organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[2,7-Dimeth­­oxy-8-(4-meth­­oxy­benzo­yl)naphthalen-1-yl](4-meth­­oxy­phen­yl)methanone chloro­form monosolvate

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp

(Received 5 December 2012; accepted 13 December 2012; online 22 December 2012)

In the title compound, C28H24O6·CHCl3, the two 4-meth­oxy­benzoyl groups at the 1- and 8-positions of the naphthalene ring system are aligned almost anti­parallel, the benzene rings making a dihedral angle of 25.76 (7)°. The naphthalene ring system makes dihedral angles of 72.51 (7) and 73.33 (7)° with the benzene rings. In the crystal, the naphthalene mol­ecules are linked by C—H⋯O inter­actions, forming a helical chain along the b-axis direction. A C—H⋯Cl inter­action is also observed between the aroylated naphthalene and chloro­form mol­ecules. The chloro­form mol­ecule is disordered over two positions with site occupancies of 0.478 (5) and 0.522 (5).

Related literature

For the formation reaction of aroylated naphthalene compounds via electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto et al. (2011[Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283-1284.]); Okamoto & Yonezawa (2009[Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915.]). For structures of closely related compounds, see: Hijikata et al. (2010[Hijikata, D., Takada, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2902-o2903.]); Sasagawa et al. (2011[Sasagawa, K., Muto, T., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o3354.]).

[Scheme 1]

Experimental

Crystal data
  • C28H24O6·CHCl3

  • Mr = 575.84

  • Monoclinic, P 21 /c

  • a = 8.2781 (2) Å

  • b = 21.4763 (5) Å

  • c = 15.5370 (4) Å

  • β = 98.448 (2)°

  • V = 2732.25 (12) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.39 mm−1

  • T = 193 K

  • 0.50 × 0.20 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.282, Tmax = 0.728

  • 50703 measured reflections

  • 4994 independent reflections

  • 4305 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.107

  • S = 1.10

  • 4994 reflections

  • 385 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O5i 0.95 2.37 3.1460 (19) 139
C13—H13⋯Cl3ii 0.95 2.75 3.647 (2) 159
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridgeational Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the course of our study on selective electrophilic aromatic aroylation of the naphthalene ring core, 1,8-diaroylnaphthalene compounds have proved to be formed regioselectively by the aid of a suitable acidic mediator (Okamoto & Yonezawa, 2009; Okamoto et al., 2011). Recently, we have reported the X-ray crystal structures of 1,8-diaroylated 2,7-dimethoxynaphthalene derivatives such as {8-[4-(butoxy)benzoyl]-2,7-dimethoxynaphthalen-1-yl}[4-(butoxy)phenyl]methanone [1,8-bis(4-butoxylbenzoyl)-2,7-dimethoxynaphthalene] (Sasagawa et al., 2011).

The aroyl groups in these compounds are almost perpendicular to the naphthalene rings, and are oriented in opposite directions (anti-orientation). On the other hand, we have also clarified minor structure of 1,8-diaroylnaphthalene derivatives, which the aroyl groups are oriented in same direction (syn-orientation) [2,7-dimethoxy-1,8-bis(4-phenoxybenzoyl)naphthalene; Hijikata et al., 2010]. As a part of our ongoing studies on the molecular structures of these kinds of homologous molecules, the X-ray crystal structure of the title compound, 1,8-diaroylated naphthalene bearing methoxy groups on the aroyl groups, is discussed in this article.

The molecular structure of the title compound is displayed in Fig. 1. Two 4-methoxybenzoyl groups are situated in the anti-orientation. The dihedral angle between the best planes of the two phenyl rings is 25.76 (7)°. The dihedral angles between the best planes of the two 4-methoxyphenyl rings and the naphthalene ring are 72.51 (7) and 73.33 (7)°, respectively. The dihedral angles between the naphthalene ring system and the bridging ketonic carbonyl C—C(O)—C planes [65.95 (8) and 68.67 (6)°] are larger than those between the phenyl rings and the bridging carbonyl planes [8.40 (8) and 5.49 (7)°].

In the molecular packing, C—H···O interactions between the ethereal oxygen atom of the benzene and the aromatic hydrogen atom of the naphthalene are observed. The C—H···O interactions effectively contribute to stabilization of the molecular packing (C7—H7···O5 = 2.37 Å; symmetry code: x, 3/2 - y, -1/2 + z; Fig. 2). Furthermore, chloroform solvent molecules lie between two naphthalene rings, and form meaningful C—H···Cl interactions with the aromatic hydrogen atoms of benzene rings (C13—H13···Cl3 = 2.75 Å; symmetry code: 1 - x, 1/2 + y, 3/2 - z; Fig. 3).

Related literature top

For the formation reaction of aroylated naphthalene compounds via electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto et al. (2011); Okamoto & Yonezawa (2009). For structures of closely related compounds, see: Hijikata et al. (2010); Sasagawa et al. (2011).

Experimental top

4-Methoxylbenzoyl chloride (6.60 mmol, 1.13 g), titanium chloride (19.8 mmol, 3.76 g) and methylene chloride (5.00 ml) were placed into a 50 ml flask, followed by stirring at room temperature. To the reaction mixture thus obtained, 2,7-dimethoxynaphthalene (2.00 mmol, 376 mg) was added. The reaction mixture was poured into ice-cold water (100 ml) after it had been stirred for 6 h at room temperature. The aqueous layer was extracted with CHCl3 (20 ml × 3). The combined extracts were washed with 2 M aqueous NaOH followed by washing with brine. The extracts thus obtained were dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give a cake. The crude product was purified by recrystallization from hexane and CHCl3 (yield 45%). Colorless platelet single crystals suitable for X-ray diffraction were obtained by repeated crystallization from CHCl3.

Spectroscopic Data:

1H NMR δ (300 MHz, CDCl3): 3.70 (6H, s), 3.83 (6H, s), 6.80 (4H, broad), 7.15 (2H, d, J = 9.0 Hz), 7.64 (4H, broad), 7.92 (2H, d, J = 9.0 Hz). 13C NMR δ (75 MHz, CDCl3): 55.24, 56.49, 111.24, 113.20, 121.89, 125.54, 129.62, 131.39, 131.71, 132.05, 155.93, 163.03, 194.98 p.p.m.. IR (KBr): 1651 (C=O), 1600, 1575, 1508 (Ar), 1250 (OMe) cm-1. HRMS (m/z): [M+H]+ calcd. for C28H25O6, 457.1651, found, 457.1691. m.p. = 475.9–476.9 K

Refinement top

All H atoms were found in a difference map and were subsequently refined as riding atoms, with C—H = 0.95 (aromatic), 0.98 (methyl) and 1.00 (chloroform) Å, and with Uiso(H) = 1.2Ueq(C).

Structure description top

In the course of our study on selective electrophilic aromatic aroylation of the naphthalene ring core, 1,8-diaroylnaphthalene compounds have proved to be formed regioselectively by the aid of a suitable acidic mediator (Okamoto & Yonezawa, 2009; Okamoto et al., 2011). Recently, we have reported the X-ray crystal structures of 1,8-diaroylated 2,7-dimethoxynaphthalene derivatives such as {8-[4-(butoxy)benzoyl]-2,7-dimethoxynaphthalen-1-yl}[4-(butoxy)phenyl]methanone [1,8-bis(4-butoxylbenzoyl)-2,7-dimethoxynaphthalene] (Sasagawa et al., 2011).

The aroyl groups in these compounds are almost perpendicular to the naphthalene rings, and are oriented in opposite directions (anti-orientation). On the other hand, we have also clarified minor structure of 1,8-diaroylnaphthalene derivatives, which the aroyl groups are oriented in same direction (syn-orientation) [2,7-dimethoxy-1,8-bis(4-phenoxybenzoyl)naphthalene; Hijikata et al., 2010]. As a part of our ongoing studies on the molecular structures of these kinds of homologous molecules, the X-ray crystal structure of the title compound, 1,8-diaroylated naphthalene bearing methoxy groups on the aroyl groups, is discussed in this article.

The molecular structure of the title compound is displayed in Fig. 1. Two 4-methoxybenzoyl groups are situated in the anti-orientation. The dihedral angle between the best planes of the two phenyl rings is 25.76 (7)°. The dihedral angles between the best planes of the two 4-methoxyphenyl rings and the naphthalene ring are 72.51 (7) and 73.33 (7)°, respectively. The dihedral angles between the naphthalene ring system and the bridging ketonic carbonyl C—C(O)—C planes [65.95 (8) and 68.67 (6)°] are larger than those between the phenyl rings and the bridging carbonyl planes [8.40 (8) and 5.49 (7)°].

In the molecular packing, C—H···O interactions between the ethereal oxygen atom of the benzene and the aromatic hydrogen atom of the naphthalene are observed. The C—H···O interactions effectively contribute to stabilization of the molecular packing (C7—H7···O5 = 2.37 Å; symmetry code: x, 3/2 - y, -1/2 + z; Fig. 2). Furthermore, chloroform solvent molecules lie between two naphthalene rings, and form meaningful C—H···Cl interactions with the aromatic hydrogen atoms of benzene rings (C13—H13···Cl3 = 2.75 Å; symmetry code: 1 - x, 1/2 + y, 3/2 - z; Fig. 3).

For the formation reaction of aroylated naphthalene compounds via electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto et al. (2011); Okamoto & Yonezawa (2009). For structures of closely related compounds, see: Hijikata et al. (2010); Sasagawa et al. (2011).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure with the atom-labeling scheme and displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Intermolecular C—H···O interactions between atoms H7 and O5 [symmetry code: x, 3/2 - y, -1/2 + z] along the b axis (dashed lines).
[Figure 3] Fig. 3. Intermolecular C—H···Cl interactions between atoms H13 and Cl3 [symmetry code: 1 - x, 1/2 + y, 3/2 - z] along the a axis (dashed lines).
[2,7-Dimethoxy-8-(4-methoxybenzoyl)naphthalen-1-yl](4-methoxyphenyl)methanone chloroform monosolvate top
Crystal data top
C28H24O6·CHCl3F(000) = 1192
Mr = 575.84Dx = 1.400 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54187 Å
Hall symbol: -P 2ybcCell parameters from 37515 reflections
a = 8.2781 (2) Åθ = 3.5–68.2°
b = 21.4763 (5) ŵ = 3.39 mm1
c = 15.5370 (4) ÅT = 193 K
β = 98.448 (2)°Platelet, colorless
V = 2732.25 (12) Å30.50 × 0.20 × 0.10 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4994 independent reflections
Radiation source: fine-focus sealed tube4305 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
Detector resolution: 10.000 pixels mm-1θmax = 68.2°, θmin = 3.5°
ω scansh = 99
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 2525
Tmin = 0.282, Tmax = 0.728l = 1818
50703 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0633P)2 + 0.2582P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.004
4994 reflectionsΔρmax = 0.24 e Å3
385 parametersΔρmin = 0.35 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00145 (17)
Crystal data top
C28H24O6·CHCl3V = 2732.25 (12) Å3
Mr = 575.84Z = 4
Monoclinic, P21/cCu Kα radiation
a = 8.2781 (2) ŵ = 3.39 mm1
b = 21.4763 (5) ÅT = 193 K
c = 15.5370 (4) Å0.50 × 0.20 × 0.10 mm
β = 98.448 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4994 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
4305 reflections with I > 2σ(I)
Tmin = 0.282, Tmax = 0.728Rint = 0.047
50703 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.10Δρmax = 0.24 e Å3
4994 reflectionsΔρmin = 0.35 e Å3
385 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C290.8351 (7)0.64681 (19)1.3342 (2)0.0602 (12)0.478 (5)
H290.94940.64341.32100.072*0.478 (5)
Cl10.7003 (8)0.5922 (3)1.2794 (4)0.0895 (14)0.478 (5)
Cl20.8176 (5)0.6354 (2)1.4489 (3)0.0877 (9)0.478 (5)
Cl30.7464 (5)0.72058 (6)1.31137 (11)0.0718 (8)0.478 (5)
Cl1'0.7252 (7)0.5906 (2)1.2724 (3)0.0838 (10)0.522 (5)
Cl2'0.8644 (6)0.63370 (14)1.4441 (2)0.1015 (12)0.522 (5)
Cl3'0.8354 (4)0.71700 (8)1.30123 (8)0.0640 (4)0.522 (5)
C29'0.7290 (6)0.65719 (17)1.3448 (2)0.0557 (10)0.522 (5)
H29'0.61780.67011.35590.067*0.522 (5)
O10.20448 (12)0.62134 (4)0.86461 (7)0.0458 (2)
O20.37739 (12)0.64726 (5)0.68945 (6)0.0451 (2)
O30.47972 (15)0.69449 (5)1.02209 (6)0.0588 (3)
O40.10068 (14)0.75164 (5)0.58373 (6)0.0550 (3)
O50.87057 (12)0.47605 (5)0.89164 (8)0.0550 (3)
O60.29654 (12)0.50568 (5)0.60580 (7)0.0505 (3)
C10.36050 (16)0.71245 (6)0.87968 (9)0.0390 (3)
C20.42348 (18)0.73704 (7)0.95995 (9)0.0447 (3)
C30.41933 (19)0.80154 (7)0.97694 (10)0.0515 (4)
H30.46360.81751.03240.062*
C40.35117 (19)0.84034 (7)0.91280 (10)0.0502 (4)
H40.34620.88370.92450.060*
C50.28728 (17)0.81810 (6)0.82908 (10)0.0438 (3)
C60.22155 (19)0.85978 (7)0.76273 (11)0.0501 (4)
H60.22230.90320.77480.060*
C70.15732 (19)0.83947 (7)0.68225 (10)0.0497 (4)
H70.11290.86830.63870.060*
C80.15723 (18)0.77515 (7)0.66393 (9)0.0433 (3)
C90.22199 (16)0.73223 (6)0.72575 (9)0.0382 (3)
C100.28973 (16)0.75288 (6)0.81102 (9)0.0375 (3)
C110.34302 (17)0.64259 (6)0.87375 (8)0.0386 (3)
C120.48719 (17)0.60144 (6)0.87996 (8)0.0384 (3)
C130.64446 (17)0.62349 (6)0.87923 (9)0.0423 (3)
H130.66200.66710.87650.051*
C140.77667 (17)0.58352 (6)0.88242 (9)0.0419 (3)
H140.88340.59950.88120.050*
C150.75081 (17)0.51999 (6)0.88745 (9)0.0427 (3)
C160.59450 (19)0.49700 (7)0.88921 (12)0.0541 (4)
H160.57750.45340.89350.065*
C170.46492 (19)0.53710 (7)0.88481 (11)0.0499 (4)
H170.35820.52090.88500.060*
C180.23968 (17)0.66618 (6)0.69476 (8)0.0381 (3)
C190.09406 (16)0.62645 (6)0.67084 (8)0.0379 (3)
C200.06117 (17)0.64490 (6)0.68346 (9)0.0409 (3)
H200.07580.68510.70650.049*
C210.19562 (17)0.60641 (6)0.66341 (9)0.0411 (3)
H210.30080.61980.67310.049*
C220.17404 (17)0.54777 (6)0.62890 (9)0.0398 (3)
C230.01928 (18)0.52839 (7)0.61557 (10)0.0482 (4)
H230.00470.48830.59210.058*
C240.11261 (18)0.56729 (7)0.63632 (10)0.0457 (3)
H240.21790.55370.62700.055*
C250.5735 (2)0.71604 (9)1.10090 (11)0.0643 (5)
H25A0.50320.74001.13430.077*
H25B0.66240.74271.08710.077*
H25C0.61940.68031.13540.077*
C260.0351 (2)0.79353 (9)0.51653 (11)0.0641 (5)
H26A0.11550.82610.51020.077*
H26B0.06450.81270.53160.077*
H26C0.00930.77070.46160.077*
C271.03147 (19)0.49649 (8)0.88276 (13)0.0560 (4)
H27A1.07100.52510.93030.067*
H27B1.02920.51790.82690.067*
H27C1.10450.46040.88500.067*
C280.45787 (18)0.52379 (8)0.61699 (12)0.0555 (4)
H28A0.48920.56110.58230.067*
H28B0.46120.53280.67850.067*
H28C0.53410.48990.59780.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C290.063 (3)0.065 (2)0.051 (2)0.0107 (19)0.0063 (18)0.0035 (16)
Cl10.1159 (17)0.062 (2)0.091 (2)0.0248 (15)0.0161 (12)0.0046 (14)
Cl20.0914 (12)0.124 (2)0.0476 (9)0.0204 (10)0.0102 (7)0.0316 (10)
Cl30.112 (2)0.0424 (5)0.0544 (6)0.0055 (7)0.0110 (8)0.0000 (4)
Cl1'0.141 (3)0.0423 (13)0.0614 (10)0.0083 (14)0.0076 (14)0.0034 (8)
Cl2'0.179 (3)0.0723 (11)0.0468 (8)0.0443 (15)0.0057 (15)0.0061 (7)
Cl3'0.0718 (11)0.0636 (6)0.0553 (5)0.0131 (6)0.0053 (5)0.0089 (4)
C29'0.057 (3)0.061 (2)0.0502 (17)0.0037 (17)0.0137 (15)0.0103 (14)
O10.0442 (6)0.0391 (5)0.0528 (6)0.0031 (4)0.0031 (4)0.0031 (4)
O20.0432 (6)0.0435 (5)0.0480 (5)0.0026 (4)0.0045 (4)0.0020 (4)
O30.0831 (8)0.0482 (6)0.0394 (5)0.0039 (5)0.0101 (5)0.0024 (4)
O40.0731 (7)0.0468 (6)0.0411 (5)0.0015 (5)0.0047 (5)0.0081 (4)
O50.0428 (6)0.0337 (5)0.0893 (8)0.0004 (4)0.0123 (5)0.0042 (5)
O60.0427 (6)0.0380 (5)0.0697 (7)0.0029 (4)0.0048 (5)0.0082 (5)
C10.0404 (7)0.0348 (7)0.0411 (7)0.0010 (5)0.0034 (5)0.0018 (5)
C20.0496 (8)0.0418 (7)0.0412 (7)0.0005 (6)0.0018 (6)0.0010 (6)
C30.0581 (9)0.0462 (8)0.0482 (8)0.0056 (7)0.0014 (7)0.0112 (7)
C40.0571 (9)0.0341 (7)0.0588 (9)0.0040 (6)0.0069 (7)0.0082 (6)
C50.0438 (8)0.0340 (7)0.0532 (8)0.0024 (6)0.0059 (6)0.0010 (6)
C60.0540 (9)0.0300 (7)0.0657 (10)0.0004 (6)0.0062 (7)0.0030 (6)
C70.0537 (9)0.0360 (7)0.0578 (9)0.0019 (6)0.0032 (7)0.0117 (6)
C80.0444 (8)0.0406 (7)0.0439 (7)0.0011 (6)0.0032 (6)0.0055 (6)
C90.0394 (7)0.0331 (7)0.0419 (7)0.0020 (5)0.0048 (5)0.0019 (5)
C100.0363 (7)0.0338 (7)0.0423 (7)0.0018 (5)0.0053 (5)0.0000 (5)
C110.0457 (8)0.0365 (7)0.0325 (6)0.0017 (6)0.0022 (5)0.0017 (5)
C120.0450 (8)0.0332 (6)0.0358 (6)0.0026 (6)0.0015 (5)0.0006 (5)
C130.0493 (8)0.0304 (6)0.0455 (7)0.0033 (6)0.0015 (6)0.0019 (5)
C140.0416 (8)0.0367 (7)0.0463 (7)0.0055 (6)0.0028 (6)0.0002 (6)
C150.0443 (8)0.0344 (7)0.0486 (8)0.0002 (6)0.0048 (6)0.0030 (6)
C160.0489 (9)0.0300 (7)0.0839 (11)0.0046 (6)0.0114 (8)0.0001 (7)
C170.0433 (8)0.0369 (7)0.0701 (10)0.0049 (6)0.0096 (7)0.0012 (7)
C180.0437 (8)0.0369 (7)0.0329 (6)0.0018 (6)0.0033 (5)0.0032 (5)
C190.0419 (8)0.0358 (7)0.0349 (6)0.0013 (5)0.0018 (5)0.0015 (5)
C200.0475 (8)0.0331 (6)0.0416 (7)0.0041 (6)0.0048 (6)0.0037 (5)
C210.0419 (8)0.0391 (7)0.0421 (7)0.0035 (6)0.0051 (6)0.0009 (6)
C220.0436 (8)0.0344 (7)0.0403 (7)0.0008 (6)0.0019 (5)0.0019 (5)
C230.0485 (9)0.0349 (7)0.0604 (9)0.0022 (6)0.0056 (7)0.0102 (6)
C240.0420 (8)0.0396 (7)0.0550 (8)0.0048 (6)0.0056 (6)0.0053 (6)
C250.0759 (12)0.0688 (11)0.0424 (8)0.0096 (9)0.0110 (8)0.0070 (8)
C260.0756 (12)0.0637 (10)0.0486 (9)0.0055 (9)0.0050 (8)0.0185 (8)
C270.0432 (9)0.0447 (8)0.0808 (11)0.0007 (6)0.0118 (8)0.0036 (8)
C280.0440 (9)0.0486 (9)0.0738 (11)0.0047 (7)0.0081 (7)0.0076 (8)
Geometric parameters (Å, º) top
C29—Cl11.751 (7)C11—C121.4769 (19)
C29—Cl31.761 (5)C12—C131.387 (2)
C29—Cl21.824 (6)C12—C171.3975 (19)
C29—H291.0000C13—C141.386 (2)
Cl1'—C29'1.816 (6)C13—H130.9500
Cl2'—C29'1.840 (6)C14—C151.3852 (19)
Cl3'—C29'1.749 (4)C14—H140.9500
C29'—H29'1.0000C15—C161.389 (2)
O1—C111.2230 (17)C16—C171.369 (2)
O2—C181.2243 (16)C16—H160.9500
O3—C21.3608 (17)C17—H170.9500
O3—C251.4273 (18)C18—C191.4791 (19)
O4—C81.3621 (17)C19—C201.3859 (19)
O4—C261.4238 (18)C19—C241.3964 (19)
O5—C151.3633 (17)C20—C211.385 (2)
O5—C271.4282 (18)C20—H200.9500
O6—C221.3665 (16)C21—C221.3906 (19)
O6—C281.4260 (18)C21—H210.9500
C1—C21.3839 (19)C22—C231.391 (2)
C1—C101.4323 (18)C23—C241.375 (2)
C1—C111.5087 (19)C23—H230.9500
C2—C31.412 (2)C24—H240.9500
C3—C41.357 (2)C25—H25A0.9800
C3—H30.9500C25—H25B0.9800
C4—C51.414 (2)C25—H25C0.9800
C4—H40.9500C26—H26A0.9800
C5—C61.413 (2)C26—H26B0.9800
C5—C101.4291 (19)C26—H26C0.9800
C6—C71.357 (2)C27—H27A0.9800
C6—H60.9500C27—H27B0.9800
C7—C81.410 (2)C27—H27C0.9800
C7—H70.9500C28—H28A0.9800
C8—C91.3814 (19)C28—H28B0.9800
C9—C101.4311 (18)C28—H28C0.9800
C9—C181.5122 (18)
Cl1—C29—Cl3106.7 (4)C15—C14—H14120.5
Cl1—C29—Cl2104.4 (3)C13—C14—H14120.5
Cl3—C29—Cl2103.2 (3)O5—C15—C14124.55 (13)
Cl1—C29—H29113.8O5—C15—C16115.23 (12)
Cl3—C29—H29113.8C14—C15—C16120.22 (13)
Cl2—C29—H29113.8C17—C16—C15120.05 (13)
Cl3'—C29'—Cl1'107.6 (3)C17—C16—H16120.0
Cl3'—C29'—Cl2'104.3 (3)C15—C16—H16120.0
Cl1'—C29'—Cl2'104.8 (3)C16—C17—C12121.05 (14)
Cl3'—C29'—H29'113.1C16—C17—H17119.5
Cl1'—C29'—H29'113.1C12—C17—H17119.5
Cl2'—C29'—H29'113.1O2—C18—C19121.62 (12)
C2—O3—C25118.50 (13)O2—C18—C9117.87 (12)
C8—O4—C26118.65 (13)C19—C18—C9120.51 (12)
C15—O5—C27117.69 (11)C20—C19—C24118.10 (13)
C22—O6—C28117.37 (11)C20—C19—C18122.55 (12)
C2—C1—C10119.91 (12)C24—C19—C18119.33 (13)
C2—C1—C11117.03 (12)C21—C20—C19121.93 (12)
C10—C1—C11122.17 (12)C21—C20—H20119.0
O3—C2—C1115.31 (12)C19—C20—H20119.0
O3—C2—C3122.79 (13)C20—C21—C22118.88 (13)
C1—C2—C3121.78 (13)C20—C21—H21120.6
C4—C3—C2118.97 (14)C22—C21—H21120.6
C4—C3—H3120.5O6—C22—C21124.61 (13)
C2—C3—H3120.5O6—C22—C23115.29 (12)
C3—C4—C5121.83 (14)C21—C22—C23120.10 (13)
C3—C4—H4119.1C24—C23—C22120.02 (13)
C5—C4—H4119.1C24—C23—H23120.0
C6—C5—C4120.62 (13)C22—C23—H23120.0
C6—C5—C10119.53 (13)C23—C24—C19120.97 (14)
C4—C5—C10119.85 (13)C23—C24—H24119.5
C7—C6—C5121.71 (14)C19—C24—H24119.5
C7—C6—H6119.1O3—C25—H25A109.5
C5—C6—H6119.1O3—C25—H25B109.5
C6—C7—C8119.29 (13)H25A—C25—H25B109.5
C6—C7—H7120.4O3—C25—H25C109.5
C8—C7—H7120.4H25A—C25—H25C109.5
O4—C8—C9115.78 (12)H25B—C25—H25C109.5
O4—C8—C7122.51 (13)O4—C26—H26A109.5
C9—C8—C7121.64 (13)O4—C26—H26B109.5
C8—C9—C10119.75 (12)H26A—C26—H26B109.5
C8—C9—C18116.77 (12)O4—C26—H26C109.5
C10—C9—C18122.85 (11)H26A—C26—H26C109.5
C5—C10—C9118.06 (12)H26B—C26—H26C109.5
C5—C10—C1117.65 (12)O5—C27—H27A109.5
C9—C10—C1124.29 (12)O5—C27—H27B109.5
O1—C11—C12121.28 (12)H27A—C27—H27B109.5
O1—C11—C1117.27 (12)O5—C27—H27C109.5
C12—C11—C1121.45 (12)H27A—C27—H27C109.5
C13—C12—C17118.00 (13)H27B—C27—H27C109.5
C13—C12—C11123.07 (12)O6—C28—H28A109.5
C17—C12—C11118.91 (13)O6—C28—H28B109.5
C14—C13—C12121.69 (12)H28A—C28—H28B109.5
C14—C13—H13119.2O6—C28—H28C109.5
C12—C13—H13119.2H28A—C28—H28C109.5
C15—C14—C13118.97 (13)H28B—C28—H28C109.5
C25—O3—C2—C1168.44 (14)C10—C1—C11—C12121.00 (14)
C25—O3—C2—C315.5 (2)O1—C11—C12—C13171.55 (13)
C10—C1—C2—O3176.54 (12)C1—C11—C12—C139.31 (19)
C11—C1—C2—O37.2 (2)O1—C11—C12—C176.9 (2)
C10—C1—C2—C30.4 (2)C1—C11—C12—C17172.21 (13)
C11—C1—C2—C3168.95 (14)C17—C12—C13—C140.5 (2)
O3—C2—C3—C4175.58 (15)C11—C12—C13—C14177.95 (12)
C1—C2—C3—C40.2 (2)C12—C13—C14—C150.7 (2)
C2—C3—C4—C51.3 (2)C27—O5—C15—C145.6 (2)
C3—C4—C5—C6178.04 (14)C27—O5—C15—C16174.88 (14)
C3—C4—C5—C101.7 (2)C13—C14—C15—O5179.46 (13)
C4—C5—C6—C7179.00 (15)C13—C14—C15—C160.0 (2)
C10—C5—C6—C71.3 (2)O5—C15—C16—C17179.60 (15)
C5—C6—C7—C80.5 (2)C14—C15—C16—C170.9 (2)
C26—O4—C8—C9178.84 (14)C15—C16—C17—C121.1 (3)
C26—O4—C8—C71.7 (2)C13—C12—C17—C160.4 (2)
C6—C7—C8—O4177.39 (14)C11—C12—C17—C16178.92 (15)
C6—C7—C8—C90.5 (2)C8—C9—C18—O2107.25 (15)
O4—C8—C9—C10177.78 (12)C10—C9—C18—O263.58 (17)
C7—C8—C9—C100.6 (2)C8—C9—C18—C1972.04 (17)
O4—C8—C9—C186.65 (19)C10—C9—C18—C19117.13 (14)
C7—C8—C9—C18170.49 (13)O2—C18—C19—C20174.23 (12)
C6—C5—C10—C91.1 (2)C9—C18—C19—C206.50 (19)
C4—C5—C10—C9179.24 (13)O2—C18—C19—C243.99 (19)
C6—C5—C10—C1178.76 (13)C9—C18—C19—C24175.27 (12)
C4—C5—C10—C10.9 (2)C24—C19—C20—C210.4 (2)
C8—C9—C10—C50.1 (2)C18—C19—C20—C21177.84 (12)
C18—C9—C10—C5170.69 (13)C19—C20—C21—C220.6 (2)
C8—C9—C10—C1179.69 (13)C28—O6—C22—C210.9 (2)
C18—C9—C10—C19.1 (2)C28—O6—C22—C23179.05 (14)
C2—C1—C10—C50.1 (2)C20—C21—C22—O6179.47 (13)
C11—C1—C10—C5168.75 (13)C20—C21—C22—C230.4 (2)
C2—C1—C10—C9179.75 (13)O6—C22—C23—C24179.76 (14)
C11—C1—C10—C911.4 (2)C21—C22—C23—C240.2 (2)
C2—C1—C11—O1109.29 (15)C22—C23—C24—C190.0 (2)
C10—C1—C11—O159.83 (18)C20—C19—C24—C230.1 (2)
C2—C1—C11—C1269.88 (17)C18—C19—C24—C23178.19 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O5i0.952.373.1460 (19)139
C13—H13···Cl3ii0.952.753.647 (2)159
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC28H24O6·CHCl3
Mr575.84
Crystal system, space groupMonoclinic, P21/c
Temperature (K)193
a, b, c (Å)8.2781 (2), 21.4763 (5), 15.5370 (4)
β (°) 98.448 (2)
V3)2732.25 (12)
Z4
Radiation typeCu Kα
µ (mm1)3.39
Crystal size (mm)0.50 × 0.20 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.282, 0.728
No. of measured, independent and
observed [I > 2σ(I)] reflections
50703, 4994, 4305
Rint0.047
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.107, 1.10
No. of reflections4994
No. of parameters385
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.35

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O5i0.952.373.1460 (19)139
C13—H13···Cl3ii0.952.753.647 (2)159
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y+3/2, z1/2.
 

Acknowledgements

The authors express their gratitude to Master Atsushi Nagasawa and Master Toyokazu Muto, Department of Organic and Polymer Materials Chemistry, Graduate School, Tokyo University of Agriculture & Technology, and Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, for their technical advice. This work was partially supported by a Sasagawa Scientific Research Grant from the Japan Science Society, Tokyo, Japan.

References

First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridgeational Laboratory, Tennessee, USA.  Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHijikata, D., Takada, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2902–o2903.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOkamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283–1284.  Web of Science CrossRef CAS Google Scholar
First citationOkamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSasagawa, K., Muto, T., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o3354.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds