organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9-(4-Hy­dr­oxy-3-meth­­oxy­phen­yl)-3,3,6,6-tetra­methyl-1,2,3,4,5,6,7,8,9,10-deca­hydro­acridine-1,8-dione

aX-ray Crystallography Laboratory, Post-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, bDepartment of Chemistry, Shivaji University, Kolhapur 416 004, India, and cDepartment of Agrochemicals and Pest Management, Shivaji University, Kolhapur 416 004 (MS), India.
*Correspondence e-mail: rkvk.paper11@gmail.com

(Received 5 December 2012; accepted 12 December 2012; online 15 December 2012)

In the title mol­ecule, C24H29NO4, the central ring of the acridinedione system adopts a flat boat conformation and the four essentially planar atoms of this ring [maximum deviation = 0.001 (2) Å] form a dihedral angle of 85.99 (12)° with the benzene ring. The two outer rings of the acridinedione system adopt sofa conformations. In the crystal, O—H⋯O and N—H⋯O hydrogen bonds link the mol­ecules, forming a two-dimensional network parallel to (100).

Related literature

For applications of acridines, see: Murugan et al. (1998[Murugan, P., Shanmugasundaram, P., Ramakrishnan, V. T., Venkatachalapathy, B., Srividya, N., Ramamurthy, P., Gunasekaran, K. & Velmurugan, D. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 999-1003.]); Josephrajan et al. (2005[Josephrajan, T., Ramakrishnan, V. T., Kathiravan, G. & Muthumary, J. (2005). ARKIVOC, pp. 124-136.]); Srividya et al. (1998[Srividya, N., Ramamurthy, P. & Ramakrishnan, V. T. (1998). Spectrochim. Acta Part A, 54, 245-253.],1996[Srividya, N., Ramamurthy, P., Shanmugasundaram, P. & Ramakrishnan, V. T. (1996). J. Org. Chem. 61, 5083-5089.]). For related structures, see: Balamurugan et al. (2009[Balamurugan, P., Jagan, R., Thiagarajan, V. M., Yamin, B. & Sivakumar, K. (2009). Acta Cryst. E65, o271.]); Zhao & Teng (2008[Zhao, L.-L. & Teng, D. (2008). Acta Cryst. E64, o1772-o1773.]). For ring conformations, see: Duax & Norton (1975[Duax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, Vol. 1. New York: Plenum Press.]).

[Scheme 1]

Experimental

Crystal data
  • C24H29NO4

  • Mr = 395.48

  • Monoclinic, P 21 /c

  • a = 10.4828 (3) Å

  • b = 14.8973 (4) Å

  • c = 14.2059 (3) Å

  • β = 101.609 (2)°

  • V = 2173.09 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.2 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.970, Tmax = 1.000

  • 63634 measured reflections

  • 4264 independent reflections

  • 2958 reflections with I > 2σ(I)

  • Rint = 0.078

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.116

  • S = 1.02

  • 4264 reflections

  • 267 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4i 0.82 2.12 2.800 (2) 141
N10—H10⋯O3ii 0.86 1.95 2.802 (2) 174
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Acridines, the earliest known antibiotics, are toxic towards bacteria. Some acridinedione derivatives show good inhibition against the pathogen Vibrio isolate-I (Josephrajan et al., 2005). Certain acridine-1,8-diones exhibit fluorescence activities (Murugan et al., 1998) and a few acridinedione derivatives also show photophysical (Srividya et al., 1998) and electrochemical properties (Srividya et al., 1996). Thus, the accurate description of crystal structures of substituted acridinediones are expected to provide useful information on the role of substituents in influencing molecular conformation which has a direct relationship to biological activity. This paper deals with the crystal structure of a 4-hydroxy-3-methoxyphenyl substituted tetramethyl acridinedione, (I).

In (I) (Fig.1), all bond lengths and angles are normal and correspond to those observed in related structures (Balamurugan et al.,2009; Zhao & Teng 2008). The central ring (C4A/C5A/C8A/C9A/C9/N10) of the acridinedione moiety adopts a boat conformation (ΔCs(N10) = 0.129 & ΔCs (C5A—C8A) = 10.84) and the four essentially planar atoms (C4A/C5A/C8A/C9A) of this ring (maximum deviation 0.001 (2)Å for all atoms) forms a dihedral angle of 85.99 (12)° with benzene ring. Both the outer rings adopt sofa conformations (ΔCs (C6) = 1.55; ΔCs (C3) = 7.45) (Duax & Norton, 1975). In the crystal, O1—H1···O4i and N10—H10···O3ii hydrogen bonds (Table 1) link molecules to form a two-dimensional network parallel to (100) (Fig. 2).

Related literature top

For applications of acridines, see: Murugan et al. (1998); Josephrajan et al. (2005); Srividya et al. (1998,1996). For related structures, see: Balamurugan et al. (2009); Zhao & Teng (2008). For ring conformations, see: Duax & Norton (1975).

Experimental top

In a 50 ml rounded bottom flask, a mixture of dimedone (2 mmole), 4-hydroxy, 3-methoxy benzaldehyde (1 mmole) and ammonium acetate (1.2 mmole) in mixture of aqueous ethanol (7 ml) was stirred at RT for 5 min. To this mixture 3-carboxymethyl-1-methylimidazolium(HSO4) (20 mol%) was added and the reaction mixture heated at 348-353K for 1.5 hrs. The progress of reaction was monitored by TLC. After completion of reaction, the mixture was cooled to RT and poured on iced water under stirring, The precipitate was filter and dried. The crude product were recrystallized from ethanol to afford X-ray quality crystals. M.P.: 568–571 K, Yield: 82%. IR(KBr): 3274,3168,3049,1623,1511,1370 cm-1. 1H NMR(300 MHz, DMSO-d6): δ = 8.7(s,1H,OH);7.7 (s, 1H, NH); 6.7 (s, 1H, Ar—H); 6.5(s,2H,Ar—H); 4.7 (s, 1H, CH); 3.67 (s, 3H, OCH3); 2.4–2.0 (m, 8H, CH2); 1.0 (s, 6H, CH3); 0.9 (s,6H, CH3).

Refinement top

All H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H distances of 0.93–0.96 Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Structure description top

Acridines, the earliest known antibiotics, are toxic towards bacteria. Some acridinedione derivatives show good inhibition against the pathogen Vibrio isolate-I (Josephrajan et al., 2005). Certain acridine-1,8-diones exhibit fluorescence activities (Murugan et al., 1998) and a few acridinedione derivatives also show photophysical (Srividya et al., 1998) and electrochemical properties (Srividya et al., 1996). Thus, the accurate description of crystal structures of substituted acridinediones are expected to provide useful information on the role of substituents in influencing molecular conformation which has a direct relationship to biological activity. This paper deals with the crystal structure of a 4-hydroxy-3-methoxyphenyl substituted tetramethyl acridinedione, (I).

In (I) (Fig.1), all bond lengths and angles are normal and correspond to those observed in related structures (Balamurugan et al.,2009; Zhao & Teng 2008). The central ring (C4A/C5A/C8A/C9A/C9/N10) of the acridinedione moiety adopts a boat conformation (ΔCs(N10) = 0.129 & ΔCs (C5A—C8A) = 10.84) and the four essentially planar atoms (C4A/C5A/C8A/C9A) of this ring (maximum deviation 0.001 (2)Å for all atoms) forms a dihedral angle of 85.99 (12)° with benzene ring. Both the outer rings adopt sofa conformations (ΔCs (C6) = 1.55; ΔCs (C3) = 7.45) (Duax & Norton, 1975). In the crystal, O1—H1···O4i and N10—H10···O3ii hydrogen bonds (Table 1) link molecules to form a two-dimensional network parallel to (100) (Fig. 2).

For applications of acridines, see: Murugan et al. (1998); Josephrajan et al. (2005); Srividya et al. (1998,1996). For related structures, see: Balamurugan et al. (2009); Zhao & Teng (2008). For ring conformations, see: Duax & Norton (1975).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with ellipsoids drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The packing arrangement of molecules viewed along the a axis. The dashed lines show intermolecular O—H···O and N—H···O hydrogen bonds.
9-(4-Hydroxy-3-methoxyphenyl)-3,3,6,6-tetramethyl-1,2,3,4,5,6,7,8,9,10- decahydroacridine-1,8-dione top
Crystal data top
C24H29NO4F(000) = 848
Mr = 395.48Dx = 1.209 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 22356 reflections
a = 10.4828 (3) Åθ = 3.5–29.2°
b = 14.8973 (4) ŵ = 0.08 mm1
c = 14.2059 (3) ÅT = 293 K
β = 101.609 (2)°Block, yellow
V = 2173.09 (10) Å30.3 × 0.2 × 0.2 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
4264 independent reflections
Radiation source: fine-focus sealed tube2958 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
Detector resolution: 16.1049 pixels mm-1θmax = 26.0°, θmin = 3.5°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1818
Tmin = 0.970, Tmax = 1.000l = 1717
63634 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0342P)2 + 1.3025P]
where P = (Fo2 + 2Fc2)/3
4264 reflections(Δ/σ)max = 0.001
267 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C24H29NO4V = 2173.09 (10) Å3
Mr = 395.48Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.4828 (3) ŵ = 0.08 mm1
b = 14.8973 (4) ÅT = 293 K
c = 14.2059 (3) Å0.3 × 0.2 × 0.2 mm
β = 101.609 (2)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
4264 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2958 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 1.000Rint = 0.078
63634 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.02Δρmax = 0.19 e Å3
4264 reflectionsΔρmin = 0.17 e Å3
267 parameters
Special details top

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.36588 (15)0.71186 (11)0.15883 (12)0.0579 (5)
H10.34970.66660.18720.087*
O20.50253 (16)0.63379 (12)0.31829 (13)0.0679 (6)
O30.98444 (15)0.78678 (10)0.20508 (10)0.0449 (4)
O40.74288 (15)1.04026 (10)0.34010 (10)0.0474 (4)
C11.01925 (19)0.76067 (13)0.28878 (14)0.0324 (5)
C21.1273 (2)0.69369 (16)0.31500 (15)0.0443 (6)
H2A1.20950.72570.32960.053*
H2B1.12870.65580.25970.053*
C31.1169 (2)0.63400 (15)0.40043 (15)0.0414 (5)
C41.0993 (2)0.69384 (14)0.48413 (14)0.0365 (5)
H4A1.07350.65690.53330.044*
H4B1.18210.72150.51180.044*
C4A0.99980 (18)0.76586 (13)0.45531 (13)0.0282 (4)
C50.86618 (19)0.92717 (14)0.60844 (13)0.0340 (5)
H5A0.94310.96260.63370.041*
H5B0.85810.88150.65560.041*
C5A0.88328 (18)0.88242 (13)0.51737 (13)0.0281 (4)
C60.74670 (19)0.98788 (14)0.59372 (15)0.0364 (5)
C70.7532 (2)1.04984 (13)0.50920 (14)0.0354 (5)
H7A0.67231.08330.49350.043*
H7B0.82291.09280.52940.043*
C80.77544 (18)1.00365 (13)0.41909 (14)0.0312 (5)
C8A0.83906 (18)0.91691 (13)0.42877 (13)0.0277 (4)
C90.85163 (18)0.86508 (12)0.33895 (12)0.0279 (4)
H90.87680.90760.29330.033*
C9A0.95946 (18)0.79613 (13)0.36429 (13)0.0276 (4)
N100.95340 (15)0.80412 (11)0.52928 (11)0.0325 (4)
H100.96860.77840.58460.039*
C111.0003 (3)0.57076 (16)0.37230 (17)0.0570 (7)
H11A0.92270.60540.35050.085*
H11B0.99060.53560.42710.085*
H11C1.01440.53160.32170.085*
C121.2408 (3)0.5783 (2)0.43053 (19)0.0732 (9)
H12A1.25430.54240.37720.110*
H12B1.23210.53990.48310.110*
H12C1.31380.61760.45020.110*
C130.6240 (2)0.92964 (19)0.57391 (19)0.0600 (7)
H13A0.54890.96660.57360.090*
H13B0.62970.88480.62310.090*
H13C0.61630.90090.51250.090*
C140.7475 (3)1.04393 (17)0.68425 (17)0.0587 (7)
H14A0.82771.07690.70020.088*
H14B0.73981.00490.73660.088*
H14C0.67561.08510.67270.088*
C150.72117 (19)0.82284 (13)0.29120 (13)0.0311 (5)
C160.6463 (2)0.85976 (16)0.21025 (17)0.0591 (8)
H160.67560.91070.18320.071*
C170.5277 (3)0.82234 (17)0.16818 (18)0.0640 (8)
H170.47810.84910.11380.077*
C180.4818 (2)0.74704 (14)0.20478 (15)0.0393 (5)
C190.5562 (2)0.70943 (14)0.28684 (15)0.0370 (5)
C200.67392 (19)0.74706 (14)0.32934 (14)0.0362 (5)
H200.72250.72110.38460.043*
C210.5784 (3)0.58366 (18)0.3926 (2)0.0686 (8)
H21A0.65950.56800.37520.103*
H21B0.53260.52990.40290.103*
H21C0.59520.61870.45050.103*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0465 (10)0.0494 (10)0.0643 (11)0.0135 (8)0.0210 (8)0.0109 (8)
O20.0477 (10)0.0733 (12)0.0732 (12)0.0243 (9)0.0107 (9)0.0376 (10)
O30.0643 (10)0.0500 (9)0.0211 (8)0.0007 (8)0.0103 (7)0.0018 (7)
O40.0625 (10)0.0403 (9)0.0365 (9)0.0105 (8)0.0028 (7)0.0104 (7)
C10.0378 (11)0.0354 (11)0.0240 (10)0.0080 (9)0.0061 (8)0.0028 (9)
C20.0458 (13)0.0560 (14)0.0338 (12)0.0059 (11)0.0144 (10)0.0080 (11)
C30.0459 (13)0.0448 (13)0.0310 (11)0.0142 (11)0.0019 (9)0.0036 (10)
C40.0364 (11)0.0445 (12)0.0262 (11)0.0079 (10)0.0002 (8)0.0001 (9)
C4A0.0280 (10)0.0327 (11)0.0233 (10)0.0011 (8)0.0040 (8)0.0022 (8)
C50.0342 (11)0.0421 (12)0.0245 (10)0.0040 (9)0.0032 (8)0.0001 (9)
C5A0.0272 (10)0.0317 (10)0.0250 (10)0.0007 (8)0.0043 (8)0.0000 (8)
C60.0327 (11)0.0422 (12)0.0352 (11)0.0048 (10)0.0091 (9)0.0032 (9)
C70.0324 (11)0.0332 (11)0.0404 (12)0.0022 (9)0.0069 (9)0.0003 (9)
C80.0262 (10)0.0319 (11)0.0333 (11)0.0045 (9)0.0005 (8)0.0041 (9)
C8A0.0271 (10)0.0298 (10)0.0250 (10)0.0025 (8)0.0026 (8)0.0015 (8)
C90.0328 (10)0.0291 (10)0.0203 (9)0.0022 (8)0.0020 (8)0.0047 (8)
C9A0.0291 (10)0.0313 (10)0.0215 (9)0.0037 (8)0.0027 (7)0.0014 (8)
N100.0404 (10)0.0383 (10)0.0185 (8)0.0082 (8)0.0057 (7)0.0056 (7)
C110.0828 (19)0.0430 (14)0.0410 (14)0.0041 (13)0.0027 (13)0.0003 (11)
C120.080 (2)0.083 (2)0.0525 (16)0.0469 (17)0.0048 (14)0.0075 (15)
C130.0364 (13)0.0738 (18)0.0707 (18)0.0037 (13)0.0128 (12)0.0242 (14)
C140.0721 (18)0.0621 (16)0.0480 (15)0.0236 (14)0.0269 (13)0.0006 (12)
C150.0354 (11)0.0303 (11)0.0244 (10)0.0007 (9)0.0016 (8)0.0002 (8)
C160.0675 (17)0.0463 (14)0.0490 (15)0.0251 (13)0.0232 (12)0.0232 (11)
C170.0661 (17)0.0524 (15)0.0542 (16)0.0174 (13)0.0341 (13)0.0244 (13)
C180.0362 (12)0.0345 (11)0.0408 (12)0.0028 (10)0.0072 (9)0.0011 (10)
C190.0345 (11)0.0377 (12)0.0375 (12)0.0035 (9)0.0039 (9)0.0061 (9)
C200.0352 (11)0.0430 (12)0.0274 (11)0.0003 (10)0.0008 (8)0.0114 (9)
C210.0579 (17)0.0636 (18)0.083 (2)0.0048 (14)0.0111 (14)0.0390 (16)
Geometric parameters (Å, º) top
O1—C181.364 (2)C8—C8A1.448 (3)
O1—H10.8200C8A—C91.520 (3)
O2—C191.374 (2)C9—C9A1.516 (3)
O2—C211.403 (3)C9—C151.534 (3)
O3—C11.234 (2)C9—H90.9800
O4—C81.232 (2)N10—H100.8600
C1—C9A1.447 (3)C11—H11A0.9600
C1—C21.499 (3)C11—H11B0.9600
C2—C31.526 (3)C11—H11C0.9600
C2—H2A0.9700C12—H12A0.9600
C2—H2B0.9700C12—H12B0.9600
C3—C41.527 (3)C12—H12C0.9600
C3—C121.528 (3)C13—H13A0.9600
C3—C111.532 (3)C13—H13B0.9600
C4—C4A1.495 (3)C13—H13C0.9600
C4—H4A0.9700C14—H14A0.9600
C4—H4B0.9700C14—H14B0.9600
C4A—C9A1.354 (2)C14—H14C0.9600
C4A—N101.368 (2)C15—C161.370 (3)
C5—C5A1.498 (3)C15—C201.386 (3)
C5—C61.525 (3)C16—C171.384 (3)
C5—H5A0.9700C16—H160.9300
C5—H5B0.9700C17—C181.364 (3)
C5A—C8A1.352 (2)C17—H170.9300
C5A—N101.371 (2)C18—C191.384 (3)
C6—C71.527 (3)C19—C201.379 (3)
C6—C131.530 (3)C20—H200.9300
C6—C141.532 (3)C21—H21A0.9600
C7—C81.512 (3)C21—H21B0.9600
C7—H7A0.9700C21—H21C0.9600
C7—H7B0.9700
C18—O1—H1109.5C8A—C9—H9107.9
C19—O2—C21118.32 (18)C15—C9—H9107.9
O3—C1—C9A120.73 (19)C4A—C9A—C1119.19 (18)
O3—C1—C2120.74 (18)C4A—C9A—C9121.81 (17)
C9A—C1—C2118.50 (17)C1—C9A—C9119.00 (16)
C1—C2—C3114.46 (18)C4A—N10—C5A121.63 (16)
C1—C2—H2A108.6C4A—N10—H10119.2
C3—C2—H2A108.6C5A—N10—H10119.2
C1—C2—H2B108.6C3—C11—H11A109.5
C3—C2—H2B108.6C3—C11—H11B109.5
H2A—C2—H2B107.6H11A—C11—H11B109.5
C2—C3—C4108.56 (18)C3—C11—H11C109.5
C2—C3—C12110.3 (2)H11A—C11—H11C109.5
C4—C3—C12109.17 (17)H11B—C11—H11C109.5
C2—C3—C11109.39 (18)C3—C12—H12A109.5
C4—C3—C11110.29 (19)C3—C12—H12B109.5
C12—C3—C11109.1 (2)H12A—C12—H12B109.5
C4A—C4—C3113.14 (16)C3—C12—H12C109.5
C4A—C4—H4A109.0H12A—C12—H12C109.5
C3—C4—H4A109.0H12B—C12—H12C109.5
C4A—C4—H4B109.0C6—C13—H13A109.5
C3—C4—H4B109.0C6—C13—H13B109.5
H4A—C4—H4B107.8H13A—C13—H13B109.5
C9A—C4A—N10120.24 (17)C6—C13—H13C109.5
C9A—C4A—C4124.55 (17)H13A—C13—H13C109.5
N10—C4A—C4115.15 (16)H13B—C13—H13C109.5
C5A—C5—C6112.54 (16)C6—C14—H14A109.5
C5A—C5—H5A109.1C6—C14—H14B109.5
C6—C5—H5A109.1H14A—C14—H14B109.5
C5A—C5—H5B109.1C6—C14—H14C109.5
C6—C5—H5B109.1H14A—C14—H14C109.5
H5A—C5—H5B107.8H14B—C14—H14C109.5
C8A—C5A—N10120.88 (17)C16—C15—C20117.74 (19)
C8A—C5A—C5123.82 (18)C16—C15—C9121.04 (18)
N10—C5A—C5115.24 (16)C20—C15—C9121.21 (16)
C5—C6—C7107.52 (16)C15—C16—C17120.9 (2)
C5—C6—C13109.03 (18)C15—C16—H16119.5
C7—C6—C13111.54 (18)C17—C16—H16119.5
C5—C6—C14110.03 (17)C18—C17—C16121.4 (2)
C7—C6—C14109.70 (18)C18—C17—H17119.3
C13—C6—C14109.01 (19)C16—C17—H17119.3
C8—C7—C6115.43 (17)O1—C18—C17118.83 (19)
C8—C7—H7A108.4O1—C18—C19122.98 (19)
C6—C7—H7A108.4C17—C18—C19118.19 (19)
C8—C7—H7B108.4O2—C19—C20125.45 (18)
C6—C7—H7B108.4O2—C19—C18114.10 (18)
H7A—C7—H7B107.5C20—C19—C18120.45 (19)
O4—C8—C8A121.28 (18)C19—C20—C15121.24 (18)
O4—C8—C7120.51 (18)C19—C20—H20119.4
C8A—C8—C7118.18 (17)C15—C20—H20119.4
C5A—C8A—C8119.51 (18)O2—C21—H21A109.5
C5A—C8A—C9121.13 (17)O2—C21—H21B109.5
C8—C8A—C9119.33 (16)H21A—C21—H21B109.5
C9A—C9—C8A109.35 (14)O2—C21—H21C109.5
C9A—C9—C15112.51 (15)H21A—C21—H21C109.5
C8A—C9—C15111.07 (15)H21B—C21—H21C109.5
C9A—C9—H9107.9
O3—C1—C2—C3150.88 (19)N10—C4A—C9A—C97.0 (3)
C9A—C1—C2—C331.0 (3)C4—C4A—C9A—C9175.87 (18)
C1—C2—C3—C452.0 (2)O3—C1—C9A—C4A179.86 (19)
C1—C2—C3—C12171.60 (19)C2—C1—C9A—C4A2.1 (3)
C1—C2—C3—C1168.3 (2)O3—C1—C9A—C90.9 (3)
C2—C3—C4—C4A46.2 (2)C2—C1—C9A—C9178.97 (17)
C12—C3—C4—C4A166.4 (2)C8A—C9—C9A—C4A21.9 (2)
C11—C3—C4—C4A73.7 (2)C15—C9—C9A—C4A102.0 (2)
C3—C4—C4A—C9A20.7 (3)C8A—C9—C9A—C1159.14 (16)
C3—C4—C4A—N10162.08 (18)C15—C9—C9A—C176.9 (2)
C6—C5—C5A—C8A26.8 (3)C9A—C4A—N10—C5A11.1 (3)
C6—C5—C5A—N10156.02 (17)C4—C4A—N10—C5A166.29 (17)
C5A—C5—C6—C750.7 (2)C8A—C5A—N10—C4A11.0 (3)
C5A—C5—C6—C1370.3 (2)C5—C5A—N10—C4A166.26 (17)
C5A—C5—C6—C14170.15 (18)C9A—C9—C15—C16133.8 (2)
C5—C6—C7—C850.7 (2)C8A—C9—C15—C16103.3 (2)
C13—C6—C7—C868.8 (2)C9A—C9—C15—C2047.4 (2)
C14—C6—C7—C8170.34 (18)C8A—C9—C15—C2075.6 (2)
C6—C7—C8—O4157.24 (18)C20—C15—C16—C170.1 (4)
C6—C7—C8—C8A24.5 (2)C9—C15—C16—C17179.0 (2)
N10—C5A—C8A—C8174.53 (17)C15—C16—C17—C180.9 (5)
C5—C5A—C8A—C82.5 (3)C16—C17—C18—O1178.3 (3)
N10—C5A—C8A—C97.2 (3)C16—C17—C18—C191.2 (4)
C5—C5A—C8A—C9175.83 (17)C21—O2—C19—C208.0 (4)
O4—C8—C8A—C5A174.37 (19)C21—O2—C19—C18171.2 (2)
C7—C8—C8A—C5A3.9 (3)O1—C18—C19—O20.3 (3)
O4—C8—C8A—C97.3 (3)C17—C18—C19—O2179.9 (2)
C7—C8—C8A—C9174.46 (17)O1—C18—C19—C20178.8 (2)
C5A—C8A—C9—C9A21.9 (2)C17—C18—C19—C200.7 (4)
C8—C8A—C9—C9A159.82 (16)O2—C19—C20—C15178.8 (2)
C5A—C8A—C9—C15102.9 (2)C18—C19—C20—C150.3 (3)
C8—C8A—C9—C1575.4 (2)C16—C15—C20—C190.6 (3)
N10—C4A—C9A—C1174.02 (17)C9—C15—C20—C19179.51 (19)
C4—C4A—C9A—C13.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.822.122.800 (2)141
N10—H10···O3ii0.861.952.802 (2)174
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC24H29NO4
Mr395.48
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.4828 (3), 14.8973 (4), 14.2059 (3)
β (°) 101.609 (2)
V3)2173.09 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.970, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
63634, 4264, 2958
Rint0.078
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.116, 1.02
No. of reflections4264
No. of parameters267
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.17

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.822.122.800 (2)141
N10—H10···O3ii0.861.952.802 (2)174
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y+3/2, z+1/2.
 

Acknowledgements

RK acknowledges the Department of Science & Technology for access to the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003.

References

First citationBalamurugan, P., Jagan, R., Thiagarajan, V. M., Yamin, B. & Sivakumar, K. (2009). Acta Cryst. E65, o271.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDuax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, Vol. 1. New York: Plenum Press.  Google Scholar
First citationJosephrajan, T., Ramakrishnan, V. T., Kathiravan, G. & Muthumary, J. (2005). ARKIVOC, pp. 124–136.  Google Scholar
First citationMurugan, P., Shanmugasundaram, P., Ramakrishnan, V. T., Venkatachalapathy, B., Srividya, N., Ramamurthy, P., Gunasekaran, K. & Velmurugan, D. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 999–1003.  Web of Science CSD CrossRef Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrividya, N., Ramamurthy, P. & Ramakrishnan, V. T. (1998). Spectrochim. Acta Part A, 54, 245–253.  Web of Science CrossRef Google Scholar
First citationSrividya, N., Ramamurthy, P., Shanmugasundaram, P. & Ramakrishnan, V. T. (1996). J. Org. Chem. 61, 5083–5089.  CrossRef CAS Web of Science Google Scholar
First citationZhao, L.-L. & Teng, D. (2008). Acta Cryst. E64, o1772–o1773.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds