5)C15—C161.354 (5)
C3—H30.9300C15—H150.9300
C4—O11.350 (4)C16—C171.390 (5)
C4—C51.479 (5)C16—H160.9300
C5—N11.477 (4)C17—H170.9300
C5—H5A0.9700C18—C231.380 (4)
C5—H5B0.9700C18—C191.389 (4)
C6—C111.379 (4)C18—P11.796 (3)
C6—C71.387 (4)C19—C201.377 (5)
C6—P11.794 (3)C19—H190.9300
C7—C81.383 (5)C20—C211.372 (6)
C7—H70.9300C20—H200.9300
C8—C91.371 (6)C21—C221.375 (7)
C8—H80.9300C21—H210.9300
C9—C101.368 (6)C22—C231.378 (6)
C9—H90.9300C22—H220.9300
C10—C111.384 (5)C23—H230.9300
C10—H100.9300N1—P11.614 (3)
C11—H110.9300N1—H1A0.817 (19)
C12—C171.386 (4)
C2—C1—O1109.1 (4)C12—C13—H13120.1
C2—C1—H1125.4C13—C14—C15120.7 (3)
O1—C1—H1125.4C13—C14—H14119.7
C1—C2—C3106.9 (4)C15—C14—H14119.7
C1—C2—H2126.5C16—C15—C14120.2 (3)
C3—C2—H2126.5C16—C15—H15119.9
C4—C3—C2107.4 (3)C14—C15—H15119.9
C4—C3—H3126.3C15—C16—C17120.1 (3)
C2—C3—H3126.3C15—C16—H16120.0
C3—C4—O1109.4 (3)C17—C16—H16120.0
C3—C4—C5129.4 (3)C12—C17—C16120.3 (3)
O1—C4—C5121.2 (3)C12—C17—H17119.9
N1—C5—C4111.2 (3)C16—C17—H17119.9
N1—C5—H5A109.4C23—C18—C19119.3 (3)
C4—C5—H5A109.4C23—C18—P1119.2 (2)
N1—C5—H5B109.4C19—C18—P1121.4 (2)
C4—C5—H5B109.4C20—C19—C18120.2 (3)
H5A—C5—H5B108.0C20—C19—H19119.9
C11—C6—C7119.8 (3)C18—C19—H19119.9
C11—C6—P1122.2 (2)C21—C20—C19120.4 (4)
C7—C6—P1117.9 (2)C21—C20—H20119.8
C8—C7—C6120.2 (3)C19—C20—H20119.8
C8—C7—H7119.9C20—C21—C22119.3 (4)
C6—C7—H7119.9C20—C21—H21120.4
C9—C8—C7119.6 (3)C22—C21—H21120.4
C9—C8—H8120.2C21—C22—C23121.2 (4)
C7—C8—H8120.2C21—C22—H22119.4
C10—C9—C8120.4 (3)C23—C22—H22119.4
C10—C9—H9119.8C22—C23—C18119.5 (4)
C8—C9—H9119.8C22—C23—H23120.2
C9—C10—C11120.6 (3)C18—C23—H23120.2
C9—C10—H10119.7C5—N1—P1125.8 (2)
C11—C10—H10119.7C5—N1—H1A110 (3)
C6—C11—C10119.4 (3)P1—N1—H1A119 (3)
C6—C11—H11120.3C4—O1—C1107.1 (3)
C10—C11—H11120.3N1—P1—C12107.89 (14)
C17—C12—C13119.0 (3)N1—P1—C6107.03 (14)
C17—C12—P1121.1 (2)C12—P1—C6111.12 (14)
C13—C12—P1119.9 (2)N1—P1—C18115.68 (15)
C14—C13—C12119.8 (3)C12—P1—C18106.98 (13)
C14—C13—H13120.1C6—P1—C18108.18 (13)
O1—C1—C2—C31.0 (6)C19—C18—C23—C222.2 (5)
C1—C2—C3—C42.6 (5)P1—C18—C23—C22175.4 (3)
C2—C3—C4—O13.1 (5)C4—C5—N1—P1119.5 (3)
C2—C3—C4—C5178.7 (4)C3—C4—O1—C12.5 (5)
C3—C4—C5—N1108.5 (4)C5—C4—O1—C1179.1 (4)
O1—C4—C5—N173.5 (4)C2—C1—O1—C40.8 (6)
C11—C6—C7—C80.6 (5)C5—N1—P1—C12160.2 (3)
P1—C6—C7—C8177.6 (3)C5—N1—P1—C640.5 (3)
C6—C7—C8—C90.7 (6)C5—N1—P1—C1880.1 (3)
C7—C8—C9—C100.2 (6)C17—C12—P1—N1120.1 (3)
C8—C9—C10—C110.5 (6)C13—C12—P1—N162.5 (3)
C7—C6—C11—C100.1 (5)C17—C12—P1—C63.1 (3)
P1—C6—C11—C10178.2 (2)C13—C12—P1—C6179.5 (2)
C9—C10—C11—C60.7 (5)C17—C12—P1—C18114.8 (3)
C17—C12—C13—C140.7 (5)C13—C12—P1—C1862.6 (3)
P1—C12—C13—C14176.7 (3)C11—C6—P1—N1128.4 (3)
C12—C13—C14—C150.4 (6)C7—C6—P1—N149.7 (3)
C13—C14—C15—C160.0 (6)C11—C6—P1—C12114.0 (3)
C14—C15—C16—C170.1 (6)C7—C6—P1—C1267.8 (3)
C13—C12—C17—C160.7 (5)C11—C6—P1—C183.2 (3)
P1—C12—C17—C16176.7 (3)C7—C6—P1—C18175.0 (2)
C15—C16—C17—C120.3 (5)C23—C18—P1—N139.4 (3)
C23—C18—C19—C201.2 (5)C19—C18—P1—N1143.0 (3)
P1—C18—C19—C20176.4 (3)C23—C18—P1—C12159.6 (3)
C18—C19—C20—C210.2 (6)C19—C18—P1—C1222.8 (3)
C19—C20—C21—C220.5 (7)C23—C18—P1—C680.6 (3)
C20—C21—C22—C230.6 (7)C19—C18—P1—C697.0 (3)
C21—C22—C23—C182.0 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br10.81 (3)2.49 (3)3.293 (3)170 (4)
C8—H8···Br1i0.932.983.835 (4)153
C15—H15···Br1ii0.933.003.728 (4)137
C21—H21···Br1iii0.932.943.829 (6)161
C23—H23···Br1iv0.932.973.782 (4)147
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+1; (iii) x, y+1, z; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC23H21NOP+·Br
Mr438.29
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.5190 (19), 9.812 (2), 12.726 (3)
α, β, γ (°)110.30 (3), 104.89 (3), 96.81 (3)
V3)1048.7 (4)
Z2
Radiation typeMo Kα
µ (mm1)2.05
Crystal size (mm)0.20 × 0.17 × 0.13
Data collection
DiffractometerSiemens P4
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.685, 0.777
No. of measured, independent and
observed [I > 2σ(I)] reflections
11498, 3673, 3213
Rint0.046
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.129, 1.02
No. of reflections3673
No. of parameters247
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.46

Computer programs: XSCANS (Siemens, 1994), SAINT-Plus NT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009), publCIF (Westrip, 2010) and DIAMOND (Brandenburg, 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br10.81 (3)2.49 (3)3.293 (3)170 (4)
C8—H8···Br1i0.932.983.835 (4)153
C15—H15···Br1ii0.933.003.728 (4)137
C21—H21···Br1iii0.932.943.829 (6)161
C23—H23···Br1iv0.932.973.782 (4)147
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+1; (iii) x, y+1, z; (iv) x, y+1, z.
 

Acknowledgements

This work was supported by the Consejo Nacional de Ciencia y Tecnología (proyecto No. 134528, CB 2009–01)

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBoubekeur, L., Ulmer, S., Ricard, L., Mézailles, N. & Le Floch, P. (2006). Organometallics, 25, 315–317.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT-Plus NT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, T. P. A., Payet, E., Auffrant, A., Le Goff, X. F. & Le Floch, P. (2010). Organometallics, 29, 3991–3996.  Web of Science CSD CrossRef CAS Google Scholar
First citationDyer, H., Picot, A., Vendier, L., Auffrant, A., Le Floch, P. & Sabo-Etienne, S. (2011). Organometallics, 30, 1478–1486.  Web of Science CSD CrossRef CAS Google Scholar
First citationHorner, L. & Oediger, H. (1959). Liebigs Ann. Chem. 627, 142–162.  CrossRef Google Scholar
First citationJeffrey, G. A. (1997). An Introduction to Hydrogen Bonding, ch. 5. New York: Oxford University Press Inc.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, F., Lerner, H.-W. & Bolte, M. (2003). Acta Cryst. E59, o1181–o1182.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds