organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­phenyl­methyl benzoate

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and cR. L. Fine Chem, Bengaluru, 560 064, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 30 November 2012; accepted 6 December 2012; online 12 December 2012)

In the title mol­ecule, C20H16O2, the dihedral angle between the phenyl rings of the diphenyl­methyl group is 68.3 (2)°. The benzoate group is essentially planar, with a maximum deviation of 0.017 (2) Å for the carbonyl O atom, and the two phenyl rings are twisted by 27.5 (4) and 85.6 (9)° from this plane. In the crystal, weak C—H⋯O hydrogen bonds link mol­ecules along [100].

Related literature

For related structures, see: Baidya et al. (2009a[Baidya, M., Mayr, H. & Mayer, P. (2009a). Acta Cryst. E65, o3035.],b[Baidya, M., Mayr, H. & Mayer, P. (2009b). Acta Cryst. E65, o3224.]); Gowda et al. (2007[Gowda, B. T., Foro, S., Nayak, R. & Fuess, H. (2007). Acta Cryst. E63, o3563.], 2009[Gowda, B. T., Tokarčík, M., Kožíšek, J., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o2599.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C20H16O2

  • Mr = 288.33

  • Monoclinic, P 21

  • a = 5.75357 (19) Å

  • b = 16.0368 (5) Å

  • c = 8.3114 (3) Å

  • β = 95.340 (3)°

  • V = 763.55 (4) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.63 mm−1

  • T = 173 K

  • 0.38 × 0.26 × 0.24 mm

Data collection
  • Agilent Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.912, Tmax = 1.000

  • 4414 measured reflections

  • 2659 independent reflections

  • 2528 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.094

  • S = 1.06

  • 2659 reflections

  • 200 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.15 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) 1120 Friedel pairs

  • Flack parameter: 0.0 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16⋯O2i 0.93 2.44 3.334 (2) 160
Symmetry code: (i) x+1, y, z.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzyl Benzoate is widely used in the perfume and pharmaceutical industries. The crystal structures of some related compounds, viz., 4,4'-bis(dimethylamino)benzhydryl phenyl sulfone (Baidya et al., 2009a), benzhydryl phenyl sulfone (Baidya et al., 2009b), 4-methylphenyl benzoate (Gowda et al., 2007), 2,4-dimethylphenyl 4-methylbenzoate (Gowda et al., 2009) have been reported. In view of the importance of benzoates, the paper reports the crystal structure of the title compound, (I).

The molecular structure of the title compound is shown in Fig. 1. The dihedral angle between the two phenyl rings (C9-C14 and C15-C20) is 68.3 (2)°. The mean plane of the benzoate group (C1–C7/O1/O2, with a maximum deviation of 0.017 (2)Å for O2) is twisted by 27.5 (4)° (C9–C14) and 85.6 (9)° (C15–C20), respectively, from that of the phenyl rings. In the crystal, weak C—H···O hydrogen bonds (Table 1) link molecules along [100] (Fig. 2).

Related literature top

For related structures, see: Baidya et al. (2009a,b); Gowda et al. (2007, 2009). For standard bond lengths, see: Allen et al. (1987).

Experimental top

The title compound was obtained as a gift sample from R. L. Fine Chem, Bengaluru, India. X-ray quality crystals were obtained by slow evaporation of acetone and acetone solution (m.p.: 353–355 K).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.93Å (CH). Isotropic displacement parameters for these atoms were set to 1.19-1.20 (CH) times Ueq of the parent atom.

Structure description top

Benzyl Benzoate is widely used in the perfume and pharmaceutical industries. The crystal structures of some related compounds, viz., 4,4'-bis(dimethylamino)benzhydryl phenyl sulfone (Baidya et al., 2009a), benzhydryl phenyl sulfone (Baidya et al., 2009b), 4-methylphenyl benzoate (Gowda et al., 2007), 2,4-dimethylphenyl 4-methylbenzoate (Gowda et al., 2009) have been reported. In view of the importance of benzoates, the paper reports the crystal structure of the title compound, (I).

The molecular structure of the title compound is shown in Fig. 1. The dihedral angle between the two phenyl rings (C9-C14 and C15-C20) is 68.3 (2)°. The mean plane of the benzoate group (C1–C7/O1/O2, with a maximum deviation of 0.017 (2)Å for O2) is twisted by 27.5 (4)° (C9–C14) and 85.6 (9)° (C15–C20), respectively, from that of the phenyl rings. In the crystal, weak C—H···O hydrogen bonds (Table 1) link molecules along [100] (Fig. 2).

For related structures, see: Baidya et al. (2009a,b); Gowda et al. (2007, 2009). For standard bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the c axis showing weak C—H···O intermolecular interactions (dashed lines) linking the molecules into columns along [100]
Diphenylmethyl benzoate top
Crystal data top
C20H16O2F(000) = 304
Mr = 288.33Dx = 1.254 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ybCell parameters from 2446 reflections
a = 5.75357 (19) Åθ = 5.3–72.4°
b = 16.0368 (5) ŵ = 0.63 mm1
c = 8.3114 (3) ÅT = 173 K
β = 95.340 (3)°Block, colorless
V = 763.55 (4) Å30.38 × 0.26 × 0.24 mm
Z = 2
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
2659 independent reflections
Radiation source: Enhance (Cu) X-ray Source2528 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 16.0416 pixels mm-1θmax = 72.5°, θmin = 5.4°
ω scansh = 75
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
k = 1719
Tmin = 0.912, Tmax = 1.000l = 610
4414 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0518P)2 + 0.052P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.094(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.21 e Å3
2659 reflectionsΔρmin = 0.15 e Å3
200 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0104 (11)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983) 1120 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.0 (2)
Crystal data top
C20H16O2V = 763.55 (4) Å3
Mr = 288.33Z = 2
Monoclinic, P21Cu Kα radiation
a = 5.75357 (19) ŵ = 0.63 mm1
b = 16.0368 (5) ÅT = 173 K
c = 8.3114 (3) Å0.38 × 0.26 × 0.24 mm
β = 95.340 (3)°
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
2659 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
2528 reflections with I > 2σ(I)
Tmin = 0.912, Tmax = 1.000Rint = 0.022
4414 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.094Δρmax = 0.21 e Å3
S = 1.06Δρmin = 0.15 e Å3
2659 reflectionsAbsolute structure: Flack (1983) 1120 Friedel pairs
200 parametersAbsolute structure parameter: 0.0 (2)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2173 (2)0.33454 (8)0.50213 (15)0.0376 (3)
O20.1042 (2)0.31628 (10)0.63104 (18)0.0495 (4)
C10.1598 (3)0.42599 (10)0.7144 (2)0.0312 (4)
C20.3646 (3)0.46769 (11)0.6891 (2)0.0364 (4)
H20.45470.44980.60850.044*
C30.4349 (4)0.53567 (12)0.7833 (2)0.0434 (4)
H30.57090.56400.76480.052*
C40.3036 (4)0.56172 (13)0.9049 (2)0.0465 (5)
H40.35140.60740.96850.056*
C50.1008 (4)0.51969 (13)0.9320 (2)0.0491 (5)
H50.01330.53701.01450.059*
C60.0279 (3)0.45254 (12)0.8375 (2)0.0407 (4)
H60.10920.42480.85560.049*
C70.0735 (3)0.35370 (11)0.6150 (2)0.0329 (4)
C80.1615 (3)0.26034 (11)0.4044 (2)0.0339 (4)
H80.00740.25790.37580.041*
C90.2833 (3)0.27104 (10)0.2523 (2)0.0350 (4)
C100.4936 (3)0.31388 (13)0.2513 (2)0.0408 (4)
H100.56150.33810.34590.049*
C110.6021 (4)0.32051 (14)0.1099 (3)0.0459 (5)
H110.74200.34950.11010.055*
C120.5040 (4)0.28435 (12)0.0315 (2)0.0452 (5)
H120.57760.28900.12610.054*
C130.2964 (4)0.24132 (14)0.0317 (2)0.0459 (5)
H130.23040.21660.12640.055*
C140.1859 (3)0.23482 (12)0.1092 (2)0.0400 (4)
H140.04550.20600.10810.048*
C150.2380 (3)0.18357 (11)0.50053 (19)0.0327 (4)
C160.4629 (3)0.17795 (12)0.5773 (2)0.0381 (4)
H160.56830.22120.56720.046*
C170.5304 (4)0.10861 (14)0.6684 (2)0.0456 (5)
H170.68040.10560.72040.055*
C180.3756 (4)0.04356 (13)0.6827 (2)0.0494 (5)
H180.42060.00280.74520.059*
C190.1538 (4)0.04782 (13)0.6037 (3)0.0514 (5)
H190.05040.00380.61150.062*
C200.0851 (4)0.11732 (13)0.5130 (2)0.0421 (4)
H200.06440.11970.46010.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0385 (7)0.0341 (7)0.0422 (7)0.0057 (5)0.0136 (5)0.0087 (5)
O20.0401 (7)0.0565 (9)0.0543 (8)0.0152 (6)0.0172 (6)0.0205 (7)
C10.0333 (8)0.0287 (8)0.0316 (8)0.0040 (6)0.0032 (6)0.0031 (6)
C20.0354 (9)0.0348 (9)0.0396 (9)0.0008 (7)0.0058 (7)0.0002 (7)
C30.0415 (10)0.0386 (10)0.0494 (11)0.0062 (8)0.0002 (8)0.0021 (9)
C40.0569 (12)0.0358 (10)0.0451 (10)0.0034 (9)0.0047 (9)0.0076 (8)
C50.0602 (13)0.0475 (12)0.0410 (11)0.0031 (10)0.0129 (9)0.0103 (9)
C60.0410 (10)0.0402 (10)0.0419 (10)0.0016 (8)0.0082 (8)0.0030 (8)
C70.0318 (8)0.0333 (9)0.0340 (8)0.0016 (7)0.0047 (7)0.0001 (7)
C80.0327 (8)0.0345 (9)0.0349 (8)0.0039 (7)0.0050 (7)0.0062 (7)
C90.0395 (9)0.0303 (9)0.0354 (8)0.0045 (7)0.0056 (7)0.0010 (7)
C100.0428 (10)0.0413 (10)0.0393 (9)0.0018 (8)0.0088 (8)0.0016 (8)
C110.0495 (11)0.0415 (11)0.0487 (10)0.0004 (9)0.0152 (8)0.0058 (9)
C120.0589 (12)0.0427 (11)0.0363 (9)0.0099 (9)0.0172 (9)0.0070 (8)
C130.0609 (12)0.0443 (11)0.0324 (9)0.0086 (9)0.0032 (8)0.0021 (8)
C140.0420 (9)0.0379 (10)0.0401 (9)0.0039 (8)0.0035 (8)0.0035 (8)
C150.0374 (9)0.0340 (9)0.0282 (8)0.0040 (7)0.0108 (7)0.0075 (6)
C160.0391 (10)0.0423 (10)0.0338 (9)0.0060 (8)0.0076 (7)0.0023 (7)
C170.0448 (11)0.0580 (13)0.0349 (9)0.0062 (9)0.0083 (8)0.0008 (9)
C180.0722 (15)0.0392 (11)0.0382 (10)0.0059 (10)0.0123 (9)0.0006 (8)
C190.0683 (14)0.0364 (11)0.0504 (11)0.0152 (10)0.0108 (10)0.0032 (9)
C200.0421 (10)0.0423 (10)0.0427 (10)0.0100 (8)0.0073 (8)0.0065 (8)
Geometric parameters (Å, º) top
O1—C71.343 (2)C10—C111.385 (3)
O1—C81.460 (2)C10—H100.9300
O2—C71.203 (2)C11—C121.383 (3)
C1—C21.388 (2)C11—H110.9300
C1—C61.396 (2)C12—C131.379 (3)
C1—C71.482 (2)C12—H120.9300
C2—C31.381 (3)C13—C141.387 (3)
C2—H20.9300C13—H130.9300
C3—C41.382 (3)C14—H140.9300
C3—H30.9300C15—C201.390 (2)
C4—C51.384 (3)C15—C161.392 (2)
C4—H40.9300C16—C171.380 (3)
C5—C61.375 (3)C16—H160.9300
C5—H50.9300C17—C181.384 (3)
C6—H60.9300C17—H170.9300
C8—C151.511 (3)C18—C191.381 (3)
C8—C91.511 (2)C18—H180.9300
C8—H80.9800C19—C201.382 (3)
C9—C101.392 (3)C19—H190.9300
C9—C141.394 (3)C20—H200.9300
C7—O1—C8117.21 (13)C11—C10—H10119.9
C2—C1—C6119.42 (17)C9—C10—H10119.9
C2—C1—C7122.53 (15)C12—C11—C10120.54 (19)
C6—C1—C7118.05 (16)C12—C11—H11119.7
C3—C2—C1120.18 (18)C10—C11—H11119.7
C3—C2—H2119.9C13—C12—C11119.72 (17)
C1—C2—H2119.9C13—C12—H12120.1
C2—C3—C4120.15 (18)C11—C12—H12120.1
C2—C3—H3119.9C12—C13—C14120.08 (18)
C4—C3—H3119.9C12—C13—H13120.0
C3—C4—C5119.89 (18)C14—C13—H13120.0
C3—C4—H4120.1C13—C14—C9120.65 (18)
C5—C4—H4120.1C13—C14—H14119.7
C6—C5—C4120.37 (19)C9—C14—H14119.7
C6—C5—H5119.8C20—C15—C16118.97 (17)
C4—C5—H5119.8C20—C15—C8120.50 (16)
C5—C6—C1119.98 (18)C16—C15—C8120.53 (16)
C5—C6—H6120.0C17—C16—C15120.40 (18)
C1—C6—H6120.0C17—C16—H16119.8
O2—C7—O1123.26 (16)C15—C16—H16119.8
O2—C7—C1124.91 (16)C16—C17—C18120.2 (2)
O1—C7—C1111.83 (14)C16—C17—H17119.9
O1—C8—C15109.39 (13)C18—C17—H17119.9
O1—C8—C9106.13 (14)C19—C18—C17119.7 (2)
C15—C8—C9113.59 (14)C19—C18—H18120.1
O1—C8—H8109.2C17—C18—H18120.1
C15—C8—H8109.2C18—C19—C20120.2 (2)
C9—C8—H8109.2C18—C19—H19119.9
C10—C9—C14118.75 (16)C20—C19—H19119.9
C10—C9—C8122.17 (15)C19—C20—C15120.42 (19)
C14—C9—C8119.06 (16)C19—C20—H20119.8
C11—C10—C9120.26 (18)C15—C20—H20119.8
C6—C1—C2—C31.1 (3)C14—C9—C10—C110.4 (3)
C7—C1—C2—C3178.80 (17)C8—C9—C10—C11178.47 (18)
C1—C2—C3—C41.0 (3)C9—C10—C11—C120.4 (3)
C2—C3—C4—C50.2 (3)C10—C11—C12—C130.0 (3)
C3—C4—C5—C60.6 (3)C11—C12—C13—C140.4 (3)
C4—C5—C6—C10.5 (3)C12—C13—C14—C90.4 (3)
C2—C1—C6—C50.3 (3)C10—C9—C14—C130.0 (3)
C7—C1—C6—C5179.60 (17)C8—C9—C14—C13178.14 (17)
C8—O1—C7—O25.1 (3)O1—C8—C15—C20129.89 (16)
C8—O1—C7—C1175.31 (13)C9—C8—C15—C20111.75 (18)
C2—C1—C7—O2179.04 (19)O1—C8—C15—C1650.40 (19)
C6—C1—C7—O20.8 (3)C9—C8—C15—C1668.0 (2)
C2—C1—C7—O10.5 (2)C20—C15—C16—C171.9 (3)
C6—C1—C7—O1179.61 (16)C8—C15—C16—C17178.38 (15)
C7—O1—C8—C1578.53 (17)C15—C16—C17—C180.7 (3)
C7—O1—C8—C9158.56 (14)C16—C17—C18—C190.8 (3)
O1—C8—C9—C1031.5 (2)C17—C18—C19—C201.1 (3)
C15—C8—C9—C1088.7 (2)C18—C19—C20—C150.1 (3)
O1—C8—C9—C14150.37 (15)C16—C15—C20—C191.6 (3)
C15—C8—C9—C1489.40 (19)C8—C15—C20—C19178.71 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O2i0.932.443.334 (2)160
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC20H16O2
Mr288.33
Crystal system, space groupMonoclinic, P21
Temperature (K)173
a, b, c (Å)5.75357 (19), 16.0368 (5), 8.3114 (3)
β (°) 95.340 (3)
V3)763.55 (4)
Z2
Radiation typeCu Kα
µ (mm1)0.63
Crystal size (mm)0.38 × 0.26 × 0.24
Data collection
DiffractometerAgilent Xcalibur (Eos, Gemini)
Absorption correctionMulti-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
Tmin, Tmax0.912, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4414, 2659, 2528
Rint0.022
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.094, 1.06
No. of reflections2659
No. of parameters200
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.15
Absolute structureFlack (1983) 1120 Friedel pairs
Absolute structure parameter0.0 (2)

Computer programs: CrysAlis PRO (Agilent, 2012), CrysAlis RED (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16···O2i0.932.443.334 (2)160
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

MK thanks the UOM for research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBaidya, M., Mayr, H. & Mayer, P. (2009a). Acta Cryst. E65, o3035.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBaidya, M., Mayr, H. & Mayer, P. (2009b). Acta Cryst. E65, o3224.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nayak, R. & Fuess, H. (2007). Acta Cryst. E63, o3563.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o2599.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds