organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,5-Di­methyl-2-phenyl-1H-pyrazol-3(2H)-one–4,4′-(propane-2,2-di­yl)bis­­[1,5-di­methyl-2-phenyl-1H-pyrazol-3(2H)-one] (1/1)

aInstitute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
*Correspondence e-mail: k.lyczko@ichtj.waw.pl

(Received 5 November 2012; accepted 14 December 2012; online 22 December 2012)

The asymmetric unit of the title compound, C11H12N2O·C25H28N4O2, contains two different mol­ecules. The smaller is known as anti­pyrine [systematic name: 1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one] and the larger is built up from two antypirine mol­ecules which are connected through a C atom of the pyrazolone ring to a central propanyl part [systematic name: 4,4′-(propane-2,2-di­yl)bis­[1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one]. Intra­molecular C—H⋯O hydrogen bonds occur in the latter mol­ecule. In the crystal, C—H⋯O hydrogen bonds link the mol­ecules into a two-dimensional network parallel to (001).

Related literature

Structural data on metal complexes with anti­pyrine were reported by Vijayan & Viswamitra (1966[Vijayan, M. & Viswamitra, M. A. (1966). Acta Cryst. 21, 522-532.]); Biagini Cingi et al. (1972[Cingi, M. B., Guastini, C., Musatti, A. & Nardelli, M. (1972). Acta Cryst. B28, 667-672.]); Baker & Jeffery (1974[Baker, R. W. & Jeffery, J. W. (1974). J. Chem. Soc. Dalton Trans. pp. 229-232.]); Brassy et al. (1974[Brassy, C., Renaud, A., Delettré, J. & Mornon, J.-P. (1974). Acta Cryst. B30, 2246-2248.]); Mahadevan et al. (1984[Mahadevan, C., Radha, A. & Seshasayee, M. (1984). Z. Kristallogr. 169, 159-163.]); Rheingold & King (1989[Rheingold, A. L. & King, W. (1989). Inorg. Chem. 28, 1715-1719.]) and Su et al. (2000[Su, C.-Y., Yang, X.-P., Xu, A.-W., Zhang, Z.-F., Liu, H.-K. & Kang, B.-S. (2000). Acta Cryst. C56, e82-e83.]). For related structures, see: Singh & Vijayan (1973[Singh, T. P. & Vijayan, M. (1973). Acta Cryst. B29, 714-720.]); Panneerselvam et al. (1996[Panneerselvam, K., Jayanthi, N., Rudiño-Piñera, E. & Soriano-García, M. (1996). Acta Cryst. C52, 1257-1258.]); Merz (2002[Merz, K. (2002). Acta Cryst. E58, o338-o340.]); Yuchi et al. (1991[Yuchi, A., Shiro, M., Wada, H. & Nakagawa, G. (1991). Bull. Chem. Soc. Jpn, 64, 760-765.]). Some properties of anti­pyrine and its derivatives were described by Peter et al. (1991[Peter, J. V. St., Abul-Hajj, Y. & Awni, W. M. (1991). Pharm. Res. 8, 1470-1476.]).

[Scheme 1]

Experimental

Crystal data
  • C11H12N2O·C25H28N4O2

  • Mr = 604.74

  • Monoclinic, P 21 /n

  • a = 11.1751 (3) Å

  • b = 7.4623 (2) Å

  • c = 37.2830 (8) Å

  • β = 91.570 (2)°

  • V = 3107.93 (14) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.67 mm−1

  • T = 100 K

  • 0.30 × 0.25 × 0.15 mm

Data collection
  • Agilent SuperNova (Dual, Cu at zero, Eos) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.938, Tmax = 1.000

  • 12009 measured reflections

  • 6009 independent reflections

  • 5366 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.099

  • S = 1.03

  • 6009 reflections

  • 414 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.95 2.50 3.2949 (17) 142
C5—H5C⋯O2 0.98 2.44 3.3930 (17) 163
C10—H10⋯O3ii 0.95 2.53 3.4670 (18) 171
C14—H14A⋯O3 0.98 2.45 3.1228 (17) 126
C14—H14B⋯O2 0.98 2.34 3.0275 (17) 126
C21—H21⋯O1iii 0.95 2.49 3.3428 (18) 150
C25—H25⋯O2 0.95 2.37 2.8811 (17) 113
C29—H29B⋯O3iv 0.98 2.38 3.2956 (17) 155
C30—H30A⋯O3iv 0.98 2.32 3.3015 (16) 176
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y+1, z; (iii) x-1, y-1, z; (iv) x, y+1, z.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,5-Dimethyl-2-phenyl-1H-pyrazol-3(2H)-one, known as antipyrine or phenazone, is an interesting synthetic compound from the medicinal (pharmaceutical) point of view because of its analgesic and antipyretic properties. It is also used as a probe of oxidative metabolism (Peter et al., 1991). Antipyrine is a bulky monodentate donor ligand. Its functional carbonyl group can coordinate to metal ions. Some structures of homoleptic antipyrine-metal complexes were punlished, such as [Pb(antipyrine)6](ClO4)2 (Vijayan & Viswamitra, 1966), [Y(antipyrine)6]I3 (Baker & Jeffery, 1974), [Cd(antipyrine)6](ClO4)2 (Mahadevan et al., 1984), [Tb(antipyrine)6]I3 (Rheingold & King, 1989) and [Tb(antipyrine)6](ClO4)3 (Su et al., 2000). Moreover, the crystal structures of other complexes, e.g., [Zn(antipyrine)2Cl2] (Biagini Cingi et al., 1972) and [Cu(antipyrine)2(NO3)2] (Brassy et al., 1974) have been reported.

The aim of this work was to crystallize the hexa-coordinated complex between PbII ions and antipyrine with nitrate as a counterion. Previously the hexakis(antipyrine)lead(II) perchlorate complex was successfully crystallized from a solution in water (Vijayan & Viswamitra, 1966). Unexpectedly, under the reaction conditions applied in this work (see Experimental), instead of the hexakis(antipyrine)lead(II) nitrate complex, two different organic molecules were co-crystallized (Fig. 1). The first one is antipyrine and the second one is 4,4'-propane-2,2-diyldiantipyrine - a compound containing two antipyrine molecules linked by a propanyl group. The molecules in the crystal structure are interacting together through very weak intermolecular C—H···O hydrogen bonds (Table 1, Fig. 2) forming a two-dimensional network parallel to (0 0 1). Additionally, the structure of 4,4'-propane-2,2-diyldiantipyrine is stabilized by three intramolecular C—H···O hydrogen bonds (Table 1, Fig. 2).

Previously antipyrine (Singh & Vijayan, 1973), 4-hydroxyantipyrine (Panneerselvam et al., 1996) and 4,4'-methylenediantipyrine (Merz, 2002), the similar compounds to 4,4'-propane-2,2-diyldiantipyrine, were crystallized. The reaction of 4,4'-methylenediantipyrine with titanium(IV) has been used for selective photometric determination of this cation. The structure of tris(4,4'-methylenediantipyrine)titanium(IV) perchlorate complex has been presented by Yuchi et al., (1991).

The presence of an antipyrine derivative in this crystal structure is extremely strange and in my opinion can probably be ascribed to the catalyzed conversion of antipyrine into such a complicated compound as in the presented reaction system.

Related literature top

Structural data on metal complexes with antipyrine were reported by Vijayan & Viswamitra (1966); Biagini Cingi et al. (1972); Baker & Jeffery (1974); Brassy et al. (1974); Mahadevan et al. (1984); Rheingold & King (1989) and Su et al. (2000). For related structures, see: Singh & Vijayan (1973); Panneerselvam et al. (1996); Merz (2002); Yuchi et al. (1991). Some properties of antipyrine and its derivatives were described by Peter et al. (1991).

Experimental top

The title compounds were crystallized unintentionally in an attempt to synthesize single crystals of the hexakis(antipyrine)lead(II) nitrate complex. Lead(II) nitrate (0.236 g, 0.712 mmol) and antipyrine (0.809 g, 4.293 mmol) were dissolved in 1.0 ml of water and methanol (1:1). Next about 1/5 of the solvent was evaporated off at a temperature of about 75°C. After one year of storage in the refrigerator some colourless block like crystals were found.

Refinement top

H atoms were placed in calculated positions with C—H = 0.98 (methyl) or 0.95 Å (aromatic) and were refined isotropically using a riding model with Uiso(H) = 1.5 Ueq(C) for methyl H atoms and Uiso(H) = 1.2 Ueq(C) for aromatic H atoms.

Structure description top

1,5-Dimethyl-2-phenyl-1H-pyrazol-3(2H)-one, known as antipyrine or phenazone, is an interesting synthetic compound from the medicinal (pharmaceutical) point of view because of its analgesic and antipyretic properties. It is also used as a probe of oxidative metabolism (Peter et al., 1991). Antipyrine is a bulky monodentate donor ligand. Its functional carbonyl group can coordinate to metal ions. Some structures of homoleptic antipyrine-metal complexes were punlished, such as [Pb(antipyrine)6](ClO4)2 (Vijayan & Viswamitra, 1966), [Y(antipyrine)6]I3 (Baker & Jeffery, 1974), [Cd(antipyrine)6](ClO4)2 (Mahadevan et al., 1984), [Tb(antipyrine)6]I3 (Rheingold & King, 1989) and [Tb(antipyrine)6](ClO4)3 (Su et al., 2000). Moreover, the crystal structures of other complexes, e.g., [Zn(antipyrine)2Cl2] (Biagini Cingi et al., 1972) and [Cu(antipyrine)2(NO3)2] (Brassy et al., 1974) have been reported.

The aim of this work was to crystallize the hexa-coordinated complex between PbII ions and antipyrine with nitrate as a counterion. Previously the hexakis(antipyrine)lead(II) perchlorate complex was successfully crystallized from a solution in water (Vijayan & Viswamitra, 1966). Unexpectedly, under the reaction conditions applied in this work (see Experimental), instead of the hexakis(antipyrine)lead(II) nitrate complex, two different organic molecules were co-crystallized (Fig. 1). The first one is antipyrine and the second one is 4,4'-propane-2,2-diyldiantipyrine - a compound containing two antipyrine molecules linked by a propanyl group. The molecules in the crystal structure are interacting together through very weak intermolecular C—H···O hydrogen bonds (Table 1, Fig. 2) forming a two-dimensional network parallel to (0 0 1). Additionally, the structure of 4,4'-propane-2,2-diyldiantipyrine is stabilized by three intramolecular C—H···O hydrogen bonds (Table 1, Fig. 2).

Previously antipyrine (Singh & Vijayan, 1973), 4-hydroxyantipyrine (Panneerselvam et al., 1996) and 4,4'-methylenediantipyrine (Merz, 2002), the similar compounds to 4,4'-propane-2,2-diyldiantipyrine, were crystallized. The reaction of 4,4'-methylenediantipyrine with titanium(IV) has been used for selective photometric determination of this cation. The structure of tris(4,4'-methylenediantipyrine)titanium(IV) perchlorate complex has been presented by Yuchi et al., (1991).

The presence of an antipyrine derivative in this crystal structure is extremely strange and in my opinion can probably be ascribed to the catalyzed conversion of antipyrine into such a complicated compound as in the presented reaction system.

Structural data on metal complexes with antipyrine were reported by Vijayan & Viswamitra (1966); Biagini Cingi et al. (1972); Baker & Jeffery (1974); Brassy et al. (1974); Mahadevan et al. (1984); Rheingold & King (1989) and Su et al. (2000). For related structures, see: Singh & Vijayan (1973); Panneerselvam et al. (1996); Merz (2002); Yuchi et al. (1991). Some properties of antipyrine and its derivatives were described by Peter et al. (1991).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A molecular structure of the title compounds. Displacement ellipsoids of the non-hydrogen atoms are drawn at the 50% probability level.
[Figure 2] Fig. 2. A fragment of the crystal structure showing the intra- and intermolecular hydrogen bonds.
1,5-Dimethyl-2-phenyl-1H-pyrazol-3(2H)-one– 4,4'-(propane-2,2-diyl)bis[1,5-dimethyl-2-phenyl-1H- pyrazol-3(2H)-one] (1/1) top
Crystal data top
C25H28N4O2·C11H12N2OF(000) = 1288
Mr = 604.74Dx = 1.292 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ynCell parameters from 5594 reflections
a = 11.1751 (3) Åθ = 3.6–71.8°
b = 7.4623 (2) ŵ = 0.67 mm1
c = 37.2830 (8) ÅT = 100 K
β = 91.570 (2)°Block, colourless
V = 3107.93 (14) Å30.30 × 0.25 × 0.15 mm
Z = 4
Data collection top
Agilent SuperNova (Dual, Cu at zero, Eos)
diffractometer
6009 independent reflections
Radiation source: SuperNova (Cu) X-ray Source5366 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.018
Detector resolution: 16.0131 pixels mm-1θmax = 72.0°, θmin = 4.1°
ω scansh = 1313
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 49
Tmin = 0.938, Tmax = 1.000l = 4542
12009 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0422P)2 + 1.6129P]
where P = (Fo2 + 2Fc2)/3
6009 reflections(Δ/σ)max < 0.001
414 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C25H28N4O2·C11H12N2OV = 3107.93 (14) Å3
Mr = 604.74Z = 4
Monoclinic, P21/nCu Kα radiation
a = 11.1751 (3) ŵ = 0.67 mm1
b = 7.4623 (2) ÅT = 100 K
c = 37.2830 (8) Å0.30 × 0.25 × 0.15 mm
β = 91.570 (2)°
Data collection top
Agilent SuperNova (Dual, Cu at zero, Eos)
diffractometer
6009 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
5366 reflections with I > 2σ(I)
Tmin = 0.938, Tmax = 1.000Rint = 0.018
12009 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.03Δρmax = 0.26 e Å3
6009 reflectionsΔρmin = 0.31 e Å3
414 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.73885 (12)0.5494 (2)0.19813 (4)0.0176 (3)
C20.70121 (13)0.4021 (2)0.22001 (4)0.0201 (3)
H20.72880.37750.24380.024*
C30.61974 (12)0.30441 (19)0.20087 (4)0.0191 (3)
C40.55955 (15)0.1333 (2)0.21067 (4)0.0281 (3)
H4A0.59440.03410.19730.042*
H4B0.47380.14180.20470.042*
H4C0.57100.11170.23650.042*
C50.57888 (13)0.2704 (2)0.13580 (4)0.0201 (3)
H5A0.65430.20980.13060.030*
H5B0.55460.34590.11540.030*
H5C0.51670.18080.14000.030*
C60.65888 (12)0.65797 (18)0.13835 (3)0.0160 (3)
C70.54464 (13)0.69605 (19)0.12467 (4)0.0191 (3)
H70.47690.63790.13420.023*
C80.53013 (14)0.8194 (2)0.09705 (4)0.0230 (3)
H80.45240.84360.08730.028*
C90.62883 (15)0.9074 (2)0.08366 (4)0.0246 (3)
H90.61880.99050.06450.029*
C100.74213 (14)0.87403 (19)0.09827 (4)0.0227 (3)
H100.80910.93750.08960.027*
C110.75846 (13)0.74826 (19)0.12551 (4)0.0189 (3)
H110.83620.72410.13520.023*
N10.59546 (10)0.38236 (16)0.16795 (3)0.0166 (2)
N20.67665 (10)0.52572 (16)0.16531 (3)0.0161 (2)
O10.80765 (9)0.67590 (15)0.20421 (3)0.0244 (2)
C120.26030 (12)0.43381 (19)0.11446 (4)0.0179 (3)
H12A0.28930.51280.09560.027*
H12B0.32820.37120.12590.027*
H12C0.21920.50530.13240.027*
C130.17264 (11)0.29586 (17)0.09789 (3)0.0139 (3)
C140.24097 (12)0.18958 (19)0.06911 (4)0.0182 (3)
H14A0.18840.09710.05870.027*
H14B0.31180.13290.08030.027*
H14C0.26590.27160.05020.027*
C150.22095 (12)0.04833 (18)0.14514 (3)0.0154 (3)
C160.13547 (11)0.17061 (17)0.12818 (3)0.0137 (3)
C170.03074 (12)0.15149 (18)0.14544 (3)0.0143 (3)
C180.08452 (12)0.2527 (2)0.14323 (4)0.0201 (3)
H18A0.08990.33210.16410.030*
H18B0.15160.16820.14300.030*
H18C0.08760.32440.12120.030*
C190.01645 (13)0.0347 (2)0.20569 (4)0.0209 (3)
H19A0.02010.13780.21800.031*
H19B0.00290.07360.22010.031*
H19C0.10270.05500.20240.031*
C200.19083 (12)0.20882 (18)0.18707 (3)0.0163 (3)
C210.10387 (13)0.3368 (2)0.19420 (4)0.0205 (3)
H210.02200.31410.18830.025*
C220.13810 (15)0.4980 (2)0.21008 (4)0.0267 (3)
H220.07860.58360.21580.032*
C230.25744 (15)0.5362 (2)0.21774 (4)0.0279 (3)
H230.28000.64750.22830.034*
C240.34341 (14)0.4095 (2)0.20980 (4)0.0248 (3)
H240.42550.43560.21450.030*
C250.31133 (13)0.2447 (2)0.19507 (3)0.0192 (3)
H250.37080.15730.19050.023*
C260.02192 (11)0.26949 (18)0.05944 (3)0.0137 (3)
C270.06521 (11)0.38047 (18)0.07869 (3)0.0135 (3)
C280.02835 (11)0.55412 (18)0.07508 (3)0.0138 (3)
C290.08036 (13)0.72665 (18)0.08890 (4)0.0189 (3)
H29A0.09260.71900.11500.028*
H29B0.02520.82520.08310.028*
H29C0.15730.74860.07770.028*
C300.10277 (12)0.69931 (18)0.02819 (3)0.0169 (3)
H30A0.07810.81710.03730.025*
H30B0.18830.70180.02170.025*
H30C0.05680.66980.00700.025*
C310.22286 (12)0.34094 (18)0.03238 (3)0.0143 (3)
C320.23650 (13)0.20851 (19)0.00621 (4)0.0176 (3)
H320.16840.15090.00320.021*
C330.35122 (13)0.16203 (19)0.00586 (4)0.0204 (3)
H330.36160.07190.02370.024*
C340.45076 (13)0.2464 (2)0.00795 (4)0.0217 (3)
H340.52880.21440.00050.026*
C350.43591 (13)0.37752 (19)0.03412 (4)0.0199 (3)
H350.50400.43500.04360.024*
C360.32209 (12)0.42511 (19)0.04652 (3)0.0170 (3)
H360.31200.51440.06450.020*
N30.03776 (10)0.01203 (16)0.17043 (3)0.0154 (2)
N40.15874 (10)0.04046 (16)0.17199 (3)0.0160 (2)
N50.08054 (10)0.56315 (14)0.05609 (3)0.0137 (2)
N60.10503 (10)0.38756 (15)0.04440 (3)0.0142 (2)
O20.32678 (8)0.01806 (14)0.13877 (3)0.0215 (2)
O30.03072 (9)0.10492 (12)0.05679 (3)0.0181 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0138 (6)0.0231 (7)0.0160 (6)0.0009 (6)0.0012 (5)0.0033 (5)
C20.0194 (7)0.0249 (7)0.0161 (6)0.0009 (6)0.0015 (5)0.0000 (6)
C30.0176 (7)0.0194 (7)0.0204 (7)0.0026 (6)0.0028 (5)0.0013 (5)
C40.0316 (8)0.0238 (8)0.0290 (8)0.0051 (7)0.0001 (6)0.0059 (6)
C50.0169 (7)0.0216 (7)0.0218 (7)0.0013 (6)0.0005 (5)0.0064 (6)
C60.0189 (7)0.0148 (6)0.0142 (6)0.0003 (5)0.0023 (5)0.0031 (5)
C70.0184 (7)0.0203 (7)0.0187 (6)0.0008 (6)0.0028 (5)0.0022 (5)
C80.0255 (8)0.0229 (7)0.0204 (7)0.0082 (6)0.0002 (6)0.0022 (6)
C90.0395 (9)0.0160 (7)0.0184 (7)0.0049 (6)0.0045 (6)0.0006 (6)
C100.0303 (8)0.0162 (7)0.0219 (7)0.0042 (6)0.0093 (6)0.0041 (6)
C110.0191 (7)0.0186 (7)0.0193 (6)0.0010 (6)0.0042 (5)0.0045 (5)
N10.0166 (6)0.0151 (6)0.0180 (5)0.0034 (5)0.0004 (4)0.0011 (4)
N20.0150 (5)0.0169 (6)0.0162 (5)0.0033 (5)0.0002 (4)0.0000 (4)
O10.0228 (5)0.0292 (6)0.0210 (5)0.0091 (5)0.0016 (4)0.0043 (4)
C120.0142 (6)0.0164 (7)0.0228 (7)0.0012 (5)0.0019 (5)0.0007 (5)
C130.0128 (6)0.0128 (6)0.0161 (6)0.0007 (5)0.0010 (5)0.0002 (5)
C140.0174 (7)0.0194 (7)0.0180 (6)0.0027 (6)0.0029 (5)0.0009 (5)
C150.0152 (6)0.0139 (6)0.0173 (6)0.0012 (5)0.0005 (5)0.0005 (5)
C160.0130 (6)0.0123 (6)0.0157 (6)0.0003 (5)0.0008 (5)0.0016 (5)
C170.0141 (6)0.0147 (6)0.0141 (6)0.0004 (5)0.0017 (5)0.0011 (5)
C180.0146 (7)0.0243 (7)0.0216 (7)0.0044 (6)0.0026 (5)0.0007 (6)
C190.0245 (7)0.0214 (7)0.0171 (7)0.0008 (6)0.0062 (5)0.0010 (5)
C200.0213 (7)0.0147 (6)0.0128 (6)0.0009 (5)0.0007 (5)0.0001 (5)
C210.0227 (7)0.0203 (7)0.0184 (7)0.0015 (6)0.0017 (5)0.0003 (5)
C220.0382 (9)0.0179 (7)0.0242 (7)0.0038 (7)0.0067 (6)0.0026 (6)
C230.0435 (10)0.0187 (7)0.0218 (7)0.0084 (7)0.0039 (6)0.0053 (6)
C240.0293 (8)0.0279 (8)0.0170 (7)0.0104 (7)0.0005 (6)0.0014 (6)
C250.0214 (7)0.0209 (7)0.0152 (6)0.0012 (6)0.0006 (5)0.0000 (5)
C260.0141 (6)0.0138 (6)0.0133 (6)0.0003 (5)0.0019 (5)0.0005 (5)
C270.0133 (6)0.0135 (6)0.0138 (6)0.0009 (5)0.0020 (5)0.0007 (5)
C280.0129 (6)0.0146 (6)0.0140 (6)0.0012 (5)0.0013 (5)0.0009 (5)
C290.0207 (7)0.0119 (6)0.0239 (7)0.0001 (5)0.0048 (5)0.0016 (5)
C300.0207 (7)0.0141 (6)0.0159 (6)0.0008 (5)0.0004 (5)0.0023 (5)
C310.0159 (6)0.0130 (6)0.0138 (6)0.0021 (5)0.0018 (5)0.0024 (5)
C320.0201 (7)0.0157 (7)0.0168 (6)0.0004 (5)0.0005 (5)0.0008 (5)
C330.0246 (7)0.0174 (7)0.0188 (6)0.0026 (6)0.0041 (5)0.0020 (5)
C340.0180 (7)0.0223 (7)0.0246 (7)0.0043 (6)0.0060 (5)0.0030 (6)
C350.0165 (7)0.0193 (7)0.0239 (7)0.0014 (6)0.0009 (5)0.0022 (6)
C360.0197 (7)0.0158 (7)0.0156 (6)0.0006 (5)0.0002 (5)0.0005 (5)
N30.0116 (5)0.0184 (6)0.0162 (5)0.0011 (4)0.0017 (4)0.0012 (4)
N40.0110 (5)0.0175 (6)0.0196 (6)0.0004 (4)0.0003 (4)0.0025 (5)
N50.0162 (5)0.0095 (5)0.0154 (5)0.0006 (4)0.0011 (4)0.0007 (4)
N60.0154 (6)0.0100 (5)0.0170 (5)0.0006 (4)0.0016 (4)0.0012 (4)
O20.0123 (5)0.0237 (5)0.0287 (5)0.0033 (4)0.0038 (4)0.0073 (4)
O30.0193 (5)0.0114 (5)0.0236 (5)0.0008 (4)0.0027 (4)0.0009 (4)
Geometric parameters (Å, º) top
C1—C21.439 (2)C19—H19C0.9800
C2—H20.9500C20—C211.393 (2)
C3—C21.354 (2)C20—C251.3972 (19)
C3—C41.493 (2)C21—H210.9500
C4—H4A0.9800C22—C211.390 (2)
C4—H4B0.9800C22—C231.386 (2)
C4—H4C0.9800C22—H220.9500
C5—H5A0.9800C23—H230.9500
C5—H5B0.9800C24—C231.386 (2)
C5—H5C0.9800C24—C251.390 (2)
C6—C71.3909 (19)C24—H240.9500
C7—H70.9500C25—H250.9500
C8—C71.387 (2)C27—C261.4529 (18)
C8—C91.389 (2)C28—C271.3652 (19)
C8—H80.9500C28—C291.4982 (18)
C9—H90.9500C29—H29A0.9800
C10—C91.387 (2)C29—H29B0.9800
C10—H100.9500C29—H29C0.9800
C11—C61.3966 (19)C30—H30A0.9800
C11—C101.391 (2)C30—H30B0.9800
C11—H110.9500C30—H30C0.9800
N1—C31.3785 (18)C31—C321.3942 (18)
N1—C51.4683 (17)C32—H320.9500
N2—C11.4018 (17)C33—C321.391 (2)
N2—C61.4187 (17)C33—C341.389 (2)
N2—N11.4079 (16)C33—H330.9500
O1—C11.2342 (17)C34—H340.9500
C12—H12A0.9800C35—C341.389 (2)
C12—H12B0.9800C35—H350.9500
C12—H12C0.9800C36—C311.3908 (19)
C13—C121.5388 (18)C36—C351.3877 (19)
C13—C161.5318 (17)C36—H360.9500
C13—C271.5185 (18)N3—C171.3975 (17)
C14—C131.5519 (18)N3—C191.4724 (16)
C14—H14A0.9800N4—C151.4009 (17)
C14—H14B0.9800N4—C201.4184 (17)
C14—H14C0.9800N4—N31.4072 (15)
C15—C161.4533 (18)O2—C151.2335 (16)
C17—C161.3587 (18)O3—C261.2357 (17)
C17—C181.4936 (18)N5—C281.3926 (17)
C18—H18A0.9800N5—C301.4705 (16)
C18—H18B0.9800N5—N61.4054 (15)
C18—H18C0.9800N6—C261.3873 (17)
C19—H19A0.9800N6—C311.4225 (17)
C19—H19B0.9800
O1—C1—C2132.09 (13)H18B—C18—H18C109.5
O1—C1—N2123.27 (13)H19A—C19—H19B109.5
N2—C1—C2104.63 (12)H19A—C19—H19C109.5
C3—C2—C1108.39 (12)H19B—C19—H19C109.5
C3—C2—H2125.8N3—C19—H19A109.5
C1—C2—H2125.8N3—C19—H19B109.5
C2—C3—C4129.21 (13)N3—C19—H19C109.5
C2—C3—N1110.80 (13)C21—C20—C25120.07 (13)
N1—C3—C4119.98 (13)C21—C20—N4120.84 (12)
C3—C4—H4A109.5C25—C20—N4119.09 (12)
C3—C4—H4B109.5C20—C21—H21120.3
C3—C4—H4C109.5C22—C21—C20119.30 (14)
H4A—C4—H4B109.5C22—C21—H21120.3
H4A—C4—H4C109.5C21—C22—H22119.4
H4B—C4—H4C109.5C23—C22—C21121.17 (14)
H5A—C5—H5B109.5C23—C22—H22119.4
H5A—C5—H5C109.5C22—C23—H23120.5
H5B—C5—H5C109.5C24—C23—C22119.00 (14)
N1—C5—H5A109.5C24—C23—H23120.5
N1—C5—H5B109.5C23—C24—C25121.01 (14)
N1—C5—H5C109.5C23—C24—H24119.5
C7—C6—C11120.51 (13)C25—C24—H24119.5
C7—C6—N2120.73 (12)C20—C25—H25120.3
C11—C6—N2118.75 (12)C24—C25—C20119.39 (14)
C6—C7—H7120.2C24—C25—H25120.3
C8—C7—C6119.67 (13)N6—C26—C27105.65 (11)
C8—C7—H7120.2O3—C26—C27131.05 (13)
C7—C8—C9120.20 (14)O3—C26—N6123.23 (12)
C7—C8—H8119.9C26—C27—C13120.43 (11)
C9—C8—H8119.9C28—C27—C13132.34 (12)
C8—C9—H9120.0C28—C27—C26107.22 (11)
C10—C9—C8119.95 (14)C27—C28—C29131.96 (12)
C10—C9—H9120.0C27—C28—N5110.67 (11)
C9—C10—C11120.53 (14)N5—C28—C29117.30 (12)
C9—C10—H10119.7C28—C29—H29A109.5
C11—C10—H10119.7C28—C29—H29B109.5
C6—C11—H11120.5C28—C29—H29C109.5
C10—C11—C6119.07 (13)H29A—C29—H29B109.5
C10—C11—H11120.5H29A—C29—H29C109.5
C3—N1—C5120.26 (12)H29B—C29—H29C109.5
C3—N1—N2105.75 (11)H30A—C30—H30B109.5
N2—N1—C5116.26 (11)H30A—C30—H30C109.5
C1—N2—C6125.95 (12)H30B—C30—H30C109.5
C1—N2—N1109.88 (11)N5—C30—H30A109.5
N1—N2—C6120.01 (11)N5—C30—H30B109.5
C13—C12—H12A109.5N5—C30—H30C109.5
C13—C12—H12B109.5C32—C31—N6118.45 (12)
C13—C12—H12C109.5C36—C31—C32120.83 (12)
H12A—C12—H12B109.5C36—C31—N6120.72 (12)
H12A—C12—H12C109.5C31—C32—H32120.5
H12B—C12—H12C109.5C33—C32—C31119.03 (13)
C12—C13—C14107.43 (11)C33—C32—H32120.5
C16—C13—C12107.15 (10)C32—C33—H33119.8
C16—C13—C14110.26 (11)C34—C33—C32120.48 (13)
C27—C13—C12113.43 (11)C34—C33—H33119.8
C27—C13—C14106.50 (10)C33—C34—H34120.1
C27—C13—C16111.99 (10)C35—C34—C33119.89 (13)
C13—C14—H14A109.5C35—C34—H34120.1
C13—C14—H14B109.5C34—C35—H35119.8
C13—C14—H14C109.5C36—C35—C34120.35 (13)
H14A—C14—H14B109.5C36—C35—H35119.8
H14A—C14—H14C109.5C31—C36—H36120.3
H14B—C14—H14C109.5C35—C36—C31119.41 (13)
N4—C15—C16105.96 (11)C35—C36—H36120.3
O2—C15—C16130.79 (12)C17—N3—C19119.52 (11)
O2—C15—N4123.24 (12)C17—N3—N4105.74 (10)
C15—C16—C13121.04 (11)N4—N3—C19114.42 (10)
C17—C16—C13131.90 (12)C15—N4—C20125.25 (11)
C17—C16—C15106.99 (11)C15—N4—N3109.50 (10)
C16—C17—C18132.34 (13)N3—N4—C20119.68 (11)
C16—C17—N3111.14 (11)C28—N5—C30121.43 (11)
N3—C17—C18116.50 (11)C28—N5—N6105.82 (10)
C17—C18—H18A109.5N6—N5—C30113.40 (10)
C17—C18—H18B109.5C26—N6—C31125.14 (11)
C17—C18—H18C109.5C26—N6—N5110.14 (10)
H18A—C18—H18B109.5N5—N6—C31119.77 (10)
H18A—C18—H18C109.5
N2—C1—C2—C31.74 (15)C23—C22—C21—C202.3 (2)
O1—C1—C2—C3177.25 (15)C21—C22—C23—C240.9 (2)
C4—C3—C2—C1175.98 (14)C25—C24—C23—C221.3 (2)
N1—C3—C2—C13.07 (16)C23—C24—C25—C202.1 (2)
C11—C6—C7—C82.6 (2)C13—C27—C26—N6178.31 (11)
N2—C6—C7—C8176.75 (12)C13—C27—C26—O34.7 (2)
C9—C8—C7—C61.5 (2)C28—C27—C26—N61.73 (14)
C7—C8—C9—C100.9 (2)C28—C27—C26—O3175.24 (14)
C11—C10—C9—C82.1 (2)C29—C28—C27—C130.2 (2)
C10—C11—C6—C71.4 (2)C29—C28—C27—C26179.77 (13)
C10—C11—C6—N2177.97 (12)N5—C28—C27—C13177.14 (12)
C6—C11—C10—C91.0 (2)N5—C28—C27—C262.81 (15)
C5—N1—C3—C2140.75 (13)C36—C31—C32—C330.4 (2)
C5—N1—C3—C438.41 (19)N6—C31—C32—C33179.81 (12)
N2—N1—C3—C26.58 (15)C34—C33—C32—C310.0 (2)
N2—N1—C3—C4172.58 (12)C32—C33—C34—C350.3 (2)
C6—N2—C1—C2162.62 (12)C36—C35—C34—C330.1 (2)
C6—N2—C1—O116.5 (2)C35—C36—C31—C320.6 (2)
N1—N2—C1—C25.83 (14)C35—C36—C31—N6179.63 (12)
N1—N2—C1—O1173.27 (12)C31—C36—C35—C340.3 (2)
C1—N2—C6—C7127.36 (14)C19—N3—C17—C16139.18 (12)
C1—N2—C6—C1153.23 (18)C19—N3—C17—C1839.15 (17)
N1—N2—C6—C727.30 (18)N4—N3—C17—C168.40 (14)
N1—N2—C6—C11152.11 (12)N4—N3—C17—C18169.93 (11)
C1—N2—N1—C37.69 (14)C15—N4—C20—C21138.74 (14)
C1—N2—N1—C5143.99 (12)C15—N4—C20—C2541.86 (18)
C6—N2—N1—C3166.08 (11)N3—N4—C20—C2112.09 (18)
C6—N2—N1—C557.62 (16)N3—N4—C20—C25167.32 (11)
C12—C13—C16—C1567.73 (15)C20—N4—C15—C16157.61 (12)
C12—C13—C16—C17108.90 (16)C20—N4—C15—O221.5 (2)
C14—C13—C16—C1548.90 (16)N3—N4—C15—C164.31 (14)
C14—C13—C16—C17134.48 (15)N3—N4—C15—O2174.79 (12)
C27—C13—C16—C15167.29 (11)C15—N4—N3—C177.68 (14)
C27—C13—C16—C1716.1 (2)C15—N4—N3—C19141.33 (12)
C12—C13—C27—C26175.73 (11)C20—N4—N3—C17162.70 (11)
C12—C13—C27—C284.3 (2)C20—N4—N3—C1963.66 (15)
C14—C13—C27—C2657.76 (15)C30—N5—C28—C27137.23 (12)
C14—C13—C27—C28122.29 (15)C30—N5—C28—C2945.31 (17)
C16—C13—C27—C2662.84 (15)N6—N5—C28—C276.17 (14)
C16—C13—C27—C28117.11 (15)N6—N5—C28—C29176.37 (11)
N4—C15—C16—C13178.23 (11)C28—N5—N6—C267.30 (13)
N4—C15—C16—C170.86 (14)C28—N5—N6—C31163.66 (11)
O2—C15—C16—C132.8 (2)C30—N5—N6—C26142.79 (11)
O2—C15—C16—C17179.86 (14)C30—N5—N6—C3160.86 (15)
C18—C17—C16—C134.8 (3)C31—N6—C26—C27160.42 (11)
C18—C17—C16—C15172.16 (14)C31—N6—C26—O316.9 (2)
N3—C17—C16—C13177.21 (12)N5—N6—C26—C275.62 (13)
N3—C17—C16—C155.81 (15)N5—N6—C26—O3171.66 (12)
C25—C20—C21—C221.5 (2)C26—N6—C31—C3257.86 (17)
N4—C20—C21—C22177.89 (12)C26—N6—C31—C36121.90 (14)
C21—C20—C25—C240.7 (2)N5—N6—C31—C32149.55 (12)
N4—C20—C25—C24179.91 (12)N5—N6—C31—C3630.68 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.952.503.2949 (17)142
C5—H5C···O20.982.443.3930 (17)163
C10—H10···O3ii0.952.533.4670 (18)171
C14—H14A···O30.982.453.1228 (17)126
C14—H14B···O20.982.343.0275 (17)126
C21—H21···O1iii0.952.493.3428 (18)150
C25—H25···O20.952.372.8811 (17)113
C29—H29B···O3iv0.982.383.2956 (17)155
C30—H30A···O3iv0.982.323.3015 (16)176
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1, y+1, z; (iii) x1, y1, z; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC25H28N4O2·C11H12N2O
Mr604.74
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)11.1751 (3), 7.4623 (2), 37.2830 (8)
β (°) 91.570 (2)
V3)3107.93 (14)
Z4
Radiation typeCu Kα
µ (mm1)0.67
Crystal size (mm)0.30 × 0.25 × 0.15
Data collection
DiffractometerAgilent SuperNova (Dual, Cu at zero, Eos)
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.938, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
12009, 6009, 5366
Rint0.018
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.099, 1.03
No. of reflections6009
No. of parameters414
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.31

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.952.503.2949 (17)141.9
C5—H5C···O20.982.443.3930 (17)162.8
C10—H10···O3ii0.952.533.4670 (18)170.7
C14—H14A···O30.982.453.1228 (17)125.7
C14—H14B···O20.982.343.0275 (17)126.1
C21—H21···O1iii0.952.493.3428 (18)150.1
C25—H25···O20.952.372.8811 (17)113.3
C29—H29B···O3iv0.982.383.2956 (17)154.8
C30—H30A···O3iv0.982.323.3015 (16)176.0
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1, y+1, z; (iii) x1, y1, z; (iv) x, y+1, z.
 

Acknowledgements

The author thanks the Institute of Nuclear Chemistry and Technology for financial support.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBaker, R. W. & Jeffery, J. W. (1974). J. Chem. Soc. Dalton Trans. pp. 229–232.  CrossRef Web of Science Google Scholar
First citationBrassy, C., Renaud, A., Delettré, J. & Mornon, J.-P. (1974). Acta Cryst. B30, 2246–2248.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationCingi, M. B., Guastini, C., Musatti, A. & Nardelli, M. (1972). Acta Cryst. B28, 667–672.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMahadevan, C., Radha, A. & Seshasayee, M. (1984). Z. Kristallogr. 169, 159–163.  CrossRef CAS Web of Science Google Scholar
First citationMerz, K. (2002). Acta Cryst. E58, o338–o340.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPanneerselvam, K., Jayanthi, N., Rudiño-Piñera, E. & Soriano-García, M. (1996). Acta Cryst. C52, 1257–1258.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPeter, J. V. St., Abul-Hajj, Y. & Awni, W. M. (1991). Pharm. Res. 8, 1470–1476.  PubMed Web of Science Google Scholar
First citationRheingold, A. L. & King, W. (1989). Inorg. Chem. 28, 1715–1719.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, T. P. & Vijayan, M. (1973). Acta Cryst. B29, 714–720.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSu, C.-Y., Yang, X.-P., Xu, A.-W., Zhang, Z.-F., Liu, H.-K. & Kang, B.-S. (2000). Acta Cryst. C56, e82–e83.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationVijayan, M. & Viswamitra, M. A. (1966). Acta Cryst. 21, 522–532.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationYuchi, A., Shiro, M., Wada, H. & Nakagawa, G. (1991). Bull. Chem. Soc. Jpn, 64, 760–765.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds