organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-5′′-(4-Fluoro­benzyl­­idene)-1′-(4-fluoro­phen­yl)-1′′-methyl-1′,2′,3′,5′,6′,7′,8′,8a′-octa­hydro­di­spiro­[ace­naphthyl­ene-1,3′-indolizine-2′,3′′-piperidine]-2,4′′(1H)-dione

aDepartment of Physics, The Madura College, Madurai 625 011, India, bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and cDepartment of Food Science and Technology, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka
*Correspondence e-mail: plakshmannilantha@ymail.com

(Received 25 November 2012; accepted 17 December 2012; online 22 December 2012)

In the title E isomer of the racemic compound, C37H32F2N2O2, the pyridinone ring adopts a twisted half-chair conformation with the N atom deviating by −0.355 (3) Å and with the methyl­ene C atom next to octa­hydro­indolizine moiety deviating by 0.415 (3) Å from the mean plane defined by other four atoms. In the octa­hydro­indolizine system, the pyrrolidine ring exhibits an envelope conformation with the fused methyne C atom deviating by 0.6496 (1) Å from the mean plane defined by four other atoms, and the piperidine ring exhibits a distorted chair conformation as evident from the puckering parameters Q = 0.568 (2) Å, θ = 1.0 (2) and Φ = 256 (11)°. In the crystal, C—H⋯O inter­actions connect the mol­ecules into chains along [101].

Related literature

For general properties of indolizines, see: Malonne et al. (1998[Malonne, H., Hanuise, J. & Fontaine, J. (1998). Pharm. Pharmacol. Commun. 4, 241-243.]); Medda et al. (2003[Medda, S., Jaisankar, P., Manna, R. K., Pal, B., Giri, V. S. & Basu, M. K. (2003). J. Drug Target. 11, 123-128.]); Pearson & Guo (2001[Pearson, W. H. & Guo, L. (2001). Tetrahedron Lett. 42, 8267-8271.]). For related structures, see: Sussman & Wodak (1973[Sussman, J. L. & Wodak, S. J. (1973). Acta Cryst. B29, 2918-2926.]); Wodak (1975[Wodak, S. J. (1975). Acta Cryst. B31, 569-573.]). For ring conformation analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C37H32F2N2O2

  • Mr = 574.65

  • Monoclinic, P 21 /n

  • a = 10.2716 (4) Å

  • b = 20.0353 (7) Å

  • c = 14.3790 (6) Å

  • β = 97.047 (1)°

  • V = 2936.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.21 × 0.19 × 0.18 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.]) Tmin = 0.967, Tmax = 0.974

  • 33177 measured reflections

  • 7519 independent reflections

  • 4823 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.126

  • S = 1.01

  • 7519 reflections

  • 388 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11A⋯O1i 0.97 2.49 3.352 (2) 148
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Indolizine derivatives have been found to possess a variety of biological activities such as anti-inflammatory (Malonne et al., 1998), antiviral (Medda et al., 2003) and anti-tumor (Pearson & Guo, 2001) activities. In view of its medicinal importance and in conjunction with our research interests, we synthesized the title compound and report here its X-ray structure.

In the title compound (Fig.1), the pyridinone ring adopts twisted half chair conformation with atoms N2 and C2 deviating by -0.355 (3)Å and 0.415 (3)Å respectively, from the mean plane defined by other atoms C3/C4/C5/C6. The sum of bond angles around N2 (332.65 (1) °) indicates a pyramidal geometry. Although the atoms C1, C2, C6 attached to the atom N2, are all in Sp2 hybridization, their different environments cause differences in bond lengths (N2-C2 (1.4467 (19) Å) and N2-C6 (1.457 (2) Å)) and in the bond angles (C1-N2-C2 (112.35 (13) °), C1-N2-C6 (111.00 (14) °) and C2-N2-C6 (109.31 (12) °)). The methyl group at position 1 of the pyridinone ring is in equatorial orientation, denoted by the torsion angle C1-N2-C6-C5 (177.38 (1) °). In the fused system , the pyrrolidine ring adopts the twisted envelope conformation with C8 atom at the flap deviating by 0.6496 (1) Å from the mean plane defined by other atoms C7/C3/C13/N1 and this orientation may be due to the intra-molecular C7—H7···O1 interaction. In the fused system the piperidine ring adopts a slightly distorted chair conformation as evident from the puckering parameters Q = 0.568 (2) Å, θ = 1.0 (2)° and Φ = 256 (11)° (Cremer & Pople, 1975). The twist of the 4-fluorobenzene ring (C52-C57) with respect to the spiro junction is denoted by the torsion angle C5-C51-C52-C57 (-49.1 (2) °). The dihedral angle between the mean plane of the pyridinone ring, defined by the atoms C2/C4/C5/C6 with the two 4-fluorobenzene rings are 87.70 (1) ° and 63.20 (1)°. The carbonyl bond length, i.e C4=O1 (1.214 (2) Å), is somewhat longer, due to C—H···O contacts. The C8—N1 bond length (1.456 (2) Å) is comparable with the CSp2—NSp2 distance found in similar structures (Sussman & Wodak, 1973; Wodak, 1975).

The structure is stabilized by intermolecular C11—H11A···O1 interactions generating chains along [101] (Fig. 2).

Related literature top

For general properties of indolizines, see: Malonne et al. (1998); Medda et al. (2003); Pearson & Guo (2001). For related structures, see: Sussman & Wodak (1973); Wodak (1975). For ring conformation analysis, see: Cremer & Pople (1975).

Experimental top

A mixture of 1-methyl-3,5-bis[(E)-4-fluromethylidene]tetrahydro-4(1H)- pyridinone (1 mmol), acenaphthenequinone (1 mmol) and piperidine-2- carboxylic acid (1 mmol) was dissolved in isopropyl alcohol (15 ml) and heated to reflux for 60 min. After completion of the reaction, as evident from TLC, the mixture was poured into water (50 ml), the precipitated solid was filtered and washed with water (100 ml) to obtain pure yellow solid. Melting point:498 K, Yield: 93%

Refinement top

H atoms were placed at calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.98 Å; Uiso = 1.2Ueq(C) for CH2 and CH groups, and Uiso = 1.5Ueq(C) for CH3 groups. The (0 1 1) reflection was probably affected by the beam-stop and was omitted from the refinement.

Structure description top

Indolizine derivatives have been found to possess a variety of biological activities such as anti-inflammatory (Malonne et al., 1998), antiviral (Medda et al., 2003) and anti-tumor (Pearson & Guo, 2001) activities. In view of its medicinal importance and in conjunction with our research interests, we synthesized the title compound and report here its X-ray structure.

In the title compound (Fig.1), the pyridinone ring adopts twisted half chair conformation with atoms N2 and C2 deviating by -0.355 (3)Å and 0.415 (3)Å respectively, from the mean plane defined by other atoms C3/C4/C5/C6. The sum of bond angles around N2 (332.65 (1) °) indicates a pyramidal geometry. Although the atoms C1, C2, C6 attached to the atom N2, are all in Sp2 hybridization, their different environments cause differences in bond lengths (N2-C2 (1.4467 (19) Å) and N2-C6 (1.457 (2) Å)) and in the bond angles (C1-N2-C2 (112.35 (13) °), C1-N2-C6 (111.00 (14) °) and C2-N2-C6 (109.31 (12) °)). The methyl group at position 1 of the pyridinone ring is in equatorial orientation, denoted by the torsion angle C1-N2-C6-C5 (177.38 (1) °). In the fused system , the pyrrolidine ring adopts the twisted envelope conformation with C8 atom at the flap deviating by 0.6496 (1) Å from the mean plane defined by other atoms C7/C3/C13/N1 and this orientation may be due to the intra-molecular C7—H7···O1 interaction. In the fused system the piperidine ring adopts a slightly distorted chair conformation as evident from the puckering parameters Q = 0.568 (2) Å, θ = 1.0 (2)° and Φ = 256 (11)° (Cremer & Pople, 1975). The twist of the 4-fluorobenzene ring (C52-C57) with respect to the spiro junction is denoted by the torsion angle C5-C51-C52-C57 (-49.1 (2) °). The dihedral angle between the mean plane of the pyridinone ring, defined by the atoms C2/C4/C5/C6 with the two 4-fluorobenzene rings are 87.70 (1) ° and 63.20 (1)°. The carbonyl bond length, i.e C4=O1 (1.214 (2) Å), is somewhat longer, due to C—H···O contacts. The C8—N1 bond length (1.456 (2) Å) is comparable with the CSp2—NSp2 distance found in similar structures (Sussman & Wodak, 1973; Wodak, 1975).

The structure is stabilized by intermolecular C11—H11A···O1 interactions generating chains along [101] (Fig. 2).

For general properties of indolizines, see: Malonne et al. (1998); Medda et al. (2003); Pearson & Guo (2001). For related structures, see: Sussman & Wodak (1973); Wodak (1975). For ring conformation analysis, see: Cremer & Pople (1975).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 20% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Partial packing diagram showing C—H···O interactions.
rac-5''-(4-Fluorobenzylidene)-1'-(4-fluorophenyl)-1''-methyl- 1',2',3',5',6',7',8',8a'-octahydrodispiro[acenaphthylene-1,3'-indolizine- 2',3''-piperidine]-2,4''(1H)-dione top
Crystal data top
C37H32F2N2O2F(000) = 1208
Mr = 574.65Dx = 1.300 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2000 reflections
a = 10.2716 (4) Åθ = 2–31°
b = 20.0353 (7) ŵ = 0.09 mm1
c = 14.3790 (6) ÅT = 293 K
β = 97.047 (1)°Block, yellow
V = 2936.8 (2) Å30.21 × 0.19 × 0.18 mm
Z = 4
Data collection top
Bruker Kappa APEXII
diffractometer
7519 independent reflections
Radiation source: fine-focus sealed tube4823 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 0 pixels mm-1θmax = 28.6°, θmin = 2.0°
ω and φ scansh = 1313
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 2727
Tmin = 0.967, Tmax = 0.974l = 1919
33177 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0467P)2 + 0.8383P]
where P = (Fo2 + 2Fc2)/3
7519 reflections(Δ/σ)max < 0.001
388 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C37H32F2N2O2V = 2936.8 (2) Å3
Mr = 574.65Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.2716 (4) ŵ = 0.09 mm1
b = 20.0353 (7) ÅT = 293 K
c = 14.3790 (6) Å0.21 × 0.19 × 0.18 mm
β = 97.047 (1)°
Data collection top
Bruker Kappa APEXII
diffractometer
7519 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4823 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.974Rint = 0.033
33177 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.01Δρmax = 0.22 e Å3
7519 reflectionsΔρmin = 0.21 e Å3
388 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of (F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R -factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.61115 (10)0.19654 (5)0.39944 (8)0.0470 (3)
N10.39601 (12)0.29516 (7)0.21792 (9)0.0406 (3)
N20.30062 (12)0.28413 (6)0.49902 (9)0.0409 (3)
C30.45465 (13)0.28569 (7)0.38350 (10)0.0333 (3)
C20.39870 (15)0.32425 (7)0.46112 (11)0.0378 (3)
H2A0.46860.33520.51040.045*
H2B0.35960.36560.43620.045*
O20.18118 (12)0.35533 (6)0.31669 (9)0.0557 (3)
C50.44596 (14)0.18822 (7)0.49900 (11)0.0375 (3)
C40.51377 (14)0.22096 (7)0.42563 (10)0.0355 (3)
F10.30715 (12)0.05223 (6)0.77515 (9)0.0769 (4)
C130.34404 (13)0.26706 (7)0.29939 (10)0.0358 (3)
C70.55514 (14)0.32673 (7)0.33483 (11)0.0363 (3)
H70.61700.29460.31360.044*
C140.20618 (15)0.29644 (8)0.31472 (11)0.0410 (4)
C710.63601 (15)0.37673 (7)0.39573 (11)0.0390 (3)
C200.17940 (15)0.18241 (8)0.29535 (11)0.0434 (4)
C510.45644 (15)0.12233 (8)0.50714 (12)0.0433 (4)
H510.50010.10090.46270.052*
C520.40751 (15)0.07919 (7)0.57780 (12)0.0414 (4)
C210.31177 (14)0.19344 (8)0.28438 (11)0.0391 (3)
C80.47433 (15)0.35371 (8)0.24735 (11)0.0420 (4)
H80.41760.39010.26380.050*
C60.36509 (17)0.23063 (8)0.55591 (12)0.0479 (4)
H6A0.29950.20320.58050.057*
H6B0.42100.24960.60850.057*
C560.39704 (17)0.05049 (9)0.73925 (13)0.0514 (4)
H560.41410.06060.80270.062*
C570.43161 (16)0.09393 (8)0.67207 (12)0.0478 (4)
H570.47210.13410.69070.057*
C150.11258 (15)0.24044 (9)0.31307 (11)0.0449 (4)
C220.38379 (17)0.14106 (9)0.25929 (13)0.0509 (4)
H220.47030.14720.24820.061*
C720.60036 (19)0.44278 (9)0.40225 (14)0.0574 (5)
H720.52230.45760.36900.069*
C10.21719 (19)0.32362 (9)0.55275 (15)0.0599 (5)
H1A0.15370.29510.57640.090*
H1B0.17270.35720.51310.090*
H1C0.27010.34470.60420.090*
C540.30853 (19)0.02399 (9)0.61792 (15)0.0588 (5)
H540.26540.06360.60020.071*
C760.75231 (16)0.35654 (9)0.44646 (12)0.0490 (4)
H760.77830.31220.44360.059*
C160.01960 (17)0.23783 (11)0.32096 (13)0.0597 (5)
H160.06630.27610.33230.072*
C530.34488 (18)0.01952 (8)0.55166 (13)0.0538 (4)
H530.32720.00880.48850.065*
C550.33711 (16)0.00765 (8)0.70981 (14)0.0497 (4)
F20.86998 (16)0.50943 (7)0.55739 (10)0.1067 (5)
C120.30442 (17)0.30500 (10)0.13328 (12)0.0555 (5)
H12A0.24170.33950.14380.067*
H12B0.25650.26400.11730.067*
C190.11871 (18)0.11956 (10)0.28474 (13)0.0575 (5)
C90.55224 (19)0.37571 (11)0.16992 (13)0.0612 (5)
H9A0.61650.34180.16010.073*
H9B0.59880.41670.18820.073*
C750.83110 (19)0.40116 (12)0.50153 (14)0.0656 (5)
H750.90910.38710.53560.079*
C230.3254 (2)0.07716 (9)0.25032 (15)0.0655 (5)
H230.37600.04120.23520.079*
C170.08141 (19)0.17526 (13)0.31121 (15)0.0726 (7)
H170.17060.17260.31660.087*
C730.6783 (2)0.48739 (10)0.45719 (16)0.0703 (6)
H730.65300.53170.46140.084*
C180.0162 (2)0.11856 (13)0.29418 (15)0.0728 (6)
H180.06130.07830.28860.087*
C740.7921 (2)0.46553 (11)0.50471 (14)0.0673 (6)
C110.3801 (2)0.32515 (12)0.05371 (13)0.0710 (6)
H11A0.31920.33390.00200.085*
H11B0.43700.28880.03990.085*
C100.4618 (2)0.38711 (13)0.07917 (14)0.0785 (7)
H10A0.40440.42470.08670.094*
H10B0.51370.39760.02910.094*
C240.1984 (2)0.06633 (10)0.26295 (15)0.0704 (6)
H240.16400.02340.25710.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0377 (6)0.0464 (6)0.0572 (7)0.0083 (5)0.0073 (5)0.0054 (5)
N10.0363 (6)0.0506 (8)0.0334 (7)0.0070 (6)0.0015 (5)0.0022 (6)
N20.0427 (7)0.0342 (7)0.0471 (8)0.0041 (5)0.0112 (6)0.0001 (6)
C30.0329 (7)0.0312 (7)0.0348 (8)0.0000 (6)0.0001 (6)0.0000 (6)
C20.0423 (8)0.0318 (7)0.0385 (8)0.0003 (6)0.0015 (7)0.0012 (6)
O20.0534 (7)0.0513 (7)0.0606 (8)0.0169 (6)0.0003 (6)0.0027 (6)
C50.0378 (7)0.0356 (8)0.0382 (8)0.0005 (6)0.0006 (6)0.0017 (6)
C40.0334 (7)0.0343 (8)0.0368 (8)0.0007 (6)0.0030 (6)0.0036 (6)
F10.0915 (8)0.0641 (7)0.0801 (8)0.0139 (6)0.0300 (7)0.0206 (6)
C130.0309 (7)0.0386 (8)0.0369 (8)0.0005 (6)0.0002 (6)0.0003 (6)
C70.0338 (7)0.0359 (8)0.0382 (8)0.0021 (6)0.0009 (6)0.0002 (6)
C140.0370 (8)0.0490 (9)0.0355 (8)0.0059 (7)0.0008 (6)0.0013 (7)
C710.0398 (8)0.0383 (8)0.0388 (8)0.0073 (6)0.0040 (7)0.0013 (6)
C200.0413 (8)0.0525 (10)0.0352 (8)0.0091 (7)0.0003 (7)0.0011 (7)
C510.0459 (8)0.0370 (8)0.0471 (9)0.0026 (7)0.0060 (7)0.0010 (7)
C520.0417 (8)0.0314 (8)0.0511 (10)0.0020 (6)0.0054 (7)0.0009 (7)
C210.0374 (7)0.0420 (8)0.0362 (8)0.0025 (6)0.0020 (6)0.0035 (6)
C80.0411 (8)0.0435 (9)0.0397 (9)0.0050 (7)0.0011 (7)0.0045 (7)
C60.0583 (10)0.0403 (9)0.0472 (10)0.0054 (7)0.0150 (8)0.0049 (7)
C560.0553 (10)0.0495 (10)0.0482 (10)0.0011 (8)0.0018 (8)0.0038 (8)
C570.0501 (9)0.0380 (8)0.0528 (10)0.0064 (7)0.0043 (8)0.0026 (7)
C150.0342 (8)0.0641 (11)0.0356 (8)0.0031 (7)0.0016 (6)0.0011 (7)
C220.0479 (9)0.0498 (10)0.0531 (10)0.0015 (8)0.0012 (8)0.0127 (8)
C720.0640 (11)0.0411 (10)0.0646 (12)0.0049 (8)0.0023 (9)0.0009 (8)
C10.0653 (11)0.0504 (11)0.0696 (13)0.0120 (9)0.0300 (10)0.0006 (9)
C540.0687 (12)0.0400 (9)0.0706 (13)0.0163 (8)0.0208 (10)0.0075 (9)
C760.0442 (9)0.0558 (10)0.0453 (10)0.0037 (7)0.0009 (7)0.0030 (8)
C160.0393 (9)0.0945 (15)0.0459 (10)0.0019 (9)0.0078 (8)0.0022 (10)
C530.0679 (11)0.0416 (9)0.0529 (11)0.0070 (8)0.0113 (9)0.0083 (8)
C550.0465 (9)0.0421 (9)0.0631 (12)0.0001 (7)0.0164 (8)0.0098 (8)
F20.1306 (12)0.1010 (11)0.0827 (10)0.0629 (9)0.0102 (9)0.0266 (8)
C120.0488 (9)0.0757 (13)0.0387 (9)0.0100 (9)0.0075 (8)0.0055 (9)
C190.0574 (11)0.0648 (12)0.0486 (10)0.0234 (9)0.0004 (9)0.0006 (9)
C90.0575 (11)0.0785 (13)0.0465 (10)0.0232 (10)0.0018 (8)0.0115 (9)
C750.0523 (11)0.0899 (16)0.0509 (11)0.0152 (10)0.0089 (9)0.0055 (10)
C230.0784 (14)0.0469 (11)0.0673 (13)0.0027 (10)0.0068 (11)0.0180 (9)
C170.0425 (10)0.119 (2)0.0568 (13)0.0283 (12)0.0080 (9)0.0046 (12)
C730.0943 (16)0.0439 (11)0.0718 (14)0.0180 (10)0.0065 (12)0.0088 (10)
C180.0616 (12)0.0925 (17)0.0635 (13)0.0370 (12)0.0041 (10)0.0013 (12)
C740.0825 (14)0.0662 (13)0.0521 (12)0.0346 (11)0.0039 (11)0.0132 (10)
C110.0660 (12)0.1065 (18)0.0376 (10)0.0204 (12)0.0053 (9)0.0102 (10)
C100.0806 (14)0.1072 (18)0.0451 (11)0.0291 (13)0.0032 (10)0.0243 (11)
C240.0858 (15)0.0498 (11)0.0715 (14)0.0212 (11)0.0065 (12)0.0115 (10)
Geometric parameters (Å, º) top
O1—C41.2142 (17)C57—H570.9300
N1—C81.456 (2)C15—C161.377 (2)
N1—C121.457 (2)C22—C231.413 (3)
N1—C131.4588 (19)C22—H220.9300
N2—C21.4467 (19)C72—C731.382 (3)
N2—C11.456 (2)C72—H720.9300
N2—C61.457 (2)C1—H1A0.9600
C3—C41.5255 (19)C1—H1B0.9600
C3—C21.526 (2)C1—H1C0.9600
C3—C71.552 (2)C54—C551.358 (3)
C3—C131.5987 (19)C54—C531.376 (3)
C2—H2A0.9700C54—H540.9300
C2—H2B0.9700C76—C751.387 (2)
O2—C141.2084 (19)C76—H760.9300
C5—C511.329 (2)C16—C171.404 (3)
C5—C41.486 (2)C16—H160.9300
C5—C61.499 (2)C53—H530.9300
F1—C551.3587 (19)F2—C741.356 (2)
C13—C211.521 (2)C12—C111.515 (3)
C13—C141.574 (2)C12—H12A0.9700
C7—C711.511 (2)C12—H12B0.9700
C7—C81.519 (2)C19—C241.403 (3)
C7—H70.9800C19—C181.409 (3)
C14—C151.476 (2)C9—C101.523 (3)
C71—C721.379 (2)C9—H9A0.9700
C71—C761.382 (2)C9—H9B0.9700
C20—C151.390 (2)C75—C741.353 (3)
C20—C191.405 (2)C75—H750.9300
C20—C211.405 (2)C23—C241.356 (3)
C51—C521.469 (2)C23—H230.9300
C51—H510.9300C17—C181.356 (3)
C52—C571.380 (2)C17—H170.9300
C52—C531.387 (2)C73—C741.352 (3)
C21—C221.358 (2)C73—H730.9300
C8—C91.514 (2)C18—H180.9300
C8—H80.9800C11—C101.518 (3)
C6—H6A0.9700C11—H11A0.9700
C6—H6B0.9700C11—H11B0.9700
C56—C551.361 (2)C10—H10A0.9700
C56—C571.379 (2)C10—H10B0.9700
C56—H560.9300C24—H240.9300
C8—N1—C12114.26 (13)C21—C22—C23119.06 (17)
C8—N1—C13108.73 (12)C21—C22—H22120.5
C12—N1—C13117.42 (12)C23—C22—H22120.5
C2—N2—C1112.35 (13)C71—C72—C73121.29 (18)
C2—N2—C6109.31 (12)C71—C72—H72119.4
C1—N2—C6111.00 (14)C73—C72—H72119.4
C4—C3—C2107.90 (12)N2—C1—H1A109.5
C4—C3—C7112.03 (11)N2—C1—H1B109.5
C2—C3—C7113.10 (12)H1A—C1—H1B109.5
C4—C3—C13108.25 (11)N2—C1—H1C109.5
C2—C3—C13112.02 (11)H1A—C1—H1C109.5
C7—C3—C13103.47 (11)H1B—C1—H1C109.5
N2—C2—C3109.64 (12)C55—C54—C53118.44 (16)
N2—C2—H2A109.7C55—C54—H54120.8
C3—C2—H2A109.7C53—C54—H54120.8
N2—C2—H2B109.7C71—C76—C75121.25 (18)
C3—C2—H2B109.7C71—C76—H76119.4
H2A—C2—H2B108.2C75—C76—H76119.4
C51—C5—C4117.46 (14)C15—C16—C17117.6 (2)
C51—C5—C6124.01 (15)C15—C16—H16121.2
C4—C5—C6118.47 (13)C17—C16—H16121.2
O1—C4—C5121.20 (13)C54—C53—C52120.95 (18)
O1—C4—C3121.49 (14)C54—C53—H53119.5
C5—C4—C3117.30 (12)C52—C53—H53119.5
N1—C13—C21110.80 (12)C54—C55—F1118.30 (16)
N1—C13—C14113.10 (12)C54—C55—C56123.00 (17)
C21—C13—C14101.45 (12)F1—C55—C56118.68 (17)
N1—C13—C3102.78 (11)N1—C12—C11109.17 (14)
C21—C13—C3117.13 (12)N1—C12—H12A109.8
C14—C13—C3112.01 (12)C11—C12—H12A109.8
C71—C7—C8116.73 (12)N1—C12—H12B109.8
C71—C7—C3116.03 (12)C11—C12—H12B109.8
C8—C7—C3103.64 (11)H12A—C12—H12B108.3
C71—C7—H7106.6C24—C19—C20116.23 (17)
C8—C7—H7106.6C24—C19—C18128.21 (19)
C3—C7—H7106.6C20—C19—C18115.51 (19)
O2—C14—C15127.07 (15)C8—C9—C10110.59 (15)
O2—C14—C13124.46 (14)C8—C9—H9A109.5
C15—C14—C13107.99 (13)C10—C9—H9A109.5
C72—C71—C76117.69 (15)C8—C9—H9B109.5
C72—C71—C7122.95 (14)C10—C9—H9B109.5
C76—C71—C7119.35 (14)H9A—C9—H9B108.1
C15—C20—C19123.18 (16)C74—C75—C76118.64 (19)
C15—C20—C21113.29 (14)C74—C75—H75120.7
C19—C20—C21123.46 (16)C76—C75—H75120.7
C5—C51—C52127.93 (15)C24—C23—C22122.47 (19)
C5—C51—H51116.0C24—C23—H23118.8
C52—C51—H51116.0C22—C23—H23118.8
C57—C52—C53118.16 (16)C18—C17—C16122.57 (18)
C57—C52—C51121.22 (14)C18—C17—H17118.7
C53—C52—C51120.41 (16)C16—C17—H17118.7
C22—C21—C20118.31 (15)C74—C73—C72118.93 (19)
C22—C21—C13132.12 (14)C74—C73—H73120.5
C20—C21—C13109.48 (13)C72—C73—H73120.5
N1—C8—C9110.11 (14)C17—C18—C19121.27 (19)
N1—C8—C7100.39 (12)C17—C18—H18119.4
C9—C8—C7115.35 (13)C19—C18—H18119.4
N1—C8—H8110.2C73—C74—C75122.20 (18)
C9—C8—H8110.2C73—C74—F2119.1 (2)
C7—C8—H8110.2C75—C74—F2118.7 (2)
N2—C6—C5110.76 (13)C12—C11—C10110.83 (18)
N2—C6—H6A109.5C12—C11—H11A109.5
C5—C6—H6A109.5C10—C11—H11A109.5
N2—C6—H6B109.5C12—C11—H11B109.5
C5—C6—H6B109.5C10—C11—H11B109.5
H6A—C6—H6B108.1H11A—C11—H11B108.1
C55—C56—C57117.91 (17)C11—C10—C9110.19 (17)
C55—C56—H56121.0C11—C10—H10A109.6
C57—C56—H56121.0C9—C10—H10A109.6
C56—C57—C52121.51 (16)C11—C10—H10B109.6
C56—C57—H57119.2C9—C10—H10B109.6
C52—C57—H57119.2H10A—C10—H10B108.1
C16—C15—C20119.84 (17)C23—C24—C19120.37 (18)
C16—C15—C14132.40 (17)C23—C24—H24119.8
C20—C15—C14107.67 (13)C19—C24—H24119.8
C1—N2—C2—C3163.25 (14)C12—N1—C8—C7179.61 (13)
C6—N2—C2—C373.06 (15)C13—N1—C8—C746.28 (15)
C4—C3—C2—N258.85 (14)C71—C7—C8—N1170.67 (13)
C7—C3—C2—N2176.66 (11)C3—C7—C8—N141.77 (14)
C13—C3—C2—N260.20 (15)C71—C7—C8—C971.06 (19)
C51—C5—C4—O127.6 (2)C3—C7—C8—C9160.05 (14)
C6—C5—C4—O1155.33 (15)C2—N2—C6—C558.13 (17)
C51—C5—C4—C3151.39 (14)C1—N2—C6—C5177.38 (14)
C6—C5—C4—C325.72 (19)C51—C5—C6—N2141.71 (16)
C2—C3—C4—O1145.48 (14)C4—C5—C6—N235.2 (2)
C7—C3—C4—O120.35 (19)C55—C56—C57—C520.5 (3)
C13—C3—C4—O193.10 (15)C53—C52—C57—C561.1 (3)
C2—C3—C4—C535.57 (16)C51—C52—C57—C56173.68 (15)
C7—C3—C4—C5160.70 (12)C19—C20—C15—C160.0 (3)
C13—C3—C4—C585.85 (15)C21—C20—C15—C16176.90 (15)
C8—N1—C13—C21156.45 (12)C19—C20—C15—C14177.03 (15)
C12—N1—C13—C2171.89 (17)C21—C20—C15—C140.10 (19)
C8—N1—C13—C1490.42 (14)O2—C14—C15—C166.2 (3)
C12—N1—C13—C1441.24 (19)C13—C14—C15—C16178.49 (17)
C8—N1—C13—C330.55 (14)O2—C14—C15—C20170.25 (16)
C12—N1—C13—C3162.21 (14)C13—C14—C15—C202.01 (17)
C4—C3—C13—N1116.32 (13)C20—C21—C22—C233.5 (3)
C2—C3—C13—N1124.84 (12)C13—C21—C22—C23179.66 (17)
C7—C3—C13—N12.70 (14)C76—C71—C72—C730.3 (3)
C4—C3—C13—C215.37 (17)C7—C71—C72—C73178.59 (17)
C2—C3—C13—C21113.47 (14)C72—C71—C76—C750.5 (3)
C7—C3—C13—C21124.39 (13)C7—C71—C76—C75178.47 (16)
C4—C3—C13—C14121.97 (13)C20—C15—C16—C170.5 (3)
C2—C3—C13—C143.13 (17)C14—C15—C16—C17176.62 (17)
C7—C3—C13—C14119.01 (13)C55—C54—C53—C521.0 (3)
C4—C3—C7—C7190.36 (15)C57—C52—C53—C540.4 (3)
C2—C3—C7—C7131.85 (17)C51—C52—C53—C54174.44 (16)
C13—C3—C7—C71153.26 (12)C53—C54—C55—F1176.69 (16)
C4—C3—C7—C8140.32 (12)C53—C54—C55—C561.7 (3)
C2—C3—C7—C897.48 (14)C57—C56—C55—C541.0 (3)
C13—C3—C7—C823.94 (14)C57—C56—C55—F1177.38 (15)
N1—C13—C14—O250.7 (2)C8—N1—C12—C1158.8 (2)
C21—C13—C14—O2169.40 (15)C13—N1—C12—C11172.14 (16)
C3—C13—C14—O264.89 (19)C15—C20—C19—C24177.26 (17)
N1—C13—C14—C15121.82 (14)C21—C20—C19—C240.6 (3)
C21—C13—C14—C153.12 (15)C15—C20—C19—C180.6 (3)
C3—C13—C14—C15122.59 (13)C21—C20—C19—C18177.23 (17)
C8—C7—C71—C7229.5 (2)N1—C8—C9—C1054.8 (2)
C3—C7—C71—C7293.20 (19)C7—C8—C9—C10167.53 (17)
C8—C7—C71—C76149.41 (15)C71—C76—C75—C740.1 (3)
C3—C7—C71—C7687.91 (17)C21—C22—C23—C242.1 (3)
C4—C5—C51—C52175.06 (15)C15—C16—C17—C180.3 (3)
C6—C5—C51—C528.0 (3)C71—C72—C73—C740.5 (3)
C5—C51—C52—C5749.1 (2)C16—C17—C18—C190.4 (3)
C5—C51—C52—C53136.24 (18)C24—C19—C18—C17176.8 (2)
C15—C20—C21—C22174.76 (15)C20—C19—C18—C170.8 (3)
C19—C20—C21—C222.2 (2)C72—C73—C74—C751.1 (3)
C15—C20—C21—C132.26 (19)C72—C73—C74—F2178.86 (19)
C19—C20—C21—C13179.18 (15)C76—C75—C74—C731.0 (3)
N1—C13—C21—C2252.9 (2)C76—C75—C74—F2179.02 (17)
C14—C13—C21—C22173.26 (17)N1—C12—C11—C1056.4 (2)
C3—C13—C21—C2264.5 (2)C12—C11—C10—C955.7 (3)
N1—C13—C21—C20123.54 (13)C8—C9—C10—C1154.6 (3)
C14—C13—C21—C203.20 (16)C22—C23—C24—C190.8 (3)
C3—C13—C21—C20119.04 (14)C20—C19—C24—C232.1 (3)
C12—N1—C8—C958.33 (18)C18—C19—C24—C23175.5 (2)
C13—N1—C8—C9168.34 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O1i0.972.493.352 (2)148
Symmetry code: (i) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC37H32F2N2O2
Mr574.65
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.2716 (4), 20.0353 (7), 14.3790 (6)
β (°) 97.047 (1)
V3)2936.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.21 × 0.19 × 0.18
Data collection
DiffractometerBruker Kappa APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.967, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
33177, 7519, 4823
Rint0.033
(sin θ/λ)max1)0.674
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.126, 1.01
No. of reflections7519
No. of parameters388
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.21

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11A···O1i0.972.493.352 (2)148
Symmetry code: (i) x1/2, y+1/2, z1/2.
 

Acknowledgements

JS and RAN thank the management of Madura College for their encouragement and support. RRK thanks the DST, New Delhi, for funds under the fast-track scheme (grant No. SR/FT/CS-073/2009).

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationMalonne, H., Hanuise, J. & Fontaine, J. (1998). Pharm. Pharmacol. Commun. 4, 241–243.  CAS Google Scholar
First citationMedda, S., Jaisankar, P., Manna, R. K., Pal, B., Giri, V. S. & Basu, M. K. (2003). J. Drug Target. 11, 123–128.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPearson, W. H. & Guo, L. (2001). Tetrahedron Lett. 42, 8267–8271.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSussman, J. L. & Wodak, S. J. (1973). Acta Cryst. B29, 2918–2926.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationWodak, S. J. (1975). Acta Cryst. B31, 569–573.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds