organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-5-methyl­pyridinium 4-chloro­benzoate

aSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Physics, Faculty of Science, University of Mazandaran, Babolsar, Iran
*Correspondence e-mail: arazaki@usm.my

(Received 12 December 2012; accepted 17 December 2012; online 22 December 2012)

The 4-chloro­benzoate anion of the title salt, C6H9N2+·C7H4ClO2, is nearly planar with a dihedral angle of 5.14 (16)° between the benzene ring and the carboxyl­ate group. In the crystal, the protonated N atom and the 2-amino group of the cation are hydrogen bonded to the carboxyl­ate O atoms of the anion via a pair of N—H⋯O hydrogen bonds with an R22(8) ring motif. The ion pairs are further connected via N—H⋯O and weak C—H⋯O hydrogen bonds, forming a two-dimensional network parallel to the bc plane. The crystal structure also features a ππ stacking inter­action between the pyridinium and benzene rings with a centroid–centroid distance of 3.7948 (9) Å.

Related literature

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997[Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). In Heterocycles in Life and Society. New York: Wiley.]); Katritzky et al. (1996[Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). In Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.]). For 4-chloro­benzoic acid, see: Dionysiou et al. (2000[Dionysiou, D. D., Suidan, M. T., Bekou, E., Baudin, I. & Laine, J.-M. (2000). Appl. Catal. B, 26, 153-171.]). For details of hydrogen-bonded supra­molecular compounds, see: Aakeroy et al. (2002[Aakeroy, C. B., Beatty, A. M. & Helfrich, B. A. (2002). J. Am. Chem. Soc. 124, 14425-14432.]). For related structures, see: Nahringbauer & Kvick (1977[Nahringbauer, I. & Kvick, Å. (1977). Acta Cryst. B33, 2902-2905.]); Thanigaimani et al. (2012a[Thanigaimani, K., Farhadikoutenaei, A., Khalib, N. C., Arshad, S. & Razak, I. A. (2012a). Acta Cryst. E68, o3195.],b[Thanigaimani, K., Farhadikoutenaei, A., Khalib, N. C., Arshad, S. & Razak, I. A. (2012b). Acta Cryst. E68, o3196-o3197.],c[Thanigaimani, K., Farhadikoutenaei, A., Khalib, N. C., Arshad, S. & Razak, I. A. (2012c). Acta Cryst. E68, o3319-o3320.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C6H9N2+·C7H4ClO2

  • Mr = 264.70

  • Monoclinic, P 21 /c

  • a = 9.8510 (6) Å

  • b = 10.7707 (8) Å

  • c = 12.2123 (7) Å

  • β = 102.335 (2)°

  • V = 1265.84 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 297 K

  • 0.46 × 0.25 × 0.13 mm

Data collection
  • Bruker SMART APEXII DUO CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.876, Tmax = 0.963

  • 17572 measured reflections

  • 4628 independent reflections

  • 2976 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.139

  • S = 1.04

  • 4628 reflections

  • 176 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O1 0.85 (2) 2.02 (2) 2.8654 (18) 174.1 (19)
N1—H1N1⋯O1i 0.98 (2) 1.75 (2) 2.7255 (14) 174.1 (16)
N2—H2N2⋯O2i 0.92 (2) 1.83 (2) 2.7437 (17) 172.7 (18)
C2—H2A⋯O2ii 0.93 2.40 3.1459 (18) 137
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In recent years, hydrogen bonds have attracted the interest of chemists and have been widely used to design and synthesize one, two and three-dimensional supramolecular compounds (Aakeroy et al., 2002). Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bond interactions. 4-Chlorobenzoic acid (4-CBA) has been reported as intermediate product during biological or chemical degradation of pesticides and herbicides (Dionysiou et al., 2000). We have recently reported related crystal structures of 2-amino-5-methylpyridinium 3-chlorobenzoate (Thanigaimani et al., 2012a), 2-amino-5-methylpyridinium 2-aminobenzoate (Thanigaimani et al., 2012b) and 2-amino-5-methylpyridinium trifluoroacetate (Thanigaimani et al., 2012c). In order to study some interesting hydrogen bonding interactions of this compound, the synthesis and structure of the title salt is presented here.

The asymmetric unit (Fig. 1) contains one 2-amino-5-methylpyridinium cation and one 4-chlorobenzoate anion. The proton transfers from the carboxyl group oxygen atom (O1) to atom N1 of the 2-amino-5-methylpyrimidine resulted in the widening of C1—N1—C5 angle of the pyridinium ring to 122.06 (11)°, compared to the corresponding angle of 117.4 (3)° in neutral 2-amino-5-methylpyridine (Nahringbauer & Kvick, 1977). The 2-amino-5-methylpyridinium cation is essentially planar, with a maximum deviation of 0.005 (1) Å for atom C1. The carboxylate group of the 4-chlorobenzoate anion is slightly twisted from the attached ring with the dihedral angle between C7–C12 ring and O1/O2/C13 plane being 5.14 (16)°. The bond lengths (Allen et al., 1987) and angles are normal.

In the crystal packing (Fig. 2), the protonated N1 atom and a nitrogen atom of the 2-amino group (N2) are hydrogen-bonded to the carboxylate oxygen atoms (O1 and O2) via a pair of intermolecular N1—H1N1···O1i and N2—H2N2···O2i hydrogen bonds (symmetry code in Table 1), forming a ring motif of R22(8) (Bernstein et al., 1995). Furthermore, these motifs are connected via N2—H1N2···O1 and C2—H2A···O2ii hydrogen bonds to form a two-dimensional network parallel to the bc plane. The crystal structure is further stabilized by ππ interactions between the pyridine (C1–C5/N1) and benzene (C7–C12) rings, with centroid to centroid distance of 3.7948 (9) Å (symmetry codes: 1 - x, -1/2 + y, 1/2 - z and 1 - x, 1/2 + y, 1/2 - z)

Related literature top

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For 4-chlorobenzoic acid, see: Dionysiou et al. (2000). For details of hydrogen-bonded supramolecular compounds, see: Aakeroy et al. (2002). For related structures, see: Nahringbauer & Kvick (1977); Thanigaimani et al. (2012a,b,c). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987).

Experimental top

Hot methanol solutions (20 ml) of 2-amino-5-methylpyridine (54 mg, Aldrich) and 4-chlorobenzoic acid (39 mg, Aldrich) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound (I) appeared after a few days.

Refinement top

N-bound H Atoms were located in a difference Fourier maps and refined freely [refined N—H distances 0.98 (2), 0.92 (2) and 0.85 (2) Å]. The remaining H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and were refined using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). A rotating group model was used for the methyl group. Three outliers were omitted (1 4 0, 1 1 0 and 3 1 2) in the final refinement.

Structure description top

In recent years, hydrogen bonds have attracted the interest of chemists and have been widely used to design and synthesize one, two and three-dimensional supramolecular compounds (Aakeroy et al., 2002). Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bond interactions. 4-Chlorobenzoic acid (4-CBA) has been reported as intermediate product during biological or chemical degradation of pesticides and herbicides (Dionysiou et al., 2000). We have recently reported related crystal structures of 2-amino-5-methylpyridinium 3-chlorobenzoate (Thanigaimani et al., 2012a), 2-amino-5-methylpyridinium 2-aminobenzoate (Thanigaimani et al., 2012b) and 2-amino-5-methylpyridinium trifluoroacetate (Thanigaimani et al., 2012c). In order to study some interesting hydrogen bonding interactions of this compound, the synthesis and structure of the title salt is presented here.

The asymmetric unit (Fig. 1) contains one 2-amino-5-methylpyridinium cation and one 4-chlorobenzoate anion. The proton transfers from the carboxyl group oxygen atom (O1) to atom N1 of the 2-amino-5-methylpyrimidine resulted in the widening of C1—N1—C5 angle of the pyridinium ring to 122.06 (11)°, compared to the corresponding angle of 117.4 (3)° in neutral 2-amino-5-methylpyridine (Nahringbauer & Kvick, 1977). The 2-amino-5-methylpyridinium cation is essentially planar, with a maximum deviation of 0.005 (1) Å for atom C1. The carboxylate group of the 4-chlorobenzoate anion is slightly twisted from the attached ring with the dihedral angle between C7–C12 ring and O1/O2/C13 plane being 5.14 (16)°. The bond lengths (Allen et al., 1987) and angles are normal.

In the crystal packing (Fig. 2), the protonated N1 atom and a nitrogen atom of the 2-amino group (N2) are hydrogen-bonded to the carboxylate oxygen atoms (O1 and O2) via a pair of intermolecular N1—H1N1···O1i and N2—H2N2···O2i hydrogen bonds (symmetry code in Table 1), forming a ring motif of R22(8) (Bernstein et al., 1995). Furthermore, these motifs are connected via N2—H1N2···O1 and C2—H2A···O2ii hydrogen bonds to form a two-dimensional network parallel to the bc plane. The crystal structure is further stabilized by ππ interactions between the pyridine (C1–C5/N1) and benzene (C7–C12) rings, with centroid to centroid distance of 3.7948 (9) Å (symmetry codes: 1 - x, -1/2 + y, 1/2 - z and 1 - x, 1/2 + y, 1/2 - z)

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For 4-chlorobenzoic acid, see: Dionysiou et al. (2000). For details of hydrogen-bonded supramolecular compounds, see: Aakeroy et al. (2002). For related structures, see: Nahringbauer & Kvick (1977); Thanigaimani et al. (2012a,b,c). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound. The H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
2-Amino-5-methylpyridinium 4-chlorobenzoate top
Crystal data top
C6H9N2+·C7H4ClO2F(000) = 552
Mr = 264.70Dx = 1.389 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3497 reflections
a = 9.8510 (6) Åθ = 2.6–26.9°
b = 10.7707 (8) ŵ = 0.30 mm1
c = 12.2123 (7) ÅT = 297 K
β = 102.335 (2)°Plate, colourless
V = 1265.84 (14) Å30.46 × 0.25 × 0.13 mm
Z = 4
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
4628 independent reflections
Radiation source: fine-focus sealed tube2976 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
φ and ω scansθmax = 32.8°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1415
Tmin = 0.876, Tmax = 0.963k = 1616
17572 measured reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0608P)2 + 0.1513P]
where P = (Fo2 + 2Fc2)/3
4628 reflections(Δ/σ)max < 0.001
176 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C6H9N2+·C7H4ClO2V = 1265.84 (14) Å3
Mr = 264.70Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.8510 (6) ŵ = 0.30 mm1
b = 10.7707 (8) ÅT = 297 K
c = 12.2123 (7) Å0.46 × 0.25 × 0.13 mm
β = 102.335 (2)°
Data collection top
Bruker SMART APEXII DUO CCD area-detector
diffractometer
4628 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2976 reflections with I > 2σ(I)
Tmin = 0.876, Tmax = 0.963Rint = 0.034
17572 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.30 e Å3
4628 reflectionsΔρmin = 0.31 e Å3
176 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.02173 (5)0.82984 (4)0.23669 (4)0.07093 (17)
O10.41482 (11)0.36071 (10)0.43150 (8)0.0468 (2)
O20.29316 (12)0.37788 (10)0.56405 (8)0.0521 (3)
N10.54982 (12)0.32374 (10)0.06443 (9)0.0384 (2)
N20.44920 (16)0.28252 (14)0.21480 (12)0.0534 (3)
C10.53584 (14)0.34947 (12)0.16960 (11)0.0393 (3)
C20.61705 (15)0.44688 (14)0.22692 (12)0.0462 (3)
H2A0.61040.46720.29960.055*
C30.70468 (15)0.51067 (14)0.17600 (13)0.0490 (3)
H3A0.75810.57430.21480.059*
C40.71723 (14)0.48309 (13)0.06545 (12)0.0452 (3)
C50.63774 (14)0.38868 (13)0.01390 (11)0.0416 (3)
H5A0.64350.36750.05880.050*
C60.81460 (18)0.55543 (18)0.01020 (17)0.0643 (4)
H6A0.81370.52090.06240.096*
H6B0.90700.55100.05550.096*
H6C0.78530.64060.00220.096*
C70.14475 (15)0.57790 (14)0.46421 (12)0.0449 (3)
H7A0.13230.55100.53380.054*
C80.06266 (16)0.67279 (15)0.40995 (14)0.0530 (4)
H8A0.00530.70910.44200.064*
C90.08322 (14)0.71276 (13)0.30744 (12)0.0452 (3)
C100.18420 (16)0.66134 (13)0.25949 (12)0.0452 (3)
H10A0.19780.69020.19090.054*
C110.26556 (14)0.56587 (12)0.31472 (11)0.0399 (3)
H11A0.33440.53090.28300.048*
C120.24526 (12)0.52207 (11)0.41692 (10)0.0336 (2)
C130.32454 (13)0.41235 (11)0.47546 (10)0.0356 (3)
H1N10.4981 (19)0.2561 (18)0.0206 (15)0.067 (5)*
H2N20.393 (2)0.227 (2)0.1687 (17)0.075 (6)*
H1N20.4328 (19)0.3062 (17)0.2770 (17)0.060 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0665 (3)0.0571 (3)0.0817 (3)0.02362 (19)0.0011 (2)0.0172 (2)
O10.0589 (6)0.0468 (5)0.0353 (5)0.0185 (4)0.0114 (4)0.0030 (4)
O20.0713 (7)0.0503 (6)0.0373 (5)0.0150 (5)0.0171 (5)0.0093 (4)
N10.0453 (6)0.0363 (5)0.0330 (5)0.0000 (4)0.0069 (4)0.0063 (4)
N20.0695 (8)0.0554 (8)0.0388 (6)0.0138 (7)0.0196 (6)0.0123 (6)
C10.0468 (7)0.0369 (6)0.0332 (6)0.0043 (5)0.0063 (5)0.0056 (5)
C20.0529 (8)0.0457 (7)0.0384 (7)0.0010 (6)0.0060 (6)0.0134 (6)
C30.0460 (7)0.0418 (7)0.0564 (8)0.0020 (6)0.0050 (6)0.0140 (6)
C40.0424 (7)0.0400 (7)0.0532 (8)0.0028 (5)0.0102 (6)0.0018 (6)
C50.0457 (7)0.0415 (7)0.0380 (6)0.0048 (5)0.0101 (5)0.0026 (5)
C60.0588 (9)0.0611 (10)0.0768 (12)0.0101 (8)0.0231 (8)0.0026 (9)
C70.0498 (7)0.0446 (7)0.0428 (7)0.0064 (6)0.0157 (6)0.0043 (6)
C80.0503 (8)0.0513 (8)0.0608 (9)0.0148 (6)0.0195 (7)0.0036 (7)
C90.0414 (7)0.0365 (6)0.0533 (8)0.0052 (5)0.0001 (6)0.0030 (6)
C100.0534 (8)0.0405 (7)0.0408 (7)0.0040 (6)0.0083 (6)0.0073 (5)
C110.0442 (6)0.0379 (6)0.0389 (6)0.0053 (5)0.0117 (5)0.0023 (5)
C120.0365 (6)0.0295 (5)0.0330 (6)0.0017 (4)0.0036 (4)0.0022 (4)
C130.0453 (6)0.0314 (6)0.0280 (5)0.0013 (5)0.0029 (5)0.0029 (4)
Geometric parameters (Å, º) top
Cl1—C91.7390 (14)C5—H5A0.9300
O1—C131.2619 (16)C6—H6A0.9600
O2—C131.2436 (16)C6—H6B0.9600
N1—C11.3495 (16)C6—H6C0.9600
N1—C51.3596 (18)C7—C81.382 (2)
N1—H1N10.98 (2)C7—C121.3856 (18)
N2—C11.3245 (19)C7—H7A0.9300
N2—H2N20.92 (2)C8—C91.379 (2)
N2—H1N20.85 (2)C8—H8A0.9300
C1—C21.4113 (19)C9—C101.374 (2)
C2—C31.354 (2)C10—C111.3870 (18)
C2—H2A0.9300C10—H10A0.9300
C3—C41.413 (2)C11—C121.3881 (18)
C3—H3A0.9300C11—H11A0.9300
C4—C51.3539 (19)C12—C131.5097 (16)
C4—C61.503 (2)
C1—N1—C5122.05 (12)C4—C6—H6C109.5
C1—N1—H1N1121.7 (10)H6A—C6—H6C109.5
C5—N1—H1N1116.2 (10)H6B—C6—H6C109.5
C1—N2—H2N2117.2 (12)C8—C7—C12121.22 (13)
C1—N2—H1N2118.2 (13)C8—C7—H7A119.4
H2N2—N2—H1N2122.3 (17)C12—C7—H7A119.4
N2—C1—N1119.39 (13)C9—C8—C7118.80 (13)
N2—C1—C2123.06 (13)C9—C8—H8A120.6
N1—C1—C2117.55 (13)C7—C8—H8A120.6
C3—C2—C1119.92 (13)C10—C9—C8121.41 (13)
C3—C2—H2A120.0C10—C9—Cl1119.23 (12)
C1—C2—H2A120.0C8—C9—Cl1119.36 (11)
C2—C3—C4121.78 (13)C9—C10—C11119.16 (13)
C2—C3—H3A119.1C9—C10—H10A120.4
C4—C3—H3A119.1C11—C10—H10A120.4
C5—C4—C3116.24 (13)C10—C11—C12120.66 (12)
C5—C4—C6122.81 (14)C10—C11—H11A119.7
C3—C4—C6120.95 (14)C12—C11—H11A119.7
C4—C5—N1122.46 (13)C7—C12—C11118.71 (12)
C4—C5—H5A118.8C7—C12—C13119.06 (11)
N1—C5—H5A118.8C11—C12—C13122.18 (11)
C4—C6—H6A109.5O2—C13—O1124.56 (12)
C4—C6—H6B109.5O2—C13—C12116.49 (11)
H6A—C6—H6B109.5O1—C13—C12118.93 (11)
C5—N1—C1—N2179.57 (13)C7—C8—C9—Cl1178.64 (12)
C5—N1—C1—C20.37 (19)C8—C9—C10—C111.0 (2)
N2—C1—C2—C3179.28 (15)Cl1—C9—C10—C11178.43 (11)
N1—C1—C2—C30.1 (2)C9—C10—C11—C120.3 (2)
C1—C2—C3—C40.4 (2)C8—C7—C12—C112.0 (2)
C2—C3—C4—C50.6 (2)C8—C7—C12—C13175.35 (13)
C2—C3—C4—C6179.69 (15)C10—C11—C12—C71.8 (2)
C3—C4—C5—N10.3 (2)C10—C11—C12—C13175.48 (12)
C6—C4—C5—N1179.95 (14)C7—C12—C13—O20.45 (17)
C1—N1—C5—C40.1 (2)C11—C12—C13—O2176.81 (12)
C12—C7—C8—C90.7 (2)C7—C12—C13—O1179.13 (12)
C7—C8—C9—C100.8 (2)C11—C12—C13—O11.87 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O10.85 (2)2.02 (2)2.8654 (18)174.1 (19)
N1—H1N1···O1i0.98 (2)1.75 (2)2.7255 (14)174.1 (16)
N2—H2N2···O2i0.92 (2)1.83 (2)2.7437 (17)172.7 (18)
C2—H2A···O2ii0.932.403.1459 (18)137
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC6H9N2+·C7H4ClO2
Mr264.70
Crystal system, space groupMonoclinic, P21/c
Temperature (K)297
a, b, c (Å)9.8510 (6), 10.7707 (8), 12.2123 (7)
β (°) 102.335 (2)
V3)1265.84 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.46 × 0.25 × 0.13
Data collection
DiffractometerBruker SMART APEXII DUO CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.876, 0.963
No. of measured, independent and
observed [I > 2σ(I)] reflections
17572, 4628, 2976
Rint0.034
(sin θ/λ)max1)0.761
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.139, 1.04
No. of reflections4628
No. of parameters176
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.31

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O10.85 (2)2.02 (2)2.8654 (18)174.1 (19)
N1—H1N1···O1i0.98 (2)1.75 (2)2.7255 (14)174.1 (16)
N2—H2N2···O2i0.92 (2)1.83 (2)2.7437 (17)172.7 (18)
C2—H2A···O2ii0.932.403.1459 (18)137
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-5599-2009.

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia (USM) for the research facilities and USM Short Term Grant No. 304/PFIZIK/6312078 to conduct this work. KT thanks The Academy of Sciences for the Developing World and USM for a TWAS–USM fellowship.

References

First citationAakeroy, C. B., Beatty, A. M. & Helfrich, B. A. (2002). J. Am. Chem. Soc. 124, 14425–14432.  Web of Science CSD CrossRef PubMed Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDionysiou, D. D., Suidan, M. T., Bekou, E., Baudin, I. & Laine, J.-M. (2000). Appl. Catal. B, 26, 153–171.  CrossRef CAS Google Scholar
First citationKatritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). In Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.  Google Scholar
First citationNahringbauer, I. & Kvick, Å. (1977). Acta Cryst. B33, 2902–2905.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationPozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). In Heterocycles in Life and Society. New York: Wiley.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThanigaimani, K., Farhadikoutenaei, A., Khalib, N. C., Arshad, S. & Razak, I. A. (2012a). Acta Cryst. E68, o3195.  CSD CrossRef IUCr Journals Google Scholar
First citationThanigaimani, K., Farhadikoutenaei, A., Khalib, N. C., Arshad, S. & Razak, I. A. (2012b). Acta Cryst. E68, o3196–o3197.  CSD CrossRef IUCr Journals Google Scholar
First citationThanigaimani, K., Farhadikoutenaei, A., Khalib, N. C., Arshad, S. & Razak, I. A. (2012c). Acta Cryst. E68, o3319–o3320.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds