metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chlorido{N-[2-(di­phenyl­phosphan­yl)benzyl­­idene]-2,6-diiso­propyl­aniline-κP}gold(I) chloro­form 0.25-solvate

aDepartment of Chemistry, University of Cape Town, Private Bag, Rondebosch, 7707, South Africa, and bResearch Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg (APK Campus), PO Box 524, Auckland Park, Johannesburg, 2006, South Africa
*Correspondence e-mail: harrychiririwa@yahoo.com

(Received 24 November 2012; accepted 6 December 2012; online 12 December 2012)

The asymmetric unit of the title compound, [AuCl(C31H32NP)]·0.25CHCl3, contains two independent complex mol­ecules and half a chloro­form solvent mol­ecule, which is disordered across an inversion center. The AuI ions are each coordinated in a slightly distorted linear environment, with P—Au—Cl angles of 177.20 (4) and 178.54 (4)°.

Related literature

For general background to gold complexes, see: Shaw (1999[Shaw, C. F. III (1999). Chem. Rev. 99, 2589-2600.]); Barnard et al. (2004[Barnard, P. J., Baker, M. V., Berners-Price, S. J. & Day, D. A. (2004). J. Inorg. Biochem. 98, 115-119.]); Nomiya et al. (2003[Nomiya, K., Yamamoto, S., Noguchi, R., Yokoyama, H., Kasuga, N. C., Ohyama, K. & Kato, C. (2003). J. Inorg. Biochem. 95, 2208-2220.]). For applications of gold-containing drugs, see: Chiririwa et al. (2013[Chiririwa, H., Moss, J. R., Hendricks, D., Smith, G. S. & Meijboom, R. (2013). Polyhedron, 49, 29-35.]); Fricker (1996[Fricker, S. R. (1996). Gold Bull. 29, 53-60.]); Cowan (1993[Cowan, J. A. (1993). Inorganic Biochemistry: An Introduction, pp. 277-280. Weinheim: VCH.]); Parish (1992[Parish, R. V. (1992). Interdisc. Sci. Rev. 17, 221-228.]); Finkelstein et al. (1976[Finkelstein, A. E., Walz, D. T., Batista, U. M., Mixraji, M., Roisman, F. & Misher, A. (1976). Ann. Rheum. Dis. 35, 251-257.]). For the synthesis of the starting materials, see: Mogorosi et al. (2011[Mogorosi, M. M., Mahamo, T., Moss, J. R., Mapolie, S. F., Slootweg, J. C., Lammertsma, K. & Smith, G. S. (2011). J. Organomet. Chem. 696, 3585-3592.]); Uson & Laguna (1986[Uson, R. & Laguna, A. (1986). Organometallic Synthesis, edited by R. B. Lang & J. J. Eish, Vol. 3, pp. 324-327. Amsterdam: Elsevier.]); Reddy et al. (2002[Reddy, K. R., Tsai, W.-W., Lee, S. G.-H., Peng, S. M., Chen, J.-T. & Liu, S. T. (2002). J. Chem. Soc. Dalton Trans. pp. 1776-1782.]). For similar compounds, see: Chiririwa & Muller (2012[Chiririwa, H. & Muller, A. (2012). Acta Cryst. E68, m49.]); Williams et al. (2007[Williams, D. B. G., Traut, T., Kriel, F. H. & van Zyl, W. E. (2007). Inorg. Chem. Commun. 10, 538-542.]).

[Scheme 1]

Experimental

Crystal data
  • [AuCl(C31H32NP)]·0.25CHCl3

  • Mr = 711.81

  • Triclinic, [P \overline 1]

  • a = 13.0315 (3) Å

  • b = 13.3638 (2) Å

  • c = 19.3489 (5) Å

  • α = 96.358 (2)°

  • β = 99.229 (1)°

  • γ = 116.191 (1)°

  • V = 2921.15 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.27 mm−1

  • T = 173 K

  • 0.21 × 0.18 × 0.12 mm

Data collection
  • Bruker APEXII 4K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT, SADABS, and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.404, Tmax = 0.570

  • 119407 measured reflections

  • 11945 independent reflections

  • 9894 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.065

  • S = 1.09

  • 11945 reflections

  • 667 parameters

  • H-atom parameters constrained

  • Δρmax = 1.91 e Å−3

  • Δρmin = −1.54 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT, SADABS, and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT, SADABS, and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2007[Bruker (2007). APEX2, SAINT, SADABS, and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012)[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.].

Supporting information


Comment top

Studies of gold(I) complexes have been related to anti-arthritic (Shaw, 1999), anti-tumor (Barnard et al., 2004) and antimicrobial physiological activities (Nomiya et al., 2003). The treatment of diseases with gold complexes (called chrysotherapy) can be traced back to early times (Cowan, 1993). The mechanistic approach regarding the action of gold drugs is still a matter of interest and research, however they remain the most effective second line treatment for rheumatoid arthritis (Parish, 1992; Fricker, 1996). This led to the development of a gold complex called auranofin, which was found to be an experimental chrysotherapeutic agent and was clinically effective in the treatment of rheumatoid arthritis (Finkelstein et al., 1976). Our group has recently been involved in the development of novel Au(I) complexes with iminophosphine ligands and these have shown promising activity when evaluated against two oesophageal cancer cell lines (Chiririwa et al., 2013).

The structure of the title compound (Fig. 1) was determined to establish the coordination properties of the 2-(diphenylphosphanyl)benzylidene)- 2,6-diisopropylbenzenamine ligand with gold. The asymmetric unit consists of two crystallographically independent complex molecules. The Au—P bond distances of 2.2354 (10) and 2.2267 (10) Å agree well with reported values (Williams et al.., 2007; Chiririwa & Muller, 2012). The chloroform solvent molecule is disordered across an inversion centre.

Related literature top

For general background to gold complexes, see: Shaw (1999); Barnard et al. (2004); Nomiya et al. (2003). For applications of gold-containing drugs, see: Chiririwa et al. (2013); Fricker (1996); Cowan (1993); Parish (1992); Finkelstein et al. (1976). For the synthesis of the starting materials, see: Mogorosi et al. (2011); Uson & Laguna (1986); Reddy et al. (2002). For similar compounds, see: Chiririwa & Muller (2012); Williams et al. (2007).

Experimental top

The iminophosphine ligand was synthesized in high yields from the Schiff-base condensation reaction of 2-(diphenylphosphanyl)benzaldehyde with 2,6-diisopropylaniline in CH2Cl2 at room temperature (Mogorosi et al., 2011; Reddy et al., 2002). The Au precursor was synthesized by slow drop wise addition of tetrahydrothiophene (THT) to a solution of HAuCl4.4H2O in EtOH (Uson & Laguna, 1986). To a dry CH2Cl2 (10 ml) solution of the precursor [Au(tht)Cl] (tht = tetrahydrothiophene) was added an equimolar amount of 2-(diphenylphosphanyl)benzylidene)-2,6 diisopropylbenzenamine in CH2Cl2 (10 ml), and stirred at room temperature for 2 hrs. The solvent was reduced under reduced pressure and on addition of hexane, the product was filtered off and washed with Et2O (2 × 5 ml) and dried under vacuum for 4 hrs affording a yellow precipitate. Crystals suitable for X-ray structure determination were obtained by recrystallization from a CHCl3/hexane mixture at room temperature. 31P NMR: 26.64 (s). IR (KBr): 1628 cm-1 (C=N, imine).

Refinement top

All H atoms were included in calculated positions with C—H = 0.95–1.00 Å and included in the refinement with Uiso(H) = 1.2Ueq(C) or 1.5 Ueq(Cmethyl). The chloroform solvate molecule is disordered over an inversion centre, H atom connectivity was correctly assigned by using a PART -1 instruction in SHELXL97 (Sheldrick, 2008). Occupancies of each disordered component was constrained to 50% conforming to the imposed crystallographic symmetry. No additional geometrical or thermal ellipsoid restraints were employed in the final refinement cycles.

Structure description top

Studies of gold(I) complexes have been related to anti-arthritic (Shaw, 1999), anti-tumor (Barnard et al., 2004) and antimicrobial physiological activities (Nomiya et al., 2003). The treatment of diseases with gold complexes (called chrysotherapy) can be traced back to early times (Cowan, 1993). The mechanistic approach regarding the action of gold drugs is still a matter of interest and research, however they remain the most effective second line treatment for rheumatoid arthritis (Parish, 1992; Fricker, 1996). This led to the development of a gold complex called auranofin, which was found to be an experimental chrysotherapeutic agent and was clinically effective in the treatment of rheumatoid arthritis (Finkelstein et al., 1976). Our group has recently been involved in the development of novel Au(I) complexes with iminophosphine ligands and these have shown promising activity when evaluated against two oesophageal cancer cell lines (Chiririwa et al., 2013).

The structure of the title compound (Fig. 1) was determined to establish the coordination properties of the 2-(diphenylphosphanyl)benzylidene)- 2,6-diisopropylbenzenamine ligand with gold. The asymmetric unit consists of two crystallographically independent complex molecules. The Au—P bond distances of 2.2354 (10) and 2.2267 (10) Å agree well with reported values (Williams et al.., 2007; Chiririwa & Muller, 2012). The chloroform solvent molecule is disordered across an inversion centre.

For general background to gold complexes, see: Shaw (1999); Barnard et al. (2004); Nomiya et al. (2003). For applications of gold-containing drugs, see: Chiririwa et al. (2013); Fricker (1996); Cowan (1993); Parish (1992); Finkelstein et al. (1976). For the synthesis of the starting materials, see: Mogorosi et al. (2011); Uson & Laguna (1986); Reddy et al. (2002). For similar compounds, see: Chiririwa & Muller (2012); Williams et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT and XPREP (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title complex, showing 50% probability displacement ellipsoids. The chloroform solvent molecule is half occupancy. There are two crystallographic independent molecules labelled as A and B in the asymmetric unit. All hydrogen atoms are omitted for clarity.
Chlorido{N-[2-(diphenylphosphanyl)benzylidene]-2,6- diisopropylaniline-κP}gold(I) chloroform 0.25-solvate top
Crystal data top
[AuCl(C31H32NP)]·0.25CHCl3Z = 4
Mr = 711.81F(000) = 1402
Triclinic, P1Dx = 1.619 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 13.0315 (3) ÅCell parameters from 119370 reflections
b = 13.3638 (2) Åθ = 2.3–26.4°
c = 19.3489 (5) ŵ = 5.27 mm1
α = 96.358 (2)°T = 173 K
β = 99.229 (1)°Block, yellow
γ = 116.191 (1)°0.21 × 0.18 × 0.12 mm
V = 2921.15 (11) Å3
Data collection top
Bruker APEXII 4K CCD
diffractometer
11945 independent reflections
Radiation source: fine-focus sealed tube9894 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 0 pixels mm-1θmax = 26.4°, θmin = 1.8°
0.5° ω scans, 20sh = 1616
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
k = 1616
Tmin = 0.404, Tmax = 0.570l = 2424
119407 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0042P)2 + 7.7368P]
where P = (Fo2 + 2Fc2)/3
11945 reflections(Δ/σ)max = 0.001
667 parametersΔρmax = 1.91 e Å3
0 restraintsΔρmin = 1.54 e Å3
Crystal data top
[AuCl(C31H32NP)]·0.25CHCl3γ = 116.191 (1)°
Mr = 711.81V = 2921.15 (11) Å3
Triclinic, P1Z = 4
a = 13.0315 (3) ÅMo Kα radiation
b = 13.3638 (2) ŵ = 5.27 mm1
c = 19.3489 (5) ÅT = 173 K
α = 96.358 (2)°0.21 × 0.18 × 0.12 mm
β = 99.229 (1)°
Data collection top
Bruker APEXII 4K CCD
diffractometer
11945 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
9894 reflections with I > 2σ(I)
Tmin = 0.404, Tmax = 0.570Rint = 0.053
119407 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 1.09Δρmax = 1.91 e Å3
11945 reflectionsΔρmin = 1.54 e Å3
667 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Au1A0.261779 (14)0.032391 (14)0.065469 (8)0.03058 (5)
Cl1A0.21007 (11)0.10467 (11)0.18529 (6)0.0472 (3)
P1A0.31961 (9)0.03622 (9)0.05254 (5)0.0273 (2)
N1A0.3385 (3)0.3431 (3)0.0152 (2)0.0425 (10)
C1A0.2277 (4)0.3255 (4)0.0571 (2)0.0371 (10)
C2A0.2036 (4)0.2940 (4)0.1316 (2)0.0364 (10)
C3A0.1033 (4)0.2912 (4)0.1706 (3)0.0453 (12)
H3A0.08570.27230.22140.054*
C4A0.0285 (5)0.3153 (5)0.1376 (3)0.0545 (14)
H4A0.03950.31340.16560.065*
C5A0.0515 (5)0.3418 (5)0.0643 (3)0.0545 (14)
H5A0.00170.35670.04200.065*
C6A0.1513 (4)0.3473 (5)0.0222 (3)0.0516 (13)
C7A0.2839 (5)0.2630 (6)0.1691 (3)0.0581 (15)
H7A0.32120.23120.13480.070*
C8A0.3811 (7)0.3648 (6)0.1823 (5)0.109 (3)
H8AA0.43060.34200.20600.163*
H8AB0.42840.41750.13660.163*
H8AC0.34860.40270.21290.163*
C9A0.2199 (7)0.1711 (6)0.2367 (4)0.101 (3)
H9AA0.15520.10520.22660.152*
H9AB0.27490.14780.25320.152*
H9AC0.18830.20090.27390.152*
C10A0.1770 (6)0.3745 (7)0.0610 (3)0.088 (2)
H10A0.22040.33340.07920.106*
C11A0.2554 (10)0.4963 (9)0.0867 (5)0.182 (6)
H11D0.32560.51830.06740.273*
H11E0.27860.51310.13910.273*
H11F0.21450.53910.07100.273*
C12A0.0687 (8)0.3357 (7)0.0899 (4)0.100 (3)
H12D0.01560.25500.06880.150*
H12E0.02880.38090.07780.150*
H12F0.09080.34580.14200.150*
C13A0.3428 (4)0.2607 (4)0.0059 (2)0.0348 (10)
H13A0.27350.18930.00620.042*
C14A0.4531 (3)0.2695 (4)0.0498 (2)0.0280 (9)
C15A0.4521 (3)0.1752 (3)0.0765 (2)0.0267 (9)
C16A0.5551 (3)0.1859 (4)0.1187 (2)0.0307 (9)
H16A0.55480.12300.13740.037*
C17A0.6582 (4)0.2884 (4)0.1334 (2)0.0371 (11)
H17A0.72820.29530.16210.044*
C18A0.6599 (4)0.3801 (4)0.1066 (3)0.0417 (11)
H18A0.73080.44980.11640.050*
C19A0.5574 (4)0.3704 (4)0.0651 (2)0.0359 (10)
H19A0.55880.43400.04690.043*
C20A0.2136 (3)0.0562 (3)0.0959 (2)0.0288 (9)
C21A0.0961 (4)0.0217 (4)0.0732 (2)0.0375 (11)
H21A0.07000.08280.03370.045*
C22A0.0160 (4)0.0103 (4)0.1083 (3)0.0446 (12)
H22A0.06510.06400.09280.054*
C23A0.0530 (4)0.0783 (4)0.1654 (3)0.0428 (12)
H23A0.00250.08570.18910.051*
C24A0.1711 (4)0.1566 (4)0.1885 (2)0.0371 (10)
H24A0.19700.21760.22820.045*
C25A0.2513 (4)0.1454 (4)0.1533 (2)0.0322 (10)
H25A0.33230.19920.16870.039*
C26A0.3579 (3)0.0571 (3)0.0989 (2)0.0290 (9)
C27A0.4052 (5)0.1184 (4)0.0658 (3)0.0465 (12)
H27A0.41570.11160.01870.056*
C28A0.4372 (6)0.1890 (5)0.0999 (3)0.0604 (16)
H28A0.47190.22870.07710.073*
C29A0.4188 (5)0.2016 (4)0.1671 (3)0.0534 (14)
H29A0.43930.25150.19030.064*
C30A0.3709 (4)0.1429 (4)0.2010 (3)0.0461 (12)
H30A0.35820.15230.24740.055*
C31A0.3413 (4)0.0699 (4)0.1674 (2)0.0402 (11)
H31A0.30950.02820.19120.048*
Au1B0.513749 (14)0.777609 (13)0.449875 (8)0.02904 (5)
Cl1B0.50551 (13)0.74084 (11)0.33113 (6)0.0508 (3)
P1B0.52319 (9)0.81829 (9)0.56620 (5)0.0251 (2)
N1B0.1566 (3)0.5623 (3)0.4766 (2)0.0439 (10)
C1B0.1405 (4)0.4560 (4)0.4387 (2)0.0387 (11)
C2B0.0953 (4)0.4264 (4)0.3643 (2)0.0385 (11)
C3B0.0748 (4)0.3211 (4)0.3282 (3)0.0420 (12)
H3B0.04500.30020.27780.050*
C4B0.0964 (5)0.2467 (4)0.3637 (3)0.0533 (14)
H4B0.08220.17530.33800.064*
C5B0.1392 (5)0.2762 (4)0.4374 (3)0.0544 (14)
H5B0.15380.22400.46150.065*
C6B0.1614 (4)0.3803 (4)0.4770 (2)0.0452 (13)
C7B0.0733 (4)0.5084 (4)0.3238 (3)0.0469 (12)
H7B0.07490.56960.35950.056*
C8B0.0477 (5)0.4502 (5)0.2709 (4)0.079 (2)
H8BA0.05840.50620.24600.118*
H8BB0.10960.41880.29700.118*
H8BC0.05230.38860.23590.118*
C9B0.1719 (5)0.5645 (5)0.2862 (3)0.0637 (16)
H9BA0.15730.61760.26020.096*
H9BB0.17470.50590.25250.096*
H9BC0.24710.60620.32170.096*
C10B0.1994 (5)0.4048 (4)0.5582 (3)0.0537 (14)
H10B0.24250.48930.57570.064*
C11B0.2786 (6)0.3564 (9)0.5861 (4)0.124 (4)
H11A0.34930.38720.56710.185*
H11B0.23680.27330.57100.185*
H11C0.30120.37730.63850.185*
C12B0.0944 (6)0.3580 (8)0.5893 (3)0.093 (3)
H12A0.11980.37510.64160.140*
H12B0.04990.27530.57190.140*
H12C0.04420.39280.57480.140*
C13B0.2586 (3)0.6349 (4)0.5107 (2)0.0300 (9)
H13B0.32280.62030.50700.036*
C14B0.2817 (3)0.7428 (4)0.5567 (2)0.0285 (9)
C15B0.3963 (3)0.8319 (3)0.5849 (2)0.0255 (9)
C16B0.4137 (4)0.9304 (4)0.6290 (2)0.0358 (10)
H16B0.49130.99100.64750.043*
C17B0.3193 (4)0.9413 (5)0.6464 (3)0.0498 (13)
H17B0.33191.00870.67650.060*
C18B0.2073 (4)0.8532 (5)0.6193 (3)0.0522 (14)
H18B0.14240.85980.63140.063*
C19B0.1877 (4)0.7551 (4)0.5748 (2)0.0408 (11)
H19B0.10960.69560.55620.049*
C20B0.5325 (4)0.7150 (3)0.6169 (2)0.0303 (9)
C21B0.5863 (4)0.6517 (4)0.5954 (3)0.0472 (12)
H21B0.61470.66010.55300.057*
C22B0.5986 (5)0.5763 (5)0.6355 (3)0.0583 (15)
H22B0.63600.53350.62060.070*
C23B0.5574 (5)0.5629 (4)0.6964 (3)0.0538 (14)
H23B0.56590.51070.72340.065*
C24B0.5036 (4)0.6251 (4)0.7184 (3)0.0441 (12)
H24B0.47520.61570.76070.053*
C25B0.4908 (4)0.7011 (4)0.6794 (2)0.0335 (10)
H25B0.45370.74380.69490.040*
C26B0.6515 (3)0.9531 (3)0.6079 (2)0.0259 (9)
C27B0.6739 (4)1.0461 (4)0.5752 (2)0.0360 (10)
H27B0.62221.03760.53180.043*
C28B0.7708 (4)1.1509 (4)0.6056 (2)0.0392 (11)
H28B0.78451.21440.58360.047*
C29B0.8472 (4)1.1626 (4)0.6678 (2)0.0376 (11)
H29B0.91381.23430.68860.045*
C30B0.8276 (4)1.0710 (4)0.7001 (2)0.0380 (11)
H30B0.88121.07950.74260.046*
C31B0.7295 (4)0.9662 (4)0.6705 (2)0.0324 (10)
H31B0.71570.90340.69320.039*
Cl40.0094 (7)0.0310 (5)0.4177 (3)0.125 (2)0.50
Cl30.0785 (7)0.0091 (5)0.5291 (5)0.152 (3)0.50
Cl20.1757 (5)0.0690 (5)0.5517 (5)0.196 (4)0.50
C320.0374 (12)0.0182 (11)0.5187 (8)0.073 (4)0.50
H320.02020.09460.52970.087*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au1A0.03151 (9)0.03684 (10)0.02132 (9)0.01715 (8)0.00154 (7)0.00024 (7)
Cl1A0.0554 (7)0.0701 (8)0.0226 (6)0.0421 (7)0.0012 (5)0.0063 (5)
P1A0.0270 (5)0.0312 (6)0.0202 (5)0.0126 (5)0.0029 (4)0.0010 (4)
N1A0.040 (2)0.040 (2)0.041 (2)0.0153 (19)0.0033 (18)0.0086 (19)
C1A0.033 (2)0.040 (3)0.037 (3)0.019 (2)0.001 (2)0.008 (2)
C2A0.036 (2)0.043 (3)0.031 (2)0.018 (2)0.0076 (19)0.013 (2)
C3A0.047 (3)0.051 (3)0.033 (3)0.020 (2)0.000 (2)0.014 (2)
C4A0.048 (3)0.066 (4)0.052 (3)0.035 (3)0.006 (3)0.010 (3)
C5A0.046 (3)0.067 (4)0.058 (4)0.038 (3)0.008 (3)0.002 (3)
C6A0.046 (3)0.066 (4)0.041 (3)0.032 (3)0.001 (2)0.005 (3)
C7A0.051 (3)0.102 (5)0.029 (3)0.040 (3)0.012 (2)0.018 (3)
C8A0.112 (6)0.069 (5)0.141 (7)0.025 (4)0.089 (6)0.007 (5)
C9A0.109 (6)0.065 (4)0.125 (7)0.030 (4)0.064 (5)0.008 (4)
C10A0.078 (5)0.143 (7)0.056 (4)0.079 (5)0.006 (3)0.026 (4)
C11A0.185 (11)0.134 (9)0.090 (7)0.037 (8)0.057 (7)0.044 (6)
C12A0.145 (8)0.095 (6)0.063 (5)0.053 (5)0.036 (5)0.022 (4)
C13A0.050 (3)0.038 (3)0.024 (2)0.025 (2)0.012 (2)0.0074 (19)
C14A0.029 (2)0.037 (2)0.021 (2)0.0189 (19)0.0047 (17)0.0045 (18)
C15A0.028 (2)0.034 (2)0.019 (2)0.0159 (18)0.0058 (16)0.0006 (17)
C16A0.029 (2)0.035 (2)0.029 (2)0.0179 (19)0.0021 (18)0.0051 (19)
C17A0.023 (2)0.040 (3)0.040 (3)0.013 (2)0.0037 (19)0.002 (2)
C18A0.031 (2)0.034 (3)0.048 (3)0.008 (2)0.003 (2)0.001 (2)
C19A0.041 (3)0.031 (2)0.036 (3)0.018 (2)0.007 (2)0.0038 (19)
C20A0.028 (2)0.032 (2)0.026 (2)0.0142 (19)0.0024 (17)0.0091 (18)
C21A0.032 (2)0.040 (3)0.034 (3)0.013 (2)0.0037 (19)0.005 (2)
C22A0.027 (2)0.054 (3)0.046 (3)0.012 (2)0.008 (2)0.015 (2)
C23A0.040 (3)0.060 (3)0.047 (3)0.032 (3)0.023 (2)0.025 (3)
C24A0.041 (3)0.043 (3)0.034 (3)0.024 (2)0.012 (2)0.008 (2)
C25A0.028 (2)0.038 (2)0.029 (2)0.0146 (19)0.0076 (18)0.0051 (19)
C26A0.029 (2)0.033 (2)0.022 (2)0.0144 (19)0.0015 (17)0.0008 (17)
C27A0.063 (3)0.059 (3)0.030 (3)0.038 (3)0.017 (2)0.009 (2)
C28A0.098 (5)0.073 (4)0.045 (3)0.067 (4)0.024 (3)0.018 (3)
C29A0.084 (4)0.052 (3)0.039 (3)0.047 (3)0.008 (3)0.010 (2)
C30A0.063 (3)0.049 (3)0.032 (3)0.030 (3)0.012 (2)0.010 (2)
C31A0.057 (3)0.046 (3)0.025 (2)0.031 (2)0.009 (2)0.005 (2)
Au1B0.03466 (10)0.03069 (9)0.02350 (9)0.01670 (8)0.00744 (7)0.00507 (7)
Cl1B0.0784 (9)0.0528 (7)0.0262 (6)0.0337 (7)0.0169 (6)0.0079 (5)
P1B0.0259 (5)0.0279 (5)0.0226 (5)0.0135 (4)0.0054 (4)0.0060 (4)
N1B0.026 (2)0.055 (3)0.038 (2)0.0140 (19)0.0013 (17)0.0079 (19)
C1B0.021 (2)0.039 (3)0.038 (3)0.0006 (19)0.0084 (19)0.003 (2)
C2B0.024 (2)0.043 (3)0.034 (3)0.006 (2)0.0034 (19)0.001 (2)
C3B0.034 (3)0.041 (3)0.033 (3)0.004 (2)0.008 (2)0.001 (2)
C4B0.056 (3)0.037 (3)0.043 (3)0.002 (2)0.013 (3)0.003 (2)
C5B0.060 (3)0.040 (3)0.043 (3)0.005 (3)0.014 (3)0.010 (2)
C6B0.039 (3)0.040 (3)0.031 (3)0.002 (2)0.009 (2)0.001 (2)
C7B0.037 (3)0.051 (3)0.039 (3)0.017 (2)0.003 (2)0.008 (2)
C8B0.055 (4)0.072 (4)0.083 (5)0.028 (3)0.029 (3)0.009 (4)
C9B0.069 (4)0.068 (4)0.065 (4)0.036 (3)0.023 (3)0.023 (3)
C10B0.064 (4)0.037 (3)0.034 (3)0.003 (3)0.009 (2)0.006 (2)
C11B0.068 (5)0.260 (12)0.049 (4)0.099 (6)0.007 (3)0.011 (5)
C12B0.077 (5)0.190 (8)0.050 (4)0.086 (5)0.031 (3)0.040 (5)
C13B0.023 (2)0.036 (2)0.027 (2)0.0100 (19)0.0042 (17)0.0094 (18)
C14B0.028 (2)0.036 (2)0.024 (2)0.0171 (19)0.0051 (17)0.0071 (18)
C15B0.025 (2)0.031 (2)0.022 (2)0.0135 (18)0.0048 (16)0.0084 (17)
C16B0.032 (2)0.035 (2)0.036 (3)0.014 (2)0.0080 (19)0.001 (2)
C17B0.046 (3)0.054 (3)0.050 (3)0.027 (3)0.013 (2)0.006 (3)
C18B0.035 (3)0.067 (4)0.057 (3)0.028 (3)0.015 (2)0.004 (3)
C19B0.026 (2)0.052 (3)0.040 (3)0.017 (2)0.005 (2)0.006 (2)
C20B0.029 (2)0.028 (2)0.032 (2)0.0123 (18)0.0034 (18)0.0096 (18)
C21B0.051 (3)0.057 (3)0.053 (3)0.037 (3)0.019 (2)0.023 (3)
C22B0.065 (4)0.058 (3)0.079 (4)0.046 (3)0.022 (3)0.031 (3)
C23B0.053 (3)0.046 (3)0.065 (4)0.023 (3)0.006 (3)0.030 (3)
C24B0.046 (3)0.038 (3)0.037 (3)0.009 (2)0.004 (2)0.015 (2)
C25B0.033 (2)0.030 (2)0.034 (2)0.0118 (19)0.0065 (19)0.0083 (19)
C26B0.022 (2)0.030 (2)0.025 (2)0.0108 (17)0.0065 (16)0.0069 (17)
C27B0.030 (2)0.038 (3)0.029 (2)0.010 (2)0.0046 (18)0.008 (2)
C28B0.037 (3)0.035 (3)0.038 (3)0.010 (2)0.003 (2)0.013 (2)
C29B0.027 (2)0.036 (3)0.037 (3)0.004 (2)0.0041 (19)0.006 (2)
C30B0.033 (2)0.043 (3)0.028 (2)0.011 (2)0.0031 (19)0.008 (2)
C31B0.031 (2)0.036 (2)0.029 (2)0.013 (2)0.0077 (18)0.0131 (19)
Cl40.197 (7)0.065 (3)0.110 (4)0.052 (4)0.059 (4)0.022 (3)
Cl30.184 (8)0.077 (4)0.261 (9)0.082 (5)0.144 (7)0.060 (6)
Cl20.116 (4)0.081 (3)0.322 (10)0.014 (3)0.059 (5)0.076 (5)
C320.079 (9)0.068 (9)0.101 (11)0.045 (7)0.049 (9)0.044 (8)
Geometric parameters (Å, º) top
Au1A—P1A2.2354 (10)P1B—C26B1.811 (4)
Au1A—Cl1A2.2783 (11)P1B—C20B1.814 (4)
P1A—C26A1.807 (4)P1B—C15B1.828 (4)
P1A—C20A1.824 (4)N1B—C13B1.258 (5)
P1A—C15A1.835 (4)N1B—C1B1.435 (6)
N1A—C13A1.236 (6)C1B—C2B1.404 (6)
N1A—C1A1.442 (6)C1B—C6B1.411 (7)
C1A—C2A1.399 (6)C2B—C3B1.389 (7)
C1A—C6A1.400 (7)C2B—C7B1.514 (7)
C2A—C3A1.383 (6)C3B—C4B1.369 (7)
C2A—C7A1.534 (7)C3B—H3B0.9500
C3A—C4A1.377 (7)C4B—C5B1.388 (7)
C3A—H3A0.9500C4B—H4B0.9500
C4A—C5A1.373 (7)C5B—C6B1.395 (7)
C4A—H4A0.9500C5B—H5B0.9500
C5A—C6A1.387 (7)C6B—C10B1.520 (7)
C5A—H5A0.9500C7B—C9B1.520 (7)
C6A—C10A1.558 (8)C7B—C8B1.538 (7)
C7A—C8A1.476 (8)C7B—H7B1.0000
C7A—C9A1.518 (9)C8B—H8BA0.9800
C7A—H7A1.0000C8B—H8BB0.9800
C8A—H8AA0.9800C8B—H8BC0.9800
C8A—H8AB0.9800C9B—H9BA0.9800
C8A—H8AC0.9800C9B—H9BB0.9800
C9A—H9AA0.9800C9B—H9BC0.9800
C9A—H9AB0.9800C10B—C12B1.490 (8)
C9A—H9AC0.9800C10B—C11B1.504 (9)
C10A—C11A1.460 (11)C10B—H10B1.0000
C10A—C12A1.499 (10)C11B—H11A0.9800
C10A—H10A1.0000C11B—H11B0.9800
C11A—H11D0.9800C11B—H11C0.9800
C11A—H11E0.9800C12B—H12A0.9800
C11A—H11F0.9800C12B—H12B0.9800
C12A—H12D0.9800C12B—H12C0.9800
C12A—H12E0.9800C13B—C14B1.487 (6)
C12A—H12F0.9800C13B—H13B0.9500
C13A—C14A1.497 (6)C14B—C19B1.396 (6)
C13A—H13A0.9500C14B—C15B1.404 (6)
C14A—C19A1.385 (6)C15B—C16B1.392 (6)
C14A—C15A1.409 (6)C16B—C17B1.388 (6)
C15A—C16A1.393 (5)C16B—H16B0.9500
C16A—C17A1.390 (6)C17B—C18B1.376 (7)
C16A—H16A0.9500C17B—H17B0.9500
C17A—C18A1.375 (6)C18B—C19B1.382 (7)
C17A—H17A0.9500C18B—H18B0.9500
C18A—C19A1.387 (6)C19B—H19B0.9500
C18A—H18A0.9500C20B—C21B1.385 (6)
C19A—H19A0.9500C20B—C25B1.401 (6)
C20A—C21A1.378 (6)C21B—C22B1.386 (7)
C20A—C25A1.383 (6)C21B—H21B0.9500
C21A—C22A1.385 (6)C22B—C23B1.369 (8)
C21A—H21A0.9500C22B—H22B0.9500
C22A—C23A1.375 (7)C23B—C24B1.376 (7)
C22A—H22A0.9500C23B—H23B0.9500
C23A—C24A1.385 (6)C24B—C25B1.382 (6)
C23A—H23A0.9500C24B—H24B0.9500
C24A—C25A1.386 (6)C25B—H25B0.9500
C24A—H24A0.9500C26B—C31B1.391 (6)
C25A—H25A0.9500C26B—C27B1.394 (6)
C26A—C27A1.384 (6)C27B—C28B1.385 (6)
C26A—C31A1.393 (6)C27B—H27B0.9500
C27A—C28A1.377 (7)C28B—C29B1.380 (6)
C27A—H27A0.9500C28B—H28B0.9500
C28A—C29A1.375 (7)C29B—C30B1.378 (6)
C28A—H28A0.9500C29B—H29B0.9500
C29A—C30A1.373 (7)C30B—C31B1.390 (6)
C29A—H29A0.9500C30B—H30B0.9500
C30A—C31A1.383 (6)C31B—H31B0.9500
C30A—H30A0.9500Cl4—C321.903 (16)
C31A—H31A0.9500Cl3—C321.739 (14)
Au1B—P1B2.2267 (10)Cl2—C321.621 (15)
Au1B—Cl1B2.2707 (11)C32—H321.0000
P1A—Au1A—Cl1A177.20 (4)C20B—P1B—C15B104.38 (19)
C26A—P1A—C20A105.25 (19)C26B—P1B—Au1B110.11 (13)
C26A—P1A—C15A105.82 (19)C20B—P1B—Au1B115.53 (15)
C20A—P1A—C15A105.36 (18)C15B—P1B—Au1B113.46 (13)
C26A—P1A—Au1A110.70 (13)C13B—N1B—C1B118.3 (4)
C20A—P1A—Au1A116.83 (13)C2B—C1B—C6B121.7 (4)
C15A—P1A—Au1A112.07 (13)C2B—C1B—N1B118.4 (5)
C13A—N1A—C1A117.9 (4)C6B—C1B—N1B119.8 (4)
C2A—C1A—C6A122.2 (4)C3B—C2B—C1B118.3 (5)
C2A—C1A—N1A118.8 (4)C3B—C2B—C7B120.6 (4)
C6A—C1A—N1A118.9 (4)C1B—C2B—C7B121.1 (4)
C3A—C2A—C1A117.3 (4)C4B—C3B—C2B121.5 (5)
C3A—C2A—C7A120.9 (4)C4B—C3B—H3B119.3
C1A—C2A—C7A121.9 (4)C2B—C3B—H3B119.3
C4A—C3A—C2A121.4 (5)C3B—C4B—C5B119.7 (5)
C4A—C3A—H3A119.3C3B—C4B—H4B120.2
C2A—C3A—H3A119.3C5B—C4B—H4B120.2
C5A—C4A—C3A120.4 (5)C4B—C5B—C6B121.9 (5)
C5A—C4A—H4A119.8C4B—C5B—H5B119.0
C3A—C4A—H4A119.8C6B—C5B—H5B119.0
C4A—C5A—C6A120.9 (5)C5B—C6B—C1B117.0 (4)
C4A—C5A—H5A119.6C5B—C6B—C10B119.8 (5)
C6A—C5A—H5A119.6C1B—C6B—C10B123.1 (5)
C5A—C6A—C1A117.7 (5)C2B—C7B—C9B109.8 (4)
C5A—C6A—C10A121.4 (5)C2B—C7B—C8B112.1 (4)
C1A—C6A—C10A120.9 (4)C9B—C7B—C8B111.4 (5)
C8A—C7A—C9A111.3 (5)C2B—C7B—H7B107.8
C8A—C7A—C2A111.7 (5)C9B—C7B—H7B107.8
C9A—C7A—C2A114.4 (5)C8B—C7B—H7B107.8
C8A—C7A—H7A106.3C7B—C8B—H8BA109.5
C9A—C7A—H7A106.3C7B—C8B—H8BB109.5
C2A—C7A—H7A106.3H8BA—C8B—H8BB109.5
C7A—C8A—H8AA109.5C7B—C8B—H8BC109.5
C7A—C8A—H8AB109.5H8BA—C8B—H8BC109.5
H8AA—C8A—H8AB109.5H8BB—C8B—H8BC109.5
C7A—C8A—H8AC109.5C7B—C9B—H9BA109.5
H8AA—C8A—H8AC109.5C7B—C9B—H9BB109.5
H8AB—C8A—H8AC109.5H9BA—C9B—H9BB109.5
C7A—C9A—H9AA109.5C7B—C9B—H9BC109.5
C7A—C9A—H9AB109.5H9BA—C9B—H9BC109.5
H9AA—C9A—H9AB109.5H9BB—C9B—H9BC109.5
C7A—C9A—H9AC109.5C12B—C10B—C11B107.9 (5)
H9AA—C9A—H9AC109.5C12B—C10B—C6B110.2 (5)
H9AB—C9A—H9AC109.5C11B—C10B—C6B114.0 (5)
C11A—C10A—C12A111.7 (7)C12B—C10B—H10B108.2
C11A—C10A—C6A108.8 (7)C11B—C10B—H10B108.2
C12A—C10A—C6A114.0 (5)C6B—C10B—H10B108.2
C11A—C10A—H10A107.4C10B—C11B—H11A109.5
C12A—C10A—H10A107.4C10B—C11B—H11B109.5
C6A—C10A—H10A107.4H11A—C11B—H11B109.5
C10A—C11A—H11D109.5C10B—C11B—H11C109.5
C10A—C11A—H11E109.5H11A—C11B—H11C109.5
H11D—C11A—H11E109.5H11B—C11B—H11C109.5
C10A—C11A—H11F109.5C10B—C12B—H12A109.5
H11D—C11A—H11F109.5C10B—C12B—H12B109.5
H11E—C11A—H11F109.5H12A—C12B—H12B109.5
C10A—C12A—H12D109.5C10B—C12B—H12C109.5
C10A—C12A—H12E109.5H12A—C12B—H12C109.5
H12D—C12A—H12E109.5H12B—C12B—H12C109.5
C10A—C12A—H12F109.5N1B—C13B—C14B121.9 (4)
H12D—C12A—H12F109.5N1B—C13B—H13B119.1
H12E—C12A—H12F109.5C14B—C13B—H13B119.1
N1A—C13A—C14A122.4 (4)C19B—C14B—C15B118.7 (4)
N1A—C13A—H13A118.8C19B—C14B—C13B119.6 (4)
C14A—C13A—H13A118.8C15B—C14B—C13B121.7 (4)
C19A—C14A—C15A119.1 (4)C16B—C15B—C14B119.7 (4)
C19A—C14A—C13A120.5 (4)C16B—C15B—P1B119.6 (3)
C15A—C14A—C13A120.4 (4)C14B—C15B—P1B120.6 (3)
C16A—C15A—C14A119.5 (4)C17B—C16B—C15B120.9 (4)
C16A—C15A—P1A119.3 (3)C17B—C16B—H16B119.6
C14A—C15A—P1A121.1 (3)C15B—C16B—H16B119.6
C17A—C16A—C15A120.0 (4)C18B—C17B—C16B119.2 (5)
C17A—C16A—H16A120.0C18B—C17B—H17B120.4
C15A—C16A—H16A120.0C16B—C17B—H17B120.4
C18A—C17A—C16A120.6 (4)C17B—C18B—C19B120.9 (4)
C18A—C17A—H17A119.7C17B—C18B—H18B119.5
C16A—C17A—H17A119.7C19B—C18B—H18B119.5
C17A—C18A—C19A119.7 (4)C18B—C19B—C14B120.6 (4)
C17A—C18A—H18A120.1C18B—C19B—H19B119.7
C19A—C18A—H18A120.1C14B—C19B—H19B119.7
C14A—C19A—C18A121.1 (4)C21B—C20B—C25B119.0 (4)
C14A—C19A—H19A119.5C21B—C20B—P1B119.6 (3)
C18A—C19A—H19A119.5C25B—C20B—P1B121.4 (3)
C21A—C20A—C25A120.0 (4)C20B—C21B—C22B120.1 (5)
C21A—C20A—P1A119.4 (3)C20B—C21B—H21B119.9
C25A—C20A—P1A120.4 (3)C22B—C21B—H21B119.9
C20A—C21A—C22A119.7 (4)C23B—C22B—C21B120.6 (5)
C20A—C21A—H21A120.1C23B—C22B—H22B119.7
C22A—C21A—H21A120.1C21B—C22B—H22B119.7
C23A—C22A—C21A120.4 (4)C22B—C23B—C24B120.0 (5)
C23A—C22A—H22A119.8C22B—C23B—H23B120.0
C21A—C22A—H22A119.8C24B—C23B—H23B120.0
C22A—C23A—C24A120.1 (4)C23B—C24B—C25B120.4 (5)
C22A—C23A—H23A120.0C23B—C24B—H24B119.8
C24A—C23A—H23A120.0C25B—C24B—H24B119.8
C23A—C24A—C25A119.5 (4)C24B—C25B—C20B120.0 (4)
C23A—C24A—H24A120.3C24B—C25B—H25B120.0
C25A—C24A—H24A120.3C20B—C25B—H25B120.0
C20A—C25A—C24A120.2 (4)C31B—C26B—C27B119.0 (4)
C20A—C25A—H25A119.9C31B—C26B—P1B122.2 (3)
C24A—C25A—H25A119.9C27B—C26B—P1B118.8 (3)
C27A—C26A—C31A118.5 (4)C28B—C27B—C26B120.6 (4)
C27A—C26A—P1A119.4 (3)C28B—C27B—H27B119.7
C31A—C26A—P1A122.1 (3)C26B—C27B—H27B119.7
C28A—C27A—C26A121.1 (4)C29B—C28B—C27B119.7 (4)
C28A—C27A—H27A119.5C29B—C28B—H28B120.2
C26A—C27A—H27A119.5C27B—C28B—H28B120.2
C29A—C28A—C27A119.6 (5)C30B—C29B—C28B120.5 (4)
C29A—C28A—H28A120.2C30B—C29B—H29B119.7
C27A—C28A—H28A120.2C28B—C29B—H29B119.7
C30A—C29A—C28A120.6 (5)C29B—C30B—C31B120.0 (4)
C30A—C29A—H29A119.7C29B—C30B—H30B120.0
C28A—C29A—H29A119.7C31B—C30B—H30B120.0
C29A—C30A—C31A119.8 (5)C30B—C31B—C26B120.2 (4)
C29A—C30A—H30A120.1C30B—C31B—H31B119.9
C31A—C30A—H30A120.1C26B—C31B—H31B119.9
C30A—C31A—C26A120.4 (4)Cl2—C32—Cl3125.5 (10)
C30A—C31A—H31A119.8Cl2—C32—Cl4107.2 (9)
C26A—C31A—H31A119.8Cl3—C32—Cl495.9 (7)
P1B—Au1B—Cl1B178.54 (4)Cl2—C32—H32108.9
C26B—P1B—C20B106.29 (19)Cl3—C32—H32108.9
C26B—P1B—C15B106.40 (18)Cl4—C32—H32108.9
C13A—N1A—C1A—C2A90.8 (5)C13B—N1B—C1B—C2B119.9 (5)
C13A—N1A—C1A—C6A93.0 (6)C13B—N1B—C1B—C6B65.0 (6)
C6A—C1A—C2A—C3A3.6 (7)C6B—C1B—C2B—C3B2.1 (6)
N1A—C1A—C2A—C3A172.4 (4)N1B—C1B—C2B—C3B177.1 (4)
C6A—C1A—C2A—C7A176.1 (5)C6B—C1B—C2B—C7B180.0 (4)
N1A—C1A—C2A—C7A7.9 (7)N1B—C1B—C2B—C7B5.0 (6)
C1A—C2A—C3A—C4A1.8 (7)C1B—C2B—C3B—C4B0.7 (7)
C7A—C2A—C3A—C4A177.8 (5)C7B—C2B—C3B—C4B178.6 (4)
C2A—C3A—C4A—C5A0.5 (8)C2B—C3B—C4B—C5B0.3 (7)
C3A—C4A—C5A—C6A1.3 (9)C3B—C4B—C5B—C6B0.1 (8)
C4A—C5A—C6A—C1A0.4 (8)C4B—C5B—C6B—C1B1.2 (7)
C4A—C5A—C6A—C10A178.5 (6)C4B—C5B—C6B—C10B175.4 (5)
C2A—C1A—C6A—C5A2.9 (8)C2B—C1B—C6B—C5B2.3 (7)
N1A—C1A—C6A—C5A173.1 (5)N1B—C1B—C6B—C5B177.2 (4)
C2A—C1A—C6A—C10A176.0 (5)C2B—C1B—C6B—C10B174.1 (4)
N1A—C1A—C6A—C10A8.0 (8)N1B—C1B—C6B—C10B0.8 (7)
C3A—C2A—C7A—C8A93.8 (7)C3B—C2B—C7B—C9B75.9 (5)
C1A—C2A—C7A—C8A86.6 (7)C1B—C2B—C7B—C9B101.9 (5)
C3A—C2A—C7A—C9A33.8 (8)C3B—C2B—C7B—C8B48.4 (6)
C1A—C2A—C7A—C9A145.9 (6)C1B—C2B—C7B—C8B133.7 (5)
C5A—C6A—C10A—C11A95.5 (9)C5B—C6B—C10B—C12B85.3 (7)
C1A—C6A—C10A—C11A85.6 (9)C1B—C6B—C10B—C12B91.0 (6)
C5A—C6A—C10A—C12A29.8 (10)C5B—C6B—C10B—C11B36.2 (7)
C1A—C6A—C10A—C12A149.1 (6)C1B—C6B—C10B—C11B147.5 (6)
C1A—N1A—C13A—C14A179.9 (4)C1B—N1B—C13B—C14B174.4 (4)
N1A—C13A—C14A—C19A3.6 (6)N1B—C13B—C14B—C19B13.4 (6)
N1A—C13A—C14A—C15A176.0 (4)N1B—C13B—C14B—C15B168.9 (4)
C19A—C14A—C15A—C16A1.2 (6)C19B—C14B—C15B—C16B0.9 (6)
C13A—C14A—C15A—C16A178.5 (4)C13B—C14B—C15B—C16B178.6 (4)
C19A—C14A—C15A—P1A175.3 (3)C19B—C14B—C15B—P1B177.5 (3)
C13A—C14A—C15A—P1A5.0 (5)C13B—C14B—C15B—P1B0.2 (5)
C26A—P1A—C15A—C16A4.0 (4)C26B—P1B—C15B—C16B4.7 (4)
C20A—P1A—C15A—C16A115.2 (3)C20B—P1B—C15B—C16B107.5 (4)
Au1A—P1A—C15A—C16A116.7 (3)Au1B—P1B—C15B—C16B125.9 (3)
C26A—P1A—C15A—C14A179.5 (3)C26B—P1B—C15B—C14B176.9 (3)
C20A—P1A—C15A—C14A68.3 (4)C20B—P1B—C15B—C14B70.9 (4)
Au1A—P1A—C15A—C14A59.8 (3)Au1B—P1B—C15B—C14B55.7 (3)
C14A—C15A—C16A—C17A0.9 (6)C14B—C15B—C16B—C17B0.9 (7)
P1A—C15A—C16A—C17A175.7 (3)P1B—C15B—C16B—C17B177.5 (4)
C15A—C16A—C17A—C18A0.0 (7)C15B—C16B—C17B—C18B0.1 (8)
C16A—C17A—C18A—C19A0.6 (7)C16B—C17B—C18B—C19B0.7 (8)
C15A—C14A—C19A—C18A0.6 (6)C17B—C18B—C19B—C14B0.6 (8)
C13A—C14A—C19A—C18A179.1 (4)C15B—C14B—C19B—C18B0.2 (7)
C17A—C18A—C19A—C14A0.3 (7)C13B—C14B—C19B—C18B177.9 (4)
C26A—P1A—C20A—C21A86.0 (4)C26B—P1B—C20B—C21B92.6 (4)
C15A—P1A—C20A—C21A162.4 (3)C15B—P1B—C20B—C21B155.1 (4)
Au1A—P1A—C20A—C21A37.2 (4)Au1B—P1B—C20B—C21B29.8 (4)
C26A—P1A—C20A—C25A90.8 (4)C26B—P1B—C20B—C25B84.7 (4)
C15A—P1A—C20A—C25A20.8 (4)C15B—P1B—C20B—C25B27.6 (4)
Au1A—P1A—C20A—C25A145.9 (3)Au1B—P1B—C20B—C25B152.9 (3)
C25A—C20A—C21A—C22A0.2 (7)C25B—C20B—C21B—C22B0.2 (7)
P1A—C20A—C21A—C22A176.6 (4)P1B—C20B—C21B—C22B177.1 (4)
C20A—C21A—C22A—C23A0.2 (7)C20B—C21B—C22B—C23B0.4 (9)
C21A—C22A—C23A—C24A0.3 (7)C21B—C22B—C23B—C24B0.3 (9)
C22A—C23A—C24A—C25A0.4 (7)C22B—C23B—C24B—C25B0.1 (8)
C21A—C20A—C25A—C24A0.3 (6)C23B—C24B—C25B—C20B0.1 (7)
P1A—C20A—C25A—C24A176.5 (3)C21B—C20B—C25B—C24B0.0 (7)
C23A—C24A—C25A—C20A0.4 (7)P1B—C20B—C25B—C24B177.3 (3)
C20A—P1A—C26A—C27A159.0 (4)C20B—P1B—C26B—C31B5.3 (4)
C15A—P1A—C26A—C27A89.7 (4)C15B—P1B—C26B—C31B105.5 (4)
Au1A—P1A—C26A—C27A31.9 (4)Au1B—P1B—C26B—C31B131.2 (3)
C20A—P1A—C26A—C31A20.9 (4)C20B—P1B—C26B—C27B173.3 (3)
C15A—P1A—C26A—C31A90.4 (4)C15B—P1B—C26B—C27B75.9 (4)
Au1A—P1A—C26A—C31A148.0 (3)Au1B—P1B—C26B—C27B47.5 (4)
C31A—C26A—C27A—C28A1.1 (7)C31B—C26B—C27B—C28B1.6 (7)
P1A—C26A—C27A—C28A178.9 (4)P1B—C26B—C27B—C28B179.7 (4)
C26A—C27A—C28A—C29A2.0 (9)C26B—C27B—C28B—C29B1.5 (7)
C27A—C28A—C29A—C30A1.3 (9)C27B—C28B—C29B—C30B0.2 (7)
C28A—C29A—C30A—C31A0.2 (8)C28B—C29B—C30B—C31B0.9 (7)
C29A—C30A—C31A—C26A1.1 (8)C29B—C30B—C31B—C26B0.7 (7)
C27A—C26A—C31A—C30A0.4 (7)C27B—C26B—C31B—C30B0.6 (6)
P1A—C26A—C31A—C30A179.5 (4)P1B—C26B—C31B—C30B179.2 (3)

Experimental details

Crystal data
Chemical formula[AuCl(C31H32NP)]·0.25CHCl3
Mr711.81
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)13.0315 (3), 13.3638 (2), 19.3489 (5)
α, β, γ (°)96.358 (2), 99.229 (1), 116.191 (1)
V3)2921.15 (11)
Z4
Radiation typeMo Kα
µ (mm1)5.27
Crystal size (mm)0.21 × 0.18 × 0.12
Data collection
DiffractometerBruker APEXII 4K CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.404, 0.570
No. of measured, independent and
observed [I > 2σ(I)] reflections
119407, 11945, 9894
Rint0.053
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.065, 1.09
No. of reflections11945
No. of parameters667
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.91, 1.54

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SAINT and XPREP (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 2012).

 

Acknowledgements

Mintek and Project AuTEK are acknowledged for funding this project. HC also thanks the late Professor J. R. Moss for fruitful discussions.

References

First citationBarnard, P. J., Baker, M. V., Berners-Price, S. J. & Day, D. A. (2004). J. Inorg. Biochem. 98, 115-119.  Web of Science CrossRef Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2, SAINT, SADABS, and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChiririwa, H., Moss, J. R., Hendricks, D., Smith, G. S. & Meijboom, R. (2013). Polyhedron, 49, 29–35.  Web of Science CSD CrossRef CAS Google Scholar
First citationChiririwa, H. & Muller, A. (2012). Acta Cryst. E68, m49.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCowan, J. A. (1993). Inorganic Biochemistry: An Introduction, pp. 277–280. Weinheim: VCH.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFinkelstein, A. E., Walz, D. T., Batista, U. M., Mixraji, M., Roisman, F. & Misher, A. (1976). Ann. Rheum. Dis. 35, 251–257.  CrossRef CAS PubMed Web of Science Google Scholar
First citationFricker, S. R. (1996). Gold Bull. 29, 53–60.  CAS Google Scholar
First citationMogorosi, M. M., Mahamo, T., Moss, J. R., Mapolie, S. F., Slootweg, J. C., Lammertsma, K. & Smith, G. S. (2011). J. Organomet. Chem. 696, 3585–3592.  Web of Science CrossRef CAS Google Scholar
First citationNomiya, K., Yamamoto, S., Noguchi, R., Yokoyama, H., Kasuga, N. C., Ohyama, K. & Kato, C. (2003). J. Inorg. Biochem. 95, 2208–2220.  Web of Science CSD CrossRef Google Scholar
First citationParish, R. V. (1992). Interdisc. Sci. Rev. 17, 221–228.  CrossRef Google Scholar
First citationReddy, K. R., Tsai, W.-W., Lee, S. G.-H., Peng, S. M., Chen, J.-T. & Liu, S. T. (2002). J. Chem. Soc. Dalton Trans. pp. 1776–1782.  Web of Science CSD CrossRef Google Scholar
First citationShaw, C. F. III (1999). Chem. Rev. 99, 2589–2600.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUson, R. & Laguna, A. (1986). Organometallic Synthesis, edited by R. B. Lang & J. J. Eish, Vol. 3, pp. 324–327. Amsterdam: Elsevier.  Google Scholar
First citationWilliams, D. B. G., Traut, T., Kriel, F. H. & van Zyl, W. E. (2007). Inorg. Chem. Commun. 10, 538–542.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds