organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(9H-Fluoren-9-yl)(phen­yl)phosphinic acid

aLaboratório de Materiais Inorgânicos, Universidade Federal de Santa Maria, 97105–900 Santa Maria–RS, Brazil
*Correspondence e-mail: rburrow@ewald.base.ufsm.br

(Received 22 November 2012; accepted 28 November 2012; online 5 December 2012)

The crystal structure of the title compound, C19H15O2P, features pairs of mol­ecules joined by O—H⋯O hydrogen bonds across crystallographic inversion centers. In addition, ππ inter­actions, with a centroid–centroid distance of 3.6273 (9) Å between the fluorene ring systems, connect the dimers into chains along [01-1]. The three rings make dihedral angles of 1.34 (9), 1.52 (10) and 1.51 (7)° with each other.

Related literature

For related structues, see: Burrow et al. (2000[Burrow, R. A., Farrar, D. H., Lough, A. J., Siqueira, M. R. & Squizani, F. (2000). Acta Cryst. C56, e357-e358.]); Vioux et al. (2004[Vioux, A., Le Bideau, J., Hubert Martin, P. & Leclerq, D. (2004). Top. Curr. Chem. 232, 145-174.]); Siqueira et al. (2006[Siqueira, M. R., Tonetto, T. C., Rizzatti, M. R., Lang, E. S., Ellena, J. & Burrow, R. A. (2006). Inorg. Chem. Commun. 9, 536-540.]); Burrow & Siqueira da Silva (2011a[Burrow, R. A. & Siqueira da Silva, R. M. (2011a). Acta Cryst. E67, o1045.],b[Burrow, R. A. & Siqueira da Silva, R. M. (2011b). Acta Cryst. E67, o2005.]); Burrow & Siqueira da Silva (2012[Burrow, R. A. & da Silva, R. M. S. da (2012). Acta Cryst. E68, o3488.]). For a description of the Cambridge Structural Database and geometry checks using Mogul, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]); Bruno et al. (2004[Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144.]). For hydrogen-bond information, see: Jeffrey (1997[Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding, pp. 11-16. New York: Oxford University Press.]). For the synthesis, see: Boyd & Regan (1994[Boyd, E. A. & Regan, A. C. (1994). Tetrahedron Lett. 35, 4223-4226.]).

[Scheme 1]

Experimental

Crystal data
  • C19H15O2P

  • Mr = 306.28

  • Triclinic, [P \overline 1]

  • a = 8.5736 (7) Å

  • b = 9.5668 (8) Å

  • c = 9.6750 (7) Å

  • α = 73.348 (5)°

  • β = 87.388 (5)°

  • γ = 83.619 (6)°

  • V = 755.49 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 100 K

  • 0.28 × 0.13 × 0.07 mm

Data collection
  • Bruker X8 Kappa APEXII diffractometer

  • Absorption correction: numerical (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.941, Tmax = 0.988

  • 21221 measured reflections

  • 4614 independent reflections

  • 3560 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.112

  • S = 1.03

  • 4614 reflections

  • 202 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.90 (2) 1.61 (2) 2.5107 (15) 177.9 (19)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2012[Brandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Phosphinic acids usually form continuous chain structures via hydrogen bonding interactions between neighboring phosphinic acid groups in the solid state (Burrow et al., 2000; Burrow & Siqueira da Silva, 2011a,b; Burrow & Siqueira da Silva, 2012). This tendency, due to the strong P—O dipole moment, aids in the formation of chain like structures in coordination polymers (Vioux et al., 2004; Siqueira et al., 2006). Smaller organyl groups, such as the methyl group, bound to the P atom can direct the the structure to form lamellar structures (Burrow & Siqueira da Silva, 2011b). Larger groups such as fluorenyl in the title compound have the ability to do the opposite, reducing the structure to dimeric structures by making chain formation an unfavorable process due to steric interactions between the bulky groups. Here we report the synthesis and crystal structure of the title compound which demonstrates the steric effects of the organyl groups in the solid state.

The molecular structure of the title compound is shown in Fig. 1. The geometry of the molecule shows no usual features. An analysis by Mogul (Bruno et al., 2004) using the Cambridge Strucrtural Database (Version 5.32, May, 2012 update; Allen, 2002) reports no |z-score| greater than 1 for the bond lengths. The highest |z-scores| for bond angles are 1.743 and 1.661 for the C31—C32—C33 and C22—C23—C24 angles, respectively, which are significantly smaller than the 120 ° expected for a benzene ring. This deviation is due to the strained, planar 5-membered C21/C22/C27/C28/C33 ring. The three ring systems of the fluorenyl group is almost planar with an r.m.s. deviation of 0.026 Å of the thirteen atoms from a least squares fitted plane through the atoms. Considering each ring systems individually, central five-membered ring and the two benzene rings of the fluorenyl moiety are all each essentially planar with r.m.s. deviations of 0.0099 Å, 0.0022 Å and 0.0032 Å for the rings C21/C22/C27/C28/C33 (A), C22/C23/C24/C25/C26/C27 (B) and C28/C29/C30/C31/C32/C33 (C) rings, respectively. The dihedral angles between the planes (A) and (B), (A) and (C), and (B) and (C) are 1.34 (9) °, 1.52 (10) °, and 1.51 (7) °, respectively.

In the crystal, molecules are joined into dimeric units by pairs of O—H···OP hydrogen bonds across crystallographic inversion centers (Fig. 2). The O···O distance at 2.5107 (15) Å is reasonably short indicating moderately-strong hydrogen bonding (Jeffrey, 1997). The dimeric units are joined into continuous chains along the the crystallographic [011] direction by ππ interactions between the fluorenyl ring systems across crystallographic inversion centers. An analysis by PLATON (Spek, 2009) shows a ring-to-ring centroid distance of 3.6273 (9)Å for the 5-membered rings (C21/C22/C27/C28/C33) which are co-planar and have a ring slippage distance of 0.825 Å. The perpendicular distances between the benzene rings are 3.4831 (6) and 3.4608 (6) Å.

The packing diagram, Fig. 3, shows columns of phosphinate groups alternating with columns of fluorenyl groups along [100]. The phenyl groups pack parallel to the columns, pointing along [100].

Related literature top

For related structues, see: Burrow et al. (2000); Vioux et al. (2004); Siqueira et al. (2006); Burrow & Siqueira da Silva (2011a,b); Burrow & Siqueira da Silva (2012). For structural data, see: Allen, 2002; Bruno et al. (2004). For geometry calculations, see: Spek (2009). For hydrogen-bond information, see: Jeffrey (1997). For the synthesis, see: Boyd & Regan (1994).

Experimental top

The procedure of Boyd & Regan (1994) was followed. To a solution of phenylphosphinic acid (2.0 g, 14.1 mmol) in dichloromethane (30 ml), diisopropylethylamine (5.16 ml, 29.6 mmol) and trimethylsilyl chloride (3.74 ml, 29.6 mmol) were separately added at 273K under argon. The reaction mixture was stirred at room temperature for 2–3 h, cooled to 273K and 9H-9-bromofluorene (3.46 g, 14.1 mmol) was added. After further stirring at room temperature for 3 days, the solvent was removed under vacuum. The residue was suspended in hydrochloric acid (2 M, 20 ml) and filtered on a glass frit. The white solid was washed with water and dried giving a yield of 2.30 g (53%) of pure product. IR: 3064 (w), 1592 (m), 1476 (w), 1440 (m), 1174 (vs), 1131 (s), 982 (vs), 818 (s), 735 (s), 717 (s), 692 (s), 545 (vs), 494 (m), 423 (m) cm-1. Crystals suitable for single-crystal X-ray analysis were grown from an acetone solution of the title compound in a desiccator with silical gel.

Refinement top

The H atom on O1 was found in the difference Fourier map and its position was allowed to refine freely while its isotropic displacement factor was set to 1.5 times that of O1. The H atoms attached to C atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H bond lengths of 0.95 Å (aromatic CH) and 1.00 Å (sp3 C), and isotropic displacement parameters equal to 1.2 times Ueq of the parent atom.

Structure description top

Phosphinic acids usually form continuous chain structures via hydrogen bonding interactions between neighboring phosphinic acid groups in the solid state (Burrow et al., 2000; Burrow & Siqueira da Silva, 2011a,b; Burrow & Siqueira da Silva, 2012). This tendency, due to the strong P—O dipole moment, aids in the formation of chain like structures in coordination polymers (Vioux et al., 2004; Siqueira et al., 2006). Smaller organyl groups, such as the methyl group, bound to the P atom can direct the the structure to form lamellar structures (Burrow & Siqueira da Silva, 2011b). Larger groups such as fluorenyl in the title compound have the ability to do the opposite, reducing the structure to dimeric structures by making chain formation an unfavorable process due to steric interactions between the bulky groups. Here we report the synthesis and crystal structure of the title compound which demonstrates the steric effects of the organyl groups in the solid state.

The molecular structure of the title compound is shown in Fig. 1. The geometry of the molecule shows no usual features. An analysis by Mogul (Bruno et al., 2004) using the Cambridge Strucrtural Database (Version 5.32, May, 2012 update; Allen, 2002) reports no |z-score| greater than 1 for the bond lengths. The highest |z-scores| for bond angles are 1.743 and 1.661 for the C31—C32—C33 and C22—C23—C24 angles, respectively, which are significantly smaller than the 120 ° expected for a benzene ring. This deviation is due to the strained, planar 5-membered C21/C22/C27/C28/C33 ring. The three ring systems of the fluorenyl group is almost planar with an r.m.s. deviation of 0.026 Å of the thirteen atoms from a least squares fitted plane through the atoms. Considering each ring systems individually, central five-membered ring and the two benzene rings of the fluorenyl moiety are all each essentially planar with r.m.s. deviations of 0.0099 Å, 0.0022 Å and 0.0032 Å for the rings C21/C22/C27/C28/C33 (A), C22/C23/C24/C25/C26/C27 (B) and C28/C29/C30/C31/C32/C33 (C) rings, respectively. The dihedral angles between the planes (A) and (B), (A) and (C), and (B) and (C) are 1.34 (9) °, 1.52 (10) °, and 1.51 (7) °, respectively.

In the crystal, molecules are joined into dimeric units by pairs of O—H···OP hydrogen bonds across crystallographic inversion centers (Fig. 2). The O···O distance at 2.5107 (15) Å is reasonably short indicating moderately-strong hydrogen bonding (Jeffrey, 1997). The dimeric units are joined into continuous chains along the the crystallographic [011] direction by ππ interactions between the fluorenyl ring systems across crystallographic inversion centers. An analysis by PLATON (Spek, 2009) shows a ring-to-ring centroid distance of 3.6273 (9)Å for the 5-membered rings (C21/C22/C27/C28/C33) which are co-planar and have a ring slippage distance of 0.825 Å. The perpendicular distances between the benzene rings are 3.4831 (6) and 3.4608 (6) Å.

The packing diagram, Fig. 3, shows columns of phosphinate groups alternating with columns of fluorenyl groups along [100]. The phenyl groups pack parallel to the columns, pointing along [100].

For related structues, see: Burrow et al. (2000); Vioux et al. (2004); Siqueira et al. (2006); Burrow & Siqueira da Silva (2011a,b); Burrow & Siqueira da Silva (2012). For structural data, see: Allen, 2002; Bruno et al. (2004). For geometry calculations, see: Spek (2009). For hydrogen-bond information, see: Jeffrey (1997). For the synthesis, see: Boyd & Regan (1994).

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with 50% probability ellipsoids.
[Figure 2] Fig. 2. The H bonding interactions, dashed red lines, and π-π interactions, dashed gray lines, which join the molecules of the title compound into continuous chains along the crystallographic [011] direction. Non-essential H atoms are omitted and C atoms are shown as sticks for clarity. Symmetry codes: (i) 1–x, 1–y, 1–z; (ii) 1–x, 2–y, 1–z; (iii) x, -1 + y, 1 + z.
[Figure 3] Fig. 3. The packing diagram of the title compound in the crystallographic bc direction with the crystallographic a axis pointing down. Non-essential H atoms are omitted and C atoms are shown as sticks for clarity.
(9H-Fluoren-9-yl)(phenyl)phosphinic acid top
Crystal data top
C19H15O2PZ = 2
Mr = 306.28F(000) = 320
Triclinic, P1Dx = 1.346 Mg m3
a = 8.5736 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.5668 (8) ÅCell parameters from 3726 reflections
c = 9.6750 (7) Åθ = 2.2–29.6°
α = 73.348 (5)°µ = 0.19 mm1
β = 87.388 (5)°T = 100 K
γ = 83.619 (6)°Block, colourless
V = 755.49 (10) Å30.28 × 0.13 × 0.07 mm
Data collection top
Bruker X8 Kappa APEXII
diffractometer
4614 independent reflections
Radiation source: sealed ceramic X ray tube, Siemens KFF3560 reflections with I > 2σ(I)
Graphite crystal monochromatorRint = 0.047
Detector resolution: 8.3333 pixels mm-1θmax = 30.6°, θmin = 3.1°
0.5 ° ω & φ scansh = 1212
Absorption correction: numerical
(SADABS; Bruker, 2012)
k = 1313
Tmin = 0.941, Tmax = 0.988l = 1313
21221 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0492P)2 + 0.2304P]
where P = (Fo2 + 2Fc2)/3
4614 reflections(Δ/σ)max = 0.001
202 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C19H15O2Pγ = 83.619 (6)°
Mr = 306.28V = 755.49 (10) Å3
Triclinic, P1Z = 2
a = 8.5736 (7) ÅMo Kα radiation
b = 9.5668 (8) ŵ = 0.19 mm1
c = 9.6750 (7) ÅT = 100 K
α = 73.348 (5)°0.28 × 0.13 × 0.07 mm
β = 87.388 (5)°
Data collection top
Bruker X8 Kappa APEXII
diffractometer
4614 independent reflections
Absorption correction: numerical
(SADABS; Bruker, 2012)
3560 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 0.988Rint = 0.047
21221 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.33 e Å3
4614 reflectionsΔρmin = 0.41 e Å3
202 parameters
Special details top

Experimental. The crystal was cooled to 100 K under a cold nitrogen stream.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.38649 (4)0.66642 (4)0.34500 (4)0.01663 (10)
O10.43045 (13)0.51673 (11)0.31276 (11)0.0229 (2)
H10.468 (2)0.446 (2)0.390 (2)0.034*
O20.46941 (12)0.68440 (11)0.47107 (10)0.0194 (2)
C110.17814 (16)0.68985 (15)0.37075 (14)0.0175 (3)
C120.11582 (17)0.78050 (16)0.45427 (15)0.0211 (3)
H120.18360.83020.49440.025*
C130.04498 (18)0.79814 (18)0.47880 (16)0.0259 (3)
H130.08720.86020.53530.031*
C140.14413 (18)0.72501 (18)0.42077 (16)0.0270 (3)
H140.2540.73630.43860.032*
C150.08337 (18)0.63552 (18)0.33692 (16)0.0263 (3)
H150.15170.58620.2970.032*
C160.07715 (18)0.61796 (17)0.31121 (16)0.0228 (3)
H160.11850.55710.25320.027*
C210.43723 (16)0.80119 (15)0.18013 (14)0.0169 (3)
H210.55210.7860.15890.02*
C220.39388 (16)0.95586 (15)0.18998 (14)0.0177 (3)
C230.44714 (18)1.02482 (16)0.28454 (15)0.0224 (3)
H230.52120.97410.35660.027*
C240.3897 (2)1.16927 (18)0.27144 (17)0.0272 (3)
H240.42491.2180.33530.033*
C250.2816 (2)1.24361 (17)0.16620 (18)0.0286 (4)
H250.24441.34280.15860.034*
C260.22646 (19)1.17511 (17)0.07137 (17)0.0251 (3)
H260.15171.22620.00010.03*
C270.28382 (17)1.02979 (15)0.08387 (14)0.0184 (3)
C280.25172 (17)0.93164 (16)0.00072 (14)0.0190 (3)
C290.15364 (18)0.95394 (19)0.11764 (16)0.0254 (3)
H290.09041.04430.15330.031*
C300.15047 (19)0.8417 (2)0.18061 (16)0.0301 (4)
H300.08470.85580.26090.036*
C310.2418 (2)0.7084 (2)0.12883 (17)0.0298 (4)
H310.23790.63310.17430.036*
C320.33901 (19)0.68459 (17)0.01075 (16)0.0244 (3)
H320.40070.59340.02550.029*
C330.34340 (17)0.79710 (16)0.05227 (14)0.0183 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.01661 (18)0.01688 (17)0.01648 (17)0.00126 (13)0.00200 (12)0.00478 (13)
O10.0300 (6)0.0182 (5)0.0207 (5)0.0024 (4)0.0058 (4)0.0071 (4)
O20.0200 (5)0.0194 (5)0.0196 (5)0.0018 (4)0.0046 (4)0.0060 (4)
C110.0177 (7)0.0192 (6)0.0148 (6)0.0048 (5)0.0007 (5)0.0024 (5)
C120.0193 (7)0.0264 (7)0.0186 (6)0.0042 (6)0.0009 (5)0.0073 (5)
C130.0205 (7)0.0342 (8)0.0222 (7)0.0016 (6)0.0021 (6)0.0076 (6)
C140.0163 (7)0.0356 (9)0.0247 (7)0.0047 (6)0.0000 (6)0.0009 (6)
C150.0224 (8)0.0301 (8)0.0256 (7)0.0106 (6)0.0053 (6)0.0031 (6)
C160.0243 (8)0.0234 (7)0.0216 (7)0.0055 (6)0.0033 (6)0.0062 (6)
C210.0151 (6)0.0191 (6)0.0169 (6)0.0027 (5)0.0010 (5)0.0054 (5)
C220.0175 (7)0.0186 (6)0.0174 (6)0.0052 (5)0.0049 (5)0.0052 (5)
C230.0234 (8)0.0253 (7)0.0206 (7)0.0090 (6)0.0033 (5)0.0078 (6)
C240.0330 (9)0.0273 (8)0.0269 (8)0.0133 (7)0.0089 (6)0.0144 (6)
C250.0331 (9)0.0199 (7)0.0339 (8)0.0058 (6)0.0124 (7)0.0102 (6)
C260.0227 (8)0.0230 (7)0.0265 (7)0.0005 (6)0.0061 (6)0.0037 (6)
C270.0186 (7)0.0199 (7)0.0164 (6)0.0043 (5)0.0048 (5)0.0048 (5)
C280.0179 (7)0.0239 (7)0.0149 (6)0.0043 (5)0.0032 (5)0.0048 (5)
C290.0191 (7)0.0367 (9)0.0191 (7)0.0033 (6)0.0010 (5)0.0057 (6)
C300.0247 (8)0.0501 (10)0.0190 (7)0.0090 (7)0.0006 (6)0.0135 (7)
C310.0322 (9)0.0407 (9)0.0244 (7)0.0133 (7)0.0052 (6)0.0188 (7)
C320.0266 (8)0.0264 (8)0.0232 (7)0.0066 (6)0.0061 (6)0.0112 (6)
C330.0186 (7)0.0219 (7)0.0157 (6)0.0052 (5)0.0031 (5)0.0066 (5)
Geometric parameters (Å, º) top
P1—O21.4997 (10)C22—C271.403 (2)
P1—O11.5541 (11)C23—C241.386 (2)
P1—C111.7905 (15)C23—H230.95
P1—C211.8108 (14)C24—C251.388 (2)
O1—H10.90 (2)C24—H240.95
C11—C121.396 (2)C25—C261.396 (2)
C11—C161.400 (2)C25—H250.95
C12—C131.388 (2)C26—C271.395 (2)
C12—H120.95C26—H260.95
C13—C141.389 (2)C27—C281.4648 (19)
C13—H130.95C28—C291.393 (2)
C14—C151.387 (2)C28—C331.404 (2)
C14—H140.95C29—C301.381 (2)
C15—C161.388 (2)C29—H290.95
C15—H150.95C30—C311.392 (3)
C16—H160.95C30—H300.95
C21—C221.5140 (19)C31—C321.395 (2)
C21—C331.5181 (19)C31—H310.95
C21—H211.0C32—C331.385 (2)
C22—C231.3898 (19)C32—H320.95
O2—P1—O1114.59 (6)C24—C23—C22118.52 (15)
O2—P1—C11110.59 (6)C24—C23—H23120.7
O1—P1—C11108.24 (6)C22—C23—H23120.7
O2—P1—C21110.70 (6)C23—C24—C25120.83 (15)
O1—P1—C21104.29 (6)C23—C24—H24119.6
C11—P1—C21108.08 (6)C25—C24—H24119.6
P1—O1—H1113.2 (12)C24—C25—C26121.12 (15)
C12—C11—C16119.49 (13)C24—C25—H25119.4
C12—C11—P1118.86 (11)C26—C25—H25119.4
C16—C11—P1121.64 (11)C27—C26—C25118.36 (15)
C13—C12—C11120.14 (14)C27—C26—H26120.8
C13—C12—H12119.9C25—C26—H26120.8
C11—C12—H12119.9C26—C27—C22120.10 (14)
C12—C13—C14119.98 (15)C26—C27—C28130.83 (14)
C12—C13—H13120.0C22—C27—C28109.06 (12)
C14—C13—H13120.0C29—C28—C33120.35 (14)
C15—C14—C13120.26 (14)C29—C28—C27130.97 (14)
C15—C14—H14119.9C33—C28—C27108.67 (12)
C13—C14—H14119.9C30—C29—C28118.50 (15)
C14—C15—C16120.11 (14)C30—C29—H29120.7
C14—C15—H15119.9C28—C29—H29120.7
C16—C15—H15119.9C29—C30—C31121.31 (15)
C15—C16—C11120.00 (14)C29—C30—H30119.3
C15—C16—H16120.0C31—C30—H30119.3
C11—C16—H16120.0C30—C31—C32120.56 (15)
C22—C21—C33102.97 (11)C30—C31—H31119.7
C22—C21—P1111.40 (9)C32—C31—H31119.7
C33—C21—P1112.47 (9)C33—C32—C31118.38 (15)
C22—C21—H21109.9C33—C32—H32120.8
C33—C21—H21109.9C31—C32—H32120.8
P1—C21—H21109.9C32—C33—C28120.90 (14)
C23—C22—C27121.07 (14)C32—C33—C21129.44 (14)
C23—C22—C21129.34 (13)C28—C33—C21109.66 (12)
C27—C22—C21109.59 (12)
O2—P1—C11—C1228.54 (13)C23—C24—C25—C260.5 (2)
O1—P1—C11—C12154.83 (11)C24—C25—C26—C270.6 (2)
C21—P1—C11—C1292.78 (12)C25—C26—C27—C220.1 (2)
O2—P1—C11—C16150.46 (11)C25—C26—C27—C28178.32 (13)
O1—P1—C11—C1624.18 (13)C23—C22—C27—C260.3 (2)
C21—P1—C11—C1688.21 (13)C21—C22—C27—C26179.72 (12)
C16—C11—C12—C130.5 (2)C23—C22—C27—C28179.08 (12)
P1—C11—C12—C13178.55 (11)C21—C22—C27—C280.95 (15)
C11—C12—C13—C140.3 (2)C26—C27—C28—C290.6 (3)
C12—C13—C14—C150.7 (2)C22—C27—C28—C29179.21 (14)
C13—C14—C15—C160.4 (2)C26—C27—C28—C33178.00 (14)
C14—C15—C16—C110.4 (2)C22—C27—C28—C330.60 (15)
C12—C11—C16—C150.8 (2)C33—C28—C29—C300.8 (2)
P1—C11—C16—C15178.15 (11)C27—C28—C29—C30177.70 (14)
O2—P1—C21—C2259.17 (11)C28—C29—C30—C310.4 (2)
O1—P1—C21—C22177.10 (9)C29—C30—C31—C320.3 (2)
C11—P1—C21—C2262.09 (11)C30—C31—C32—C330.7 (2)
O2—P1—C21—C33174.18 (9)C31—C32—C33—C280.3 (2)
O1—P1—C21—C3362.09 (11)C31—C32—C33—C21179.97 (13)
C11—P1—C21—C3352.93 (11)C29—C28—C33—C320.4 (2)
C33—C21—C22—C23178.06 (13)C27—C28—C33—C32178.41 (12)
P1—C21—C22—C2361.18 (17)C29—C28—C33—C21179.31 (12)
C33—C21—C22—C271.98 (14)C27—C28—C33—C211.90 (15)
P1—C21—C22—C27118.78 (11)C22—C21—C33—C32177.99 (14)
C27—C22—C23—C240.4 (2)P1—C21—C33—C3261.99 (17)
C21—C22—C23—C24179.68 (13)C22—C21—C33—C282.36 (14)
C22—C23—C24—C250.1 (2)P1—C21—C33—C28117.67 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.90 (2)1.61 (2)2.5107 (15)177.9 (19)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC19H15O2P
Mr306.28
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.5736 (7), 9.5668 (8), 9.6750 (7)
α, β, γ (°)73.348 (5), 87.388 (5), 83.619 (6)
V3)755.49 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.28 × 0.13 × 0.07
Data collection
DiffractometerBruker X8 Kappa APEXII
Absorption correctionNumerical
(SADABS; Bruker, 2012)
Tmin, Tmax0.941, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
21221, 4614, 3560
Rint0.047
(sin θ/λ)max1)0.715
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.112, 1.03
No. of reflections4614
No. of parameters202
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.41

Computer programs: APEX2 (Bruker, 2012), SAINT (Bruker, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2012), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.90 (2)1.61 (2)2.5107 (15)177.9 (19)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

Financial support from the Conselho Nacional de Desenvolvimento Científico (CNPq, Brazil; grant No. 479747/2009–1), the Fundação de Amparo à Pesquisa (FAPERGS, Rio Grande do Sul; grant No. 10/1645–9) is gratefully acknowledged, as are fellowships from CNPq (RAB; grant No. 308731/2009–3) and the Coordenação de Aperfeiçoamento de Pessoas de Nível Superior (CAPES, Brazil; RMSS). The diffractometer was funded by a CT–INFRA grant from the Financiadora de Estrutos e Projetos (FINEP, Brazil).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBoyd, E. A. & Regan, A. C. (1994). Tetrahedron Lett. 35, 4223–4226.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBurrow, R. A., Farrar, D. H., Lough, A. J., Siqueira, M. R. & Squizani, F. (2000). Acta Cryst. C56, e357–e358.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBurrow, R. A. & Siqueira da Silva, R. M. (2011a). Acta Cryst. E67, o1045.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBurrow, R. A. & Siqueira da Silva, R. M. (2011b). Acta Cryst. E67, o2005.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBurrow, R. A. & da Silva, R. M. S. da (2012). Acta Cryst. E68, o3488.  CSD CrossRef IUCr Journals Google Scholar
First citationJeffrey, G. A. (1997). An Introduction to Hydrogen Bonding, pp. 11–16. New York: Oxford University Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiqueira, M. R., Tonetto, T. C., Rizzatti, M. R., Lang, E. S., Ellena, J. & Burrow, R. A. (2006). Inorg. Chem. Commun. 9, 536–540.  Web of Science CSD CrossRef Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVioux, A., Le Bideau, J., Hubert Martin, P. & Leclerq, D. (2004). Top. Curr. Chem. 232, 145–174.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds