organic compounds
[2,7-Dimethoxy-8-(4-methoxybenzoyl)naphthalen-1-yl](4-methoxyphenyl)methanone chloroform monosolvate
aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp
In the title compound, C28H24O6·CHCl3, the two 4-methoxybenzoyl groups at the 1- and 8-positions of the naphthalene ring system are aligned almost antiparallel, the benzene rings making a dihedral angle of 25.76 (7)°. The naphthalene ring system makes dihedral angles of 72.51 (7) and 73.33 (7)° with the benzene rings. In the crystal, the naphthalene molecules are linked by C—H⋯O interactions, forming a helical chain along the b-axis direction. A C—H⋯Cl interaction is also observed between the aroylated naphthalene and chloroform molecules. The chloroform molecule is disordered over two positions with site occupancies of 0.478 (5) and 0.522 (5).
Related literature
For the formation reaction of aroylated naphthalene compounds via electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto et al. (2011); Okamoto & Yonezawa (2009). For structures of closely related compounds, see: Hijikata et al. (2010); Sasagawa et al. (2011).
Experimental
Crystal data
|
Refinement
|
Data collection: PROCESS-AUTO (Rigaku, 1998); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536812050799/is5230sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812050799/is5230Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536812050799/is5230Isup3.cml
4-Methoxylbenzoyl chloride (6.60 mmol, 1.13 g), titanium chloride (19.8 mmol, 3.76 g) and methylene chloride (5.00 ml) were placed into a 50 ml flask, followed by stirring at room temperature. To the reaction mixture thus obtained, 2,7-dimethoxynaphthalene (2.00 mmol, 376 mg) was added. The reaction mixture was poured into ice-cold water (100 ml) after it had been stirred for 6 h at room temperature. The aqueous layer was extracted with CHCl3 (20 ml × 3). The combined extracts were washed with 2 M aqueous NaOH followed by washing with brine. The extracts thus obtained were dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give a cake. The crude product was purified by recrystallization from hexane and CHCl3 (yield 45%). Colorless platelet single crystals suitable for X-ray diffraction were obtained by repeated crystallization from CHCl3.
Spectroscopic Data:
1H NMR δ (300 MHz, CDCl3): 3.70 (6H, s), 3.83 (6H, s), 6.80 (4H, broad), 7.15 (2H, d, J = 9.0 Hz), 7.64 (4H, broad), 7.92 (2H, d, J = 9.0 Hz). 13C NMR δ (75 MHz, CDCl3): 55.24, 56.49, 111.24, 113.20, 121.89, 125.54, 129.62, 131.39, 131.71, 132.05, 155.93, 163.03, 194.98 p.p.m.. IR (KBr): 1651 (C=O), 1600, 1575, 1508 (Ar), 1250 (OMe) cm-1. HRMS (m/z): [M+H]+ calcd. for C28H25O6, 457.1651, found, 457.1691. m.p. = 475.9–476.9 K
All H atoms were found in a difference map and were subsequently refined as riding atoms, with C—H = 0.95 (aromatic), 0.98 (methyl) and 1.00 (chloroform) Å, and with Uiso(H) = 1.2Ueq(C).
In the course of our study on selective electrophilic aromatic aroylation of the naphthalene ring core, 1,8-diaroylnaphthalene compounds have proved to be formed regioselectively by the aid of a suitable acidic mediator (Okamoto & Yonezawa, 2009; Okamoto et al., 2011). Recently, we have reported the X-ray crystal structures of 1,8-diaroylated 2,7-dimethoxynaphthalene derivatives such as {8-[4-(butoxy)benzoyl]-2,7-dimethoxynaphthalen-1-yl}[4-(butoxy)phenyl]methanone [1,8-bis(4-butoxylbenzoyl)-2,7-dimethoxynaphthalene] (Sasagawa et al., 2011).
The aroyl groups in these compounds are almost perpendicular to the naphthalene rings, and are oriented in opposite directions (anti-orientation). On the other hand, we have also clarified minor structure of 1,8-diaroylnaphthalene derivatives, which the aroyl groups are oriented in same direction (syn-orientation) [2,7-dimethoxy-1,8-bis(4-phenoxybenzoyl)naphthalene; Hijikata et al., 2010]. As a part of our ongoing studies on the molecular structures of these kinds of homologous molecules, the X-ray
of the title compound, 1,8-diaroylated naphthalene bearing methoxy groups on the aroyl groups, is discussed in this article.The molecular structure of the title compound is displayed in Fig. 1. Two 4-methoxybenzoyl groups are situated in the anti-orientation. The dihedral angle between the best planes of the two phenyl rings is 25.76 (7)°. The dihedral angles between the best planes of the two 4-methoxyphenyl rings and the naphthalene ring are 72.51 (7) and 73.33 (7)°, respectively. The dihedral angles between the naphthalene ring system and the bridging ketonic carbonyl C—C(═O)—C planes [65.95 (8) and 68.67 (6)°] are larger than those between the phenyl rings and the bridging carbonyl planes [8.40 (8) and 5.49 (7)°].
In the molecular packing, C—H···O interactions between the ethereal oxygen atom of the benzene and the aromatic hydrogen atom of the naphthalene are observed. The C—H···O interactions effectively contribute to stabilization of the molecular packing (C7—H7···O5 = 2.37 Å; symmetry code: x, 3/2 - y, -1/2 + z; Fig. 2). Furthermore, chloroform solvent molecules lie between two naphthalene rings, and form meaningful C—H···Cl interactions with the aromatic hydrogen atoms of benzene rings (C13—H13···Cl3 = 2.75 Å; symmetry code: 1 - x, 1/2 + y, 3/2 - z; Fig. 3).
For the formation reaction of aroylated naphthalene compounds via electrophilic aromatic substitution of naphthalene derivatives, see: Okamoto et al. (2011); Okamoto & Yonezawa (2009). For structures of closely related compounds, see: Hijikata et al. (2010); Sasagawa et al. (2011).
Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C28H24O6·CHCl3 | F(000) = 1192 |
Mr = 575.84 | Dx = 1.400 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54187 Å |
Hall symbol: -P 2ybc | Cell parameters from 37515 reflections |
a = 8.2781 (2) Å | θ = 3.5–68.2° |
b = 21.4763 (5) Å | µ = 3.39 mm−1 |
c = 15.5370 (4) Å | T = 193 K |
β = 98.448 (2)° | Platelet, colorless |
V = 2732.25 (12) Å3 | 0.50 × 0.20 × 0.10 mm |
Z = 4 |
Rigaku R-AXIS RAPID diffractometer | 4994 independent reflections |
Radiation source: fine-focus sealed tube | 4305 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.047 |
Detector resolution: 10.000 pixels mm-1 | θmax = 68.2°, θmin = 3.5° |
ω scans | h = −9→9 |
Absorption correction: numerical (NUMABS; Higashi, 1999) | k = −25→25 |
Tmin = 0.282, Tmax = 0.728 | l = −18→18 |
50703 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.035 | H-atom parameters constrained |
wR(F2) = 0.107 | w = 1/[σ2(Fo2) + (0.0633P)2 + 0.2582P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max = 0.004 |
4994 reflections | Δρmax = 0.24 e Å−3 |
385 parameters | Δρmin = −0.35 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.00145 (17) |
C28H24O6·CHCl3 | V = 2732.25 (12) Å3 |
Mr = 575.84 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 8.2781 (2) Å | µ = 3.39 mm−1 |
b = 21.4763 (5) Å | T = 193 K |
c = 15.5370 (4) Å | 0.50 × 0.20 × 0.10 mm |
β = 98.448 (2)° |
Rigaku R-AXIS RAPID diffractometer | 4994 independent reflections |
Absorption correction: numerical (NUMABS; Higashi, 1999) | 4305 reflections with I > 2σ(I) |
Tmin = 0.282, Tmax = 0.728 | Rint = 0.047 |
50703 measured reflections |
R[F2 > 2σ(F2)] = 0.035 | 0 restraints |
wR(F2) = 0.107 | H-atom parameters constrained |
S = 1.10 | Δρmax = 0.24 e Å−3 |
4994 reflections | Δρmin = −0.35 e Å−3 |
385 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
C29 | 0.8351 (7) | 0.64681 (19) | 1.3342 (2) | 0.0602 (12) | 0.478 (5) |
H29 | 0.9494 | 0.6434 | 1.3210 | 0.072* | 0.478 (5) |
Cl1 | 0.7003 (8) | 0.5922 (3) | 1.2794 (4) | 0.0895 (14) | 0.478 (5) |
Cl2 | 0.8176 (5) | 0.6354 (2) | 1.4489 (3) | 0.0877 (9) | 0.478 (5) |
Cl3 | 0.7464 (5) | 0.72058 (6) | 1.31137 (11) | 0.0718 (8) | 0.478 (5) |
Cl1' | 0.7252 (7) | 0.5906 (2) | 1.2724 (3) | 0.0838 (10) | 0.522 (5) |
Cl2' | 0.8644 (6) | 0.63370 (14) | 1.4441 (2) | 0.1015 (12) | 0.522 (5) |
Cl3' | 0.8354 (4) | 0.71700 (8) | 1.30123 (8) | 0.0640 (4) | 0.522 (5) |
C29' | 0.7290 (6) | 0.65719 (17) | 1.3448 (2) | 0.0557 (10) | 0.522 (5) |
H29' | 0.6178 | 0.6701 | 1.3559 | 0.067* | 0.522 (5) |
O1 | 0.20448 (12) | 0.62134 (4) | 0.86461 (7) | 0.0458 (2) | |
O2 | 0.37739 (12) | 0.64726 (5) | 0.68945 (6) | 0.0451 (2) | |
O3 | 0.47972 (15) | 0.69449 (5) | 1.02209 (6) | 0.0588 (3) | |
O4 | 0.10068 (14) | 0.75164 (5) | 0.58373 (6) | 0.0550 (3) | |
O5 | 0.87057 (12) | 0.47605 (5) | 0.89164 (8) | 0.0550 (3) | |
O6 | −0.29654 (12) | 0.50568 (5) | 0.60580 (7) | 0.0505 (3) | |
C1 | 0.36050 (16) | 0.71245 (6) | 0.87968 (9) | 0.0390 (3) | |
C2 | 0.42348 (18) | 0.73704 (7) | 0.95995 (9) | 0.0447 (3) | |
C3 | 0.41933 (19) | 0.80154 (7) | 0.97694 (10) | 0.0515 (4) | |
H3 | 0.4636 | 0.8175 | 1.0324 | 0.062* | |
C4 | 0.35117 (19) | 0.84034 (7) | 0.91280 (10) | 0.0502 (4) | |
H4 | 0.3462 | 0.8837 | 0.9245 | 0.060* | |
C5 | 0.28728 (17) | 0.81810 (6) | 0.82908 (10) | 0.0438 (3) | |
C6 | 0.22155 (19) | 0.85978 (7) | 0.76273 (11) | 0.0501 (4) | |
H6 | 0.2223 | 0.9032 | 0.7748 | 0.060* | |
C7 | 0.15732 (19) | 0.83947 (7) | 0.68225 (10) | 0.0497 (4) | |
H7 | 0.1129 | 0.8683 | 0.6387 | 0.060* | |
C8 | 0.15723 (18) | 0.77515 (7) | 0.66393 (9) | 0.0433 (3) | |
C9 | 0.22199 (16) | 0.73223 (6) | 0.72575 (9) | 0.0382 (3) | |
C10 | 0.28973 (16) | 0.75288 (6) | 0.81102 (9) | 0.0375 (3) | |
C11 | 0.34302 (17) | 0.64259 (6) | 0.87375 (8) | 0.0386 (3) | |
C12 | 0.48719 (17) | 0.60144 (6) | 0.87996 (8) | 0.0384 (3) | |
C13 | 0.64446 (17) | 0.62349 (6) | 0.87923 (9) | 0.0423 (3) | |
H13 | 0.6620 | 0.6671 | 0.8765 | 0.051* | |
C14 | 0.77667 (17) | 0.58352 (6) | 0.88242 (9) | 0.0419 (3) | |
H14 | 0.8834 | 0.5995 | 0.8812 | 0.050* | |
C15 | 0.75081 (17) | 0.51999 (6) | 0.88745 (9) | 0.0427 (3) | |
C16 | 0.59450 (19) | 0.49700 (7) | 0.88921 (12) | 0.0541 (4) | |
H16 | 0.5775 | 0.4534 | 0.8935 | 0.065* | |
C17 | 0.46492 (19) | 0.53710 (7) | 0.88481 (11) | 0.0499 (4) | |
H17 | 0.3582 | 0.5209 | 0.8850 | 0.060* | |
C18 | 0.23968 (17) | 0.66618 (6) | 0.69476 (8) | 0.0381 (3) | |
C19 | 0.09406 (16) | 0.62645 (6) | 0.67084 (8) | 0.0379 (3) | |
C20 | −0.06117 (17) | 0.64490 (6) | 0.68346 (9) | 0.0409 (3) | |
H20 | −0.0758 | 0.6851 | 0.7065 | 0.049* | |
C21 | −0.19562 (17) | 0.60641 (6) | 0.66341 (9) | 0.0411 (3) | |
H21 | −0.3008 | 0.6198 | 0.6731 | 0.049* | |
C22 | −0.17404 (17) | 0.54777 (6) | 0.62890 (9) | 0.0398 (3) | |
C23 | −0.01928 (18) | 0.52839 (7) | 0.61557 (10) | 0.0482 (4) | |
H23 | −0.0047 | 0.4883 | 0.5921 | 0.058* | |
C24 | 0.11261 (18) | 0.56729 (7) | 0.63632 (10) | 0.0457 (3) | |
H24 | 0.2179 | 0.5537 | 0.6270 | 0.055* | |
C25 | 0.5735 (2) | 0.71604 (9) | 1.10090 (11) | 0.0643 (5) | |
H25A | 0.5032 | 0.7400 | 1.1343 | 0.077* | |
H25B | 0.6624 | 0.7427 | 1.0871 | 0.077* | |
H25C | 0.6194 | 0.6803 | 1.1354 | 0.077* | |
C26 | 0.0351 (2) | 0.79353 (9) | 0.51653 (11) | 0.0641 (5) | |
H26A | 0.1155 | 0.8261 | 0.5102 | 0.077* | |
H26B | −0.0645 | 0.8127 | 0.5316 | 0.077* | |
H26C | 0.0093 | 0.7707 | 0.4616 | 0.077* | |
C27 | 1.03147 (19) | 0.49649 (8) | 0.88276 (13) | 0.0560 (4) | |
H27A | 1.0710 | 0.5251 | 0.9303 | 0.067* | |
H27B | 1.0292 | 0.5179 | 0.8269 | 0.067* | |
H27C | 1.1045 | 0.4604 | 0.8850 | 0.067* | |
C28 | −0.45787 (18) | 0.52379 (8) | 0.61699 (12) | 0.0555 (4) | |
H28A | −0.4892 | 0.5611 | 0.5823 | 0.067* | |
H28B | −0.4612 | 0.5328 | 0.6785 | 0.067* | |
H28C | −0.5341 | 0.4899 | 0.5978 | 0.067* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C29 | 0.063 (3) | 0.065 (2) | 0.051 (2) | 0.0107 (19) | 0.0063 (18) | −0.0035 (16) |
Cl1 | 0.1159 (17) | 0.062 (2) | 0.091 (2) | −0.0248 (15) | 0.0161 (12) | 0.0046 (14) |
Cl2 | 0.0914 (12) | 0.124 (2) | 0.0476 (9) | 0.0204 (10) | 0.0102 (7) | 0.0316 (10) |
Cl3 | 0.112 (2) | 0.0424 (5) | 0.0544 (6) | 0.0055 (7) | −0.0110 (8) | 0.0000 (4) |
Cl1' | 0.141 (3) | 0.0423 (13) | 0.0614 (10) | 0.0083 (14) | −0.0076 (14) | −0.0034 (8) |
Cl2' | 0.179 (3) | 0.0723 (11) | 0.0468 (8) | 0.0443 (15) | −0.0057 (15) | 0.0061 (7) |
Cl3' | 0.0718 (11) | 0.0636 (6) | 0.0553 (5) | −0.0131 (6) | 0.0053 (5) | 0.0089 (4) |
C29' | 0.057 (3) | 0.061 (2) | 0.0502 (17) | 0.0037 (17) | 0.0137 (15) | 0.0103 (14) |
O1 | 0.0442 (6) | 0.0391 (5) | 0.0528 (6) | −0.0031 (4) | 0.0031 (4) | 0.0031 (4) |
O2 | 0.0432 (6) | 0.0435 (5) | 0.0480 (5) | 0.0026 (4) | 0.0045 (4) | −0.0020 (4) |
O3 | 0.0831 (8) | 0.0482 (6) | 0.0394 (5) | 0.0039 (5) | −0.0101 (5) | −0.0024 (4) |
O4 | 0.0731 (7) | 0.0468 (6) | 0.0411 (5) | 0.0015 (5) | −0.0047 (5) | 0.0081 (4) |
O5 | 0.0428 (6) | 0.0337 (5) | 0.0893 (8) | −0.0004 (4) | 0.0123 (5) | −0.0042 (5) |
O6 | 0.0427 (6) | 0.0380 (5) | 0.0697 (7) | −0.0029 (4) | 0.0048 (5) | −0.0082 (5) |
C1 | 0.0404 (7) | 0.0348 (7) | 0.0411 (7) | −0.0010 (5) | 0.0034 (5) | −0.0018 (5) |
C2 | 0.0496 (8) | 0.0418 (7) | 0.0412 (7) | −0.0005 (6) | 0.0018 (6) | −0.0010 (6) |
C3 | 0.0581 (9) | 0.0462 (8) | 0.0482 (8) | −0.0056 (7) | 0.0014 (7) | −0.0112 (7) |
C4 | 0.0571 (9) | 0.0341 (7) | 0.0588 (9) | −0.0040 (6) | 0.0069 (7) | −0.0082 (6) |
C5 | 0.0438 (8) | 0.0340 (7) | 0.0532 (8) | −0.0024 (6) | 0.0059 (6) | −0.0010 (6) |
C6 | 0.0540 (9) | 0.0300 (7) | 0.0657 (10) | −0.0004 (6) | 0.0062 (7) | 0.0030 (6) |
C7 | 0.0537 (9) | 0.0360 (7) | 0.0578 (9) | 0.0019 (6) | 0.0032 (7) | 0.0117 (6) |
C8 | 0.0444 (8) | 0.0406 (7) | 0.0439 (7) | −0.0011 (6) | 0.0032 (6) | 0.0055 (6) |
C9 | 0.0394 (7) | 0.0331 (7) | 0.0419 (7) | −0.0020 (5) | 0.0048 (5) | 0.0019 (5) |
C10 | 0.0363 (7) | 0.0338 (7) | 0.0423 (7) | −0.0018 (5) | 0.0053 (5) | 0.0000 (5) |
C11 | 0.0457 (8) | 0.0365 (7) | 0.0325 (6) | −0.0017 (6) | 0.0022 (5) | 0.0017 (5) |
C12 | 0.0450 (8) | 0.0332 (6) | 0.0358 (6) | −0.0026 (6) | 0.0015 (5) | 0.0006 (5) |
C13 | 0.0493 (8) | 0.0304 (6) | 0.0455 (7) | −0.0033 (6) | 0.0015 (6) | 0.0019 (5) |
C14 | 0.0416 (8) | 0.0367 (7) | 0.0463 (7) | −0.0055 (6) | 0.0028 (6) | −0.0002 (6) |
C15 | 0.0443 (8) | 0.0344 (7) | 0.0486 (8) | 0.0002 (6) | 0.0048 (6) | −0.0030 (6) |
C16 | 0.0489 (9) | 0.0300 (7) | 0.0839 (11) | −0.0046 (6) | 0.0114 (8) | 0.0001 (7) |
C17 | 0.0433 (8) | 0.0369 (7) | 0.0701 (10) | −0.0049 (6) | 0.0096 (7) | 0.0012 (7) |
C18 | 0.0437 (8) | 0.0369 (7) | 0.0329 (6) | 0.0018 (6) | 0.0033 (5) | 0.0032 (5) |
C19 | 0.0419 (8) | 0.0358 (7) | 0.0349 (6) | 0.0013 (5) | 0.0018 (5) | 0.0015 (5) |
C20 | 0.0475 (8) | 0.0331 (6) | 0.0416 (7) | 0.0041 (6) | 0.0048 (6) | −0.0037 (5) |
C21 | 0.0419 (8) | 0.0391 (7) | 0.0421 (7) | 0.0035 (6) | 0.0051 (6) | −0.0009 (6) |
C22 | 0.0436 (8) | 0.0344 (7) | 0.0403 (7) | −0.0008 (6) | 0.0019 (5) | 0.0019 (5) |
C23 | 0.0485 (9) | 0.0349 (7) | 0.0604 (9) | 0.0022 (6) | 0.0056 (7) | −0.0102 (6) |
C24 | 0.0420 (8) | 0.0396 (7) | 0.0550 (8) | 0.0048 (6) | 0.0056 (6) | −0.0053 (6) |
C25 | 0.0759 (12) | 0.0688 (11) | 0.0424 (8) | 0.0096 (9) | −0.0110 (8) | −0.0070 (8) |
C26 | 0.0756 (12) | 0.0637 (10) | 0.0486 (9) | 0.0055 (9) | −0.0050 (8) | 0.0185 (8) |
C27 | 0.0432 (9) | 0.0447 (8) | 0.0808 (11) | −0.0007 (6) | 0.0118 (8) | −0.0036 (8) |
C28 | 0.0440 (9) | 0.0486 (9) | 0.0738 (11) | −0.0047 (7) | 0.0081 (7) | −0.0076 (8) |
C29—Cl1 | 1.751 (7) | C11—C12 | 1.4769 (19) |
C29—Cl3 | 1.761 (5) | C12—C13 | 1.387 (2) |
C29—Cl2 | 1.824 (6) | C12—C17 | 1.3975 (19) |
C29—H29 | 1.0000 | C13—C14 | 1.386 (2) |
Cl1'—C29' | 1.816 (6) | C13—H13 | 0.9500 |
Cl2'—C29' | 1.840 (6) | C14—C15 | 1.3852 (19) |
Cl3'—C29' | 1.749 (4) | C14—H14 | 0.9500 |
C29'—H29' | 1.0000 | C15—C16 | 1.389 (2) |
O1—C11 | 1.2230 (17) | C16—C17 | 1.369 (2) |
O2—C18 | 1.2243 (16) | C16—H16 | 0.9500 |
O3—C2 | 1.3608 (17) | C17—H17 | 0.9500 |
O3—C25 | 1.4273 (18) | C18—C19 | 1.4791 (19) |
O4—C8 | 1.3621 (17) | C19—C20 | 1.3859 (19) |
O4—C26 | 1.4238 (18) | C19—C24 | 1.3964 (19) |
O5—C15 | 1.3633 (17) | C20—C21 | 1.385 (2) |
O5—C27 | 1.4282 (18) | C20—H20 | 0.9500 |
O6—C22 | 1.3665 (16) | C21—C22 | 1.3906 (19) |
O6—C28 | 1.4260 (18) | C21—H21 | 0.9500 |
C1—C2 | 1.3839 (19) | C22—C23 | 1.391 (2) |
C1—C10 | 1.4323 (18) | C23—C24 | 1.375 (2) |
C1—C11 | 1.5087 (19) | C23—H23 | 0.9500 |
C2—C3 | 1.412 (2) | C24—H24 | 0.9500 |
C3—C4 | 1.357 (2) | C25—H25A | 0.9800 |
C3—H3 | 0.9500 | C25—H25B | 0.9800 |
C4—C5 | 1.414 (2) | C25—H25C | 0.9800 |
C4—H4 | 0.9500 | C26—H26A | 0.9800 |
C5—C6 | 1.413 (2) | C26—H26B | 0.9800 |
C5—C10 | 1.4291 (19) | C26—H26C | 0.9800 |
C6—C7 | 1.357 (2) | C27—H27A | 0.9800 |
C6—H6 | 0.9500 | C27—H27B | 0.9800 |
C7—C8 | 1.410 (2) | C27—H27C | 0.9800 |
C7—H7 | 0.9500 | C28—H28A | 0.9800 |
C8—C9 | 1.3814 (19) | C28—H28B | 0.9800 |
C9—C10 | 1.4311 (18) | C28—H28C | 0.9800 |
C9—C18 | 1.5122 (18) | ||
Cl1—C29—Cl3 | 106.7 (4) | C15—C14—H14 | 120.5 |
Cl1—C29—Cl2 | 104.4 (3) | C13—C14—H14 | 120.5 |
Cl3—C29—Cl2 | 103.2 (3) | O5—C15—C14 | 124.55 (13) |
Cl1—C29—H29 | 113.8 | O5—C15—C16 | 115.23 (12) |
Cl3—C29—H29 | 113.8 | C14—C15—C16 | 120.22 (13) |
Cl2—C29—H29 | 113.8 | C17—C16—C15 | 120.05 (13) |
Cl3'—C29'—Cl1' | 107.6 (3) | C17—C16—H16 | 120.0 |
Cl3'—C29'—Cl2' | 104.3 (3) | C15—C16—H16 | 120.0 |
Cl1'—C29'—Cl2' | 104.8 (3) | C16—C17—C12 | 121.05 (14) |
Cl3'—C29'—H29' | 113.1 | C16—C17—H17 | 119.5 |
Cl1'—C29'—H29' | 113.1 | C12—C17—H17 | 119.5 |
Cl2'—C29'—H29' | 113.1 | O2—C18—C19 | 121.62 (12) |
C2—O3—C25 | 118.50 (13) | O2—C18—C9 | 117.87 (12) |
C8—O4—C26 | 118.65 (13) | C19—C18—C9 | 120.51 (12) |
C15—O5—C27 | 117.69 (11) | C20—C19—C24 | 118.10 (13) |
C22—O6—C28 | 117.37 (11) | C20—C19—C18 | 122.55 (12) |
C2—C1—C10 | 119.91 (12) | C24—C19—C18 | 119.33 (13) |
C2—C1—C11 | 117.03 (12) | C21—C20—C19 | 121.93 (12) |
C10—C1—C11 | 122.17 (12) | C21—C20—H20 | 119.0 |
O3—C2—C1 | 115.31 (12) | C19—C20—H20 | 119.0 |
O3—C2—C3 | 122.79 (13) | C20—C21—C22 | 118.88 (13) |
C1—C2—C3 | 121.78 (13) | C20—C21—H21 | 120.6 |
C4—C3—C2 | 118.97 (14) | C22—C21—H21 | 120.6 |
C4—C3—H3 | 120.5 | O6—C22—C21 | 124.61 (13) |
C2—C3—H3 | 120.5 | O6—C22—C23 | 115.29 (12) |
C3—C4—C5 | 121.83 (14) | C21—C22—C23 | 120.10 (13) |
C3—C4—H4 | 119.1 | C24—C23—C22 | 120.02 (13) |
C5—C4—H4 | 119.1 | C24—C23—H23 | 120.0 |
C6—C5—C4 | 120.62 (13) | C22—C23—H23 | 120.0 |
C6—C5—C10 | 119.53 (13) | C23—C24—C19 | 120.97 (14) |
C4—C5—C10 | 119.85 (13) | C23—C24—H24 | 119.5 |
C7—C6—C5 | 121.71 (14) | C19—C24—H24 | 119.5 |
C7—C6—H6 | 119.1 | O3—C25—H25A | 109.5 |
C5—C6—H6 | 119.1 | O3—C25—H25B | 109.5 |
C6—C7—C8 | 119.29 (13) | H25A—C25—H25B | 109.5 |
C6—C7—H7 | 120.4 | O3—C25—H25C | 109.5 |
C8—C7—H7 | 120.4 | H25A—C25—H25C | 109.5 |
O4—C8—C9 | 115.78 (12) | H25B—C25—H25C | 109.5 |
O4—C8—C7 | 122.51 (13) | O4—C26—H26A | 109.5 |
C9—C8—C7 | 121.64 (13) | O4—C26—H26B | 109.5 |
C8—C9—C10 | 119.75 (12) | H26A—C26—H26B | 109.5 |
C8—C9—C18 | 116.77 (12) | O4—C26—H26C | 109.5 |
C10—C9—C18 | 122.85 (11) | H26A—C26—H26C | 109.5 |
C5—C10—C9 | 118.06 (12) | H26B—C26—H26C | 109.5 |
C5—C10—C1 | 117.65 (12) | O5—C27—H27A | 109.5 |
C9—C10—C1 | 124.29 (12) | O5—C27—H27B | 109.5 |
O1—C11—C12 | 121.28 (12) | H27A—C27—H27B | 109.5 |
O1—C11—C1 | 117.27 (12) | O5—C27—H27C | 109.5 |
C12—C11—C1 | 121.45 (12) | H27A—C27—H27C | 109.5 |
C13—C12—C17 | 118.00 (13) | H27B—C27—H27C | 109.5 |
C13—C12—C11 | 123.07 (12) | O6—C28—H28A | 109.5 |
C17—C12—C11 | 118.91 (13) | O6—C28—H28B | 109.5 |
C14—C13—C12 | 121.69 (12) | H28A—C28—H28B | 109.5 |
C14—C13—H13 | 119.2 | O6—C28—H28C | 109.5 |
C12—C13—H13 | 119.2 | H28A—C28—H28C | 109.5 |
C15—C14—C13 | 118.97 (13) | H28B—C28—H28C | 109.5 |
C25—O3—C2—C1 | 168.44 (14) | C10—C1—C11—C12 | 121.00 (14) |
C25—O3—C2—C3 | −15.5 (2) | O1—C11—C12—C13 | 171.55 (13) |
C10—C1—C2—O3 | 176.54 (12) | C1—C11—C12—C13 | −9.31 (19) |
C11—C1—C2—O3 | 7.2 (2) | O1—C11—C12—C17 | −6.9 (2) |
C10—C1—C2—C3 | 0.4 (2) | C1—C11—C12—C17 | 172.21 (13) |
C11—C1—C2—C3 | −168.95 (14) | C17—C12—C13—C14 | 0.5 (2) |
O3—C2—C3—C4 | −175.58 (15) | C11—C12—C13—C14 | −177.95 (12) |
C1—C2—C3—C4 | 0.2 (2) | C12—C13—C14—C15 | −0.7 (2) |
C2—C3—C4—C5 | −1.3 (2) | C27—O5—C15—C14 | −5.6 (2) |
C3—C4—C5—C6 | −178.04 (14) | C27—O5—C15—C16 | 174.88 (14) |
C3—C4—C5—C10 | 1.7 (2) | C13—C14—C15—O5 | −179.46 (13) |
C4—C5—C6—C7 | −179.00 (15) | C13—C14—C15—C16 | 0.0 (2) |
C10—C5—C6—C7 | 1.3 (2) | O5—C15—C16—C17 | −179.60 (15) |
C5—C6—C7—C8 | −0.5 (2) | C14—C15—C16—C17 | 0.9 (2) |
C26—O4—C8—C9 | −178.84 (14) | C15—C16—C17—C12 | −1.1 (3) |
C26—O4—C8—C7 | −1.7 (2) | C13—C12—C17—C16 | 0.4 (2) |
C6—C7—C8—O4 | −177.39 (14) | C11—C12—C17—C16 | 178.92 (15) |
C6—C7—C8—C9 | −0.5 (2) | C8—C9—C18—O2 | 107.25 (15) |
O4—C8—C9—C10 | 177.78 (12) | C10—C9—C18—O2 | −63.58 (17) |
C7—C8—C9—C10 | 0.6 (2) | C8—C9—C18—C19 | −72.04 (17) |
O4—C8—C9—C18 | 6.65 (19) | C10—C9—C18—C19 | 117.13 (14) |
C7—C8—C9—C18 | −170.49 (13) | O2—C18—C19—C20 | 174.23 (12) |
C6—C5—C10—C9 | −1.1 (2) | C9—C18—C19—C20 | −6.50 (19) |
C4—C5—C10—C9 | 179.24 (13) | O2—C18—C19—C24 | −3.99 (19) |
C6—C5—C10—C1 | 178.76 (13) | C9—C18—C19—C24 | 175.27 (12) |
C4—C5—C10—C1 | −0.9 (2) | C24—C19—C20—C21 | 0.4 (2) |
C8—C9—C10—C5 | 0.1 (2) | C18—C19—C20—C21 | −177.84 (12) |
C18—C9—C10—C5 | 170.69 (13) | C19—C20—C21—C22 | −0.6 (2) |
C8—C9—C10—C1 | −179.69 (13) | C28—O6—C22—C21 | 0.9 (2) |
C18—C9—C10—C1 | −9.1 (2) | C28—O6—C22—C23 | −179.05 (14) |
C2—C1—C10—C5 | −0.1 (2) | C20—C21—C22—O6 | −179.47 (13) |
C11—C1—C10—C5 | 168.75 (13) | C20—C21—C22—C23 | 0.4 (2) |
C2—C1—C10—C9 | 179.75 (13) | O6—C22—C23—C24 | 179.76 (14) |
C11—C1—C10—C9 | −11.4 (2) | C21—C22—C23—C24 | −0.2 (2) |
C2—C1—C11—O1 | 109.29 (15) | C22—C23—C24—C19 | 0.0 (2) |
C10—C1—C11—O1 | −59.83 (18) | C20—C19—C24—C23 | −0.1 (2) |
C2—C1—C11—C12 | −69.88 (17) | C18—C19—C24—C23 | 178.19 (13) |
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···O5i | 0.95 | 2.37 | 3.1460 (19) | 139 |
C13—H13···Cl3ii | 0.95 | 2.75 | 3.647 (2) | 159 |
Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) x, −y+3/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C28H24O6·CHCl3 |
Mr | 575.84 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 193 |
a, b, c (Å) | 8.2781 (2), 21.4763 (5), 15.5370 (4) |
β (°) | 98.448 (2) |
V (Å3) | 2732.25 (12) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 3.39 |
Crystal size (mm) | 0.50 × 0.20 × 0.10 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID |
Absorption correction | Numerical (NUMABS; Higashi, 1999) |
Tmin, Tmax | 0.282, 0.728 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 50703, 4994, 4305 |
Rint | 0.047 |
(sin θ/λ)max (Å−1) | 0.602 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.107, 1.10 |
No. of reflections | 4994 |
No. of parameters | 385 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.24, −0.35 |
Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).
D—H···A | D—H | H···A | D···A | D—H···A |
C7—H7···O5i | 0.95 | 2.37 | 3.1460 (19) | 139 |
C13—H13···Cl3ii | 0.95 | 2.75 | 3.647 (2) | 159 |
Symmetry codes: (i) −x+1, y+1/2, −z+3/2; (ii) x, −y+3/2, z−1/2. |
Acknowledgements
The authors express their gratitude to Master Atsushi Nagasawa and Master Toyokazu Muto, Department of Organic and Polymer Materials Chemistry, Graduate School, Tokyo University of Agriculture & Technology, and Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, for their technical advice. This work was partially supported by a Sasagawa Scientific Research Grant from the Japan Science Society, Tokyo, Japan.
References
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridgeational Laboratory, Tennessee, USA. Google Scholar
Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
Hijikata, D., Takada, T., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2902–o2903. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283–1284. Web of Science CrossRef CAS Google Scholar
Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915. Web of Science CrossRef CAS Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sasagawa, K., Muto, T., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o3354. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the course of our study on selective electrophilic aromatic aroylation of the naphthalene ring core, 1,8-diaroylnaphthalene compounds have proved to be formed regioselectively by the aid of a suitable acidic mediator (Okamoto & Yonezawa, 2009; Okamoto et al., 2011). Recently, we have reported the X-ray crystal structures of 1,8-diaroylated 2,7-dimethoxynaphthalene derivatives such as {8-[4-(butoxy)benzoyl]-2,7-dimethoxynaphthalen-1-yl}[4-(butoxy)phenyl]methanone [1,8-bis(4-butoxylbenzoyl)-2,7-dimethoxynaphthalene] (Sasagawa et al., 2011).
The aroyl groups in these compounds are almost perpendicular to the naphthalene rings, and are oriented in opposite directions (anti-orientation). On the other hand, we have also clarified minor structure of 1,8-diaroylnaphthalene derivatives, which the aroyl groups are oriented in same direction (syn-orientation) [2,7-dimethoxy-1,8-bis(4-phenoxybenzoyl)naphthalene; Hijikata et al., 2010]. As a part of our ongoing studies on the molecular structures of these kinds of homologous molecules, the X-ray crystal structure of the title compound, 1,8-diaroylated naphthalene bearing methoxy groups on the aroyl groups, is discussed in this article.
The molecular structure of the title compound is displayed in Fig. 1. Two 4-methoxybenzoyl groups are situated in the anti-orientation. The dihedral angle between the best planes of the two phenyl rings is 25.76 (7)°. The dihedral angles between the best planes of the two 4-methoxyphenyl rings and the naphthalene ring are 72.51 (7) and 73.33 (7)°, respectively. The dihedral angles between the naphthalene ring system and the bridging ketonic carbonyl C—C(═O)—C planes [65.95 (8) and 68.67 (6)°] are larger than those between the phenyl rings and the bridging carbonyl planes [8.40 (8) and 5.49 (7)°].
In the molecular packing, C—H···O interactions between the ethereal oxygen atom of the benzene and the aromatic hydrogen atom of the naphthalene are observed. The C—H···O interactions effectively contribute to stabilization of the molecular packing (C7—H7···O5 = 2.37 Å; symmetry code: x, 3/2 - y, -1/2 + z; Fig. 2). Furthermore, chloroform solvent molecules lie between two naphthalene rings, and form meaningful C—H···Cl interactions with the aromatic hydrogen atoms of benzene rings (C13—H13···Cl3 = 2.75 Å; symmetry code: 1 - x, 1/2 + y, 3/2 - z; Fig. 3).