organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9-(3-Fluoro­phen­yl)-3,3,6,6-tetra­methyl-1,2,3,4,5,6,7,8,9,10-deca­hydro­acridine-1,8-dione

aX-ray Crystallography Laboratory, Post-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, and bDepartment of Chemistry, Shivaji University, Kolhapur, 416 004 (MS), India
*Correspondence e-mail: rkvk.paper11@gmail.com

(Received 7 December 2012; accepted 12 December 2012; online 15 December 2012)

In the title mol­ecule, C23H26FNO2, the central ring of the acridinedione system adopts a slight boat conformation and the four essentially planar atoms of this ring [maximum deviation = 0.019 (1) Å] form a dihedral angle of 89.98 (6)° with the benzene ring. The two outer rings of the acridinedione system adopt sofa conformations. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules, forming chains along [001].

Related literature

For applications of acridines, see: Murugan et al. (1998[Murugan, P., Shanmugasundaram, P., Ramakrishnan, V. T., Venkatachalapathy, B., Srividya, N., Ramamurthy, P., Gunasekaran, K. & Velmurugan, D. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 999-1003.]); Leon et al. (2008[Leon, R., Rios, C., Contelles, J. M., Lopez, G. M., Garcia, A. G. & Villarroya, M. (2008). Eur. J. Med. Chem. 43, 668-674.]). Josephrajan et al. (2005[Josephrajan, T., Ramakrishnan, V. T., Kathiravan, G. & Muthumary, J. (2005). ARKIVOC, pp. 124-136.]); Srividya et al. (1998[Srividya, N., Ramamurthy, P. & Ramakrishnan, V. T. (1998). Spectrochim. Acta Part A, 54, 245-253.], 1996[Srividya, N., Ramamurthy, P., Shanmugasundaram, P. & Ramakrishnan, V. T. (1996). J. Org. Chem. 61, 5083-5089.]). For related structures, see: Balamurugan et al. (2009[Balamurugan, P., Jagan, R., Thiagarajan, V. M., Yamin, B. & Sivakumar, K. (2009). Acta Cryst. E65, o271.]); Zhao & Teng (2008[Zhao, L.-L. & Teng, D. (2008). Acta Cryst. E64, o1772-o1773.]); Kant et al. (2013[Kant, R., Gupta, V. K., Kapoor, K., Patil, D. R., Jagadale, S. D. & Deshmukh, M. B. (2013). Acta Cryst. E69, o101.]). For ring conformations, see: Duax & Norton (1975[Duax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, Vol. 1. New York: Plenum Press.]).

[Scheme 1]

Experimental

Crystal data
  • C23H26FNO2

  • Mr = 367.45

  • Monoclinic, P 21 /c

  • a = 11.0505 (3) Å

  • b = 12.8264 (3) Å

  • c = 13.8548 (3) Å

  • β = 100.215 (2)°

  • V = 1932.63 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.2 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.897, Tmax = 1.000

  • 30330 measured reflections

  • 3789 independent reflections

  • 2922 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.118

  • S = 1.03

  • 3789 reflections

  • 248 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N10—H10⋯O1i 0.86 2.14 2.990 (2) 168
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The 1,4- dihydropyridine (DHP) nucleus act as a versatile intermediate for the synthesis of several pharmaceuticals together with those of cardiovascular drugs and as a calcium channel modulators, laser dyes and photo initiators (Leon et al., 2008). Acridines, the earliest known antibiotics, are toxic towards bacteria. Some acridinedione derivatives show good inhibition against the pathogen Vibrio isolate-I (Josephrajan et al., 2005). Certain acridine-1,8-diones exhibit fluorescence activities (Murugan et al., 1998) and a few acridinedione derivatives also show photophysical (Srividya et al., 1998) and electrochemical properties (Srividya et al., 1996). Thus, the accurate description of crystal structures of substituted acridinediones are expected to provide useful information on the role of substituents in influencing molecular conformation which has a direct relationship to biological activity. This paper deals with the crystal structure of a 3-fluorophenyl substituted tetramethyl acridinedione, (I).

In (I) (Fig.1), all bond lengths and angles are normal and correspond to those observed in related structures (Balamurugan et al.,2009; Zhao & Teng 2008; Kant et al., 2013). The central ring (C4A/C5A/C8A/C9A/C9/N10) of the acridinedione moiety adopts a boat conformation (ΔCs(C9) = 4.85 & ΔCs (C9A—C4A) = 14.52) and the four essentially planar atoms (C4A/C5A/C8A/C9A) of this ring (maximum deviation = 0.019 (1) Å) form a dihedral angle of 89.98 (6)° with benzene ring. Both the outer rings adopt sofa conformations (ΔCs (C3) = 1.01; ΔCs (C8A) = 6.56) (Duax & Norton, 1975). In the crystal, N10—H10···O1i hydrogen bonds (Table 1) link molecules to form link molecules to form one-dimensional chains along [001] (Fig. 2).

Related literature top

For applications of acridines, see: Murugan et al. (1998); Leon et al. (2008). Josephrajan et al. (2005); Srividya et al. (1998,1996). For related structures, see: Balamurugan et al. (2009); Zhao & Teng (2008); Kant et al. (2013). For ring conformations, see: Duax & Norton (1975).

Experimental top

In a 50 ml rounded bottom flask, a mixture of dimedone (2 mmole), 3-fluoro benzaldehyde (1 mmole) and ammonium acetate (1.2 mmole) in mixture of aq. ethanol (7 ml) was stirred at RT for 5 min. To this[CMIM][HSO4](3-carboxy methyl-1-methylimidazolium bisulfate) (20 mol %) was added and the reaction mixture heated at 348-353K for 1.5 hrs. The progress of the reaction was monitored by TLC. After completion of the reaction, the mixture was gradually cooled to RT and poured on ice water under stirring. The precipitate was dried. Diffraction quality single crystals were grown from a solution of the title compound in ethanol.

M.P.: 573 K, Yield: 87%. IR(KBr): 3217, 3070, 2954, 1627 cm-1. 1H NMR (300 MHz, DMSO-d6): δ = 9.1 (brs, 1H,NH); 7.6–7.2 (m, 4H,Ar—H); 5.5 (s, 1H,CH); 3.3–2.5 (m,8H,CH2); 1.6 (s,6H, CH3); 1.4 (s, 6H, CH3).

Refinement top

All H atoms were positioned geometrically and were treated as riding on their parent C atoms, with N—H distance of 0.86 Å, C—H distances of 0.93–0.98 Å and with Uiso(H) = 1.2Ueq(C/N) or 1.5Ueq(methyl C).

Structure description top

The 1,4- dihydropyridine (DHP) nucleus act as a versatile intermediate for the synthesis of several pharmaceuticals together with those of cardiovascular drugs and as a calcium channel modulators, laser dyes and photo initiators (Leon et al., 2008). Acridines, the earliest known antibiotics, are toxic towards bacteria. Some acridinedione derivatives show good inhibition against the pathogen Vibrio isolate-I (Josephrajan et al., 2005). Certain acridine-1,8-diones exhibit fluorescence activities (Murugan et al., 1998) and a few acridinedione derivatives also show photophysical (Srividya et al., 1998) and electrochemical properties (Srividya et al., 1996). Thus, the accurate description of crystal structures of substituted acridinediones are expected to provide useful information on the role of substituents in influencing molecular conformation which has a direct relationship to biological activity. This paper deals with the crystal structure of a 3-fluorophenyl substituted tetramethyl acridinedione, (I).

In (I) (Fig.1), all bond lengths and angles are normal and correspond to those observed in related structures (Balamurugan et al.,2009; Zhao & Teng 2008; Kant et al., 2013). The central ring (C4A/C5A/C8A/C9A/C9/N10) of the acridinedione moiety adopts a boat conformation (ΔCs(C9) = 4.85 & ΔCs (C9A—C4A) = 14.52) and the four essentially planar atoms (C4A/C5A/C8A/C9A) of this ring (maximum deviation = 0.019 (1) Å) form a dihedral angle of 89.98 (6)° with benzene ring. Both the outer rings adopt sofa conformations (ΔCs (C3) = 1.01; ΔCs (C8A) = 6.56) (Duax & Norton, 1975). In the crystal, N10—H10···O1i hydrogen bonds (Table 1) link molecules to form link molecules to form one-dimensional chains along [001] (Fig. 2).

For applications of acridines, see: Murugan et al. (1998); Leon et al. (2008). Josephrajan et al. (2005); Srividya et al. (1998,1996). For related structures, see: Balamurugan et al. (2009); Zhao & Teng (2008); Kant et al. (2013). For ring conformations, see: Duax & Norton (1975).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with ellipsoids drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The packing arrangement of molecules viewed along the b axis. The dotted lines show intermolecular N—H···O hydrogen bonds.
9-(3-Fluorophenyl)-3,3,6,6-tetramethyl-1,2,3,4,5,6,7,8,9,10- decahydroacridine-1,8-dione top
Crystal data top
C23H26FNO2F(000) = 784
Mr = 367.45Dx = 1.263 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 11314 reflections
a = 11.0505 (3) Åθ = 3.5–29.1°
b = 12.8264 (3) ŵ = 0.09 mm1
c = 13.8548 (3) ÅT = 293 K
β = 100.215 (2)°Block, yellow
V = 1932.63 (8) Å30.3 × 0.2 × 0.2 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
3789 independent reflections
Radiation source: fine-focus sealed tube2922 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 16.1049 pixels mm-1θmax = 26.0°, θmin = 3.5°
ω scansh = 1313
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 1515
Tmin = 0.897, Tmax = 1.000l = 1717
30330 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0534P)2 + 0.5565P]
where P = (Fo2 + 2Fc2)/3
3789 reflections(Δ/σ)max = 0.002
248 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C23H26FNO2V = 1932.63 (8) Å3
Mr = 367.45Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.0505 (3) ŵ = 0.09 mm1
b = 12.8264 (3) ÅT = 293 K
c = 13.8548 (3) Å0.3 × 0.2 × 0.2 mm
β = 100.215 (2)°
Data collection top
Oxford Diffraction Xcalibur Sapphire3
diffractometer
3789 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
2922 reflections with I > 2σ(I)
Tmin = 0.897, Tmax = 1.000Rint = 0.041
30330 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.03Δρmax = 0.21 e Å3
3789 reflectionsΔρmin = 0.30 e Å3
248 parameters
Special details top

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.41296 (13)0.61151 (11)0.95736 (11)0.0872 (5)
O10.37340 (11)0.15628 (10)1.02926 (8)0.0458 (3)
O20.05752 (11)0.26403 (9)0.87999 (9)0.0447 (3)
C10.40151 (14)0.17311 (12)0.94855 (10)0.0314 (3)
C20.52391 (14)0.13764 (13)0.92694 (11)0.0350 (4)
H2A0.54770.07430.96370.042*
H2B0.58490.19050.95030.042*
C30.52646 (14)0.11663 (12)0.81853 (11)0.0326 (4)
C40.47300 (15)0.21159 (14)0.75919 (11)0.0369 (4)
H4A0.53120.26870.77150.044*
H4B0.46160.19490.68990.044*
C4A0.35251 (14)0.24594 (11)0.78386 (11)0.0299 (3)
C50.06856 (15)0.34840 (14)0.62736 (11)0.0374 (4)
H5A0.04870.28980.58310.045*
H5B0.11170.39970.59470.045*
C5A0.15152 (14)0.31198 (12)0.71821 (11)0.0300 (3)
C60.05098 (15)0.39660 (14)0.64830 (12)0.0382 (4)
C70.10509 (15)0.32075 (15)0.71400 (13)0.0436 (4)
H7A0.17810.35190.73170.052*
H7B0.13030.25790.67690.052*
C80.01831 (15)0.29119 (12)0.80649 (12)0.0333 (4)
C8A0.11243 (14)0.29285 (11)0.80350 (11)0.0299 (3)
C90.20404 (14)0.27571 (12)0.89720 (11)0.0311 (3)
H90.16890.22620.93850.037*
C9A0.32076 (14)0.23003 (12)0.87301 (11)0.0304 (3)
N100.27307 (11)0.29683 (10)0.71127 (9)0.0329 (3)
H100.29990.31960.66060.039*
C110.65972 (16)0.09985 (16)0.80536 (13)0.0476 (5)
H11A0.66230.08970.73710.071*
H11B0.69260.03950.84180.071*
H11C0.70790.15990.82900.071*
C120.45147 (17)0.01935 (14)0.78447 (14)0.0487 (5)
H12A0.36770.02970.79230.073*
H12B0.48530.03940.82300.073*
H12C0.45430.00650.71660.073*
C130.02574 (19)0.50270 (14)0.69808 (15)0.0511 (5)
H13A0.10120.53130.71160.077*
H13B0.00840.54900.65550.077*
H13C0.03150.49440.75840.077*
C140.14131 (19)0.41061 (19)0.55164 (15)0.0616 (6)
H14A0.15820.34410.52050.092*
H14B0.10590.45620.50920.092*
H14C0.21650.44040.56470.092*
C150.22599 (15)0.37969 (12)0.95166 (11)0.0332 (4)
C160.1496 (2)0.41131 (15)1.01546 (14)0.0534 (5)
H160.08910.36621.02940.064*
C170.1618 (2)0.50844 (17)1.05846 (16)0.0634 (6)
H170.10940.52781.10100.076*
C180.2498 (2)0.57702 (16)1.03973 (14)0.0558 (5)
H180.25800.64291.06820.067*
C190.32474 (18)0.54449 (15)0.97744 (14)0.0503 (5)
C200.31554 (16)0.44858 (14)0.93376 (12)0.0437 (4)
H200.36930.42980.89220.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0871 (10)0.0698 (9)0.1120 (11)0.0351 (8)0.0372 (9)0.0326 (8)
O10.0544 (8)0.0560 (8)0.0294 (6)0.0148 (6)0.0140 (5)0.0112 (5)
O20.0456 (7)0.0442 (7)0.0505 (7)0.0011 (5)0.0255 (6)0.0061 (6)
C10.0385 (9)0.0287 (8)0.0280 (8)0.0023 (6)0.0083 (6)0.0000 (6)
C20.0345 (9)0.0362 (9)0.0338 (8)0.0049 (7)0.0043 (7)0.0029 (7)
C30.0305 (8)0.0338 (9)0.0339 (8)0.0066 (7)0.0069 (6)0.0026 (7)
C40.0370 (9)0.0426 (10)0.0343 (8)0.0091 (7)0.0154 (7)0.0055 (7)
C4A0.0342 (8)0.0258 (8)0.0315 (8)0.0057 (6)0.0110 (6)0.0037 (6)
C50.0414 (9)0.0411 (9)0.0304 (8)0.0066 (7)0.0085 (7)0.0025 (7)
C5A0.0339 (8)0.0260 (8)0.0316 (8)0.0054 (6)0.0104 (6)0.0010 (6)
C60.0336 (9)0.0433 (10)0.0376 (9)0.0076 (7)0.0064 (7)0.0030 (7)
C70.0336 (9)0.0462 (10)0.0520 (10)0.0009 (8)0.0100 (8)0.0008 (8)
C80.0381 (9)0.0236 (8)0.0412 (9)0.0013 (6)0.0149 (7)0.0021 (7)
C8A0.0357 (8)0.0242 (7)0.0321 (8)0.0051 (6)0.0118 (6)0.0021 (6)
C90.0367 (8)0.0301 (8)0.0299 (8)0.0071 (6)0.0153 (6)0.0063 (6)
C9A0.0366 (8)0.0263 (8)0.0304 (8)0.0063 (6)0.0118 (6)0.0024 (6)
N100.0359 (7)0.0377 (7)0.0282 (6)0.0085 (6)0.0143 (5)0.0087 (6)
C110.0371 (10)0.0608 (12)0.0459 (10)0.0141 (8)0.0097 (8)0.0022 (9)
C120.0481 (11)0.0399 (10)0.0565 (11)0.0047 (8)0.0044 (9)0.0111 (8)
C130.0585 (12)0.0388 (10)0.0592 (12)0.0117 (9)0.0189 (9)0.0052 (9)
C140.0457 (11)0.0861 (16)0.0504 (11)0.0153 (11)0.0015 (9)0.0114 (11)
C150.0390 (9)0.0343 (9)0.0273 (8)0.0102 (7)0.0087 (6)0.0035 (6)
C160.0703 (13)0.0418 (10)0.0577 (12)0.0033 (9)0.0375 (10)0.0041 (9)
C170.0827 (16)0.0515 (12)0.0660 (13)0.0086 (11)0.0410 (12)0.0144 (10)
C180.0690 (13)0.0433 (11)0.0550 (12)0.0076 (10)0.0108 (10)0.0158 (9)
C190.0508 (11)0.0471 (11)0.0525 (11)0.0065 (9)0.0080 (9)0.0068 (9)
C200.0439 (10)0.0485 (11)0.0414 (9)0.0020 (8)0.0145 (8)0.0071 (8)
Geometric parameters (Å, º) top
F1—C191.365 (2)C8—C8A1.453 (2)
O1—C11.2317 (18)C8A—C91.514 (2)
O2—C81.2257 (18)C9—C9A1.508 (2)
C1—C9A1.447 (2)C9—C151.530 (2)
C1—C21.507 (2)C9—H90.9800
C2—C31.531 (2)N10—H100.8600
C2—H2A0.9700C11—H11A0.9600
C2—H2B0.9700C11—H11B0.9600
C3—C121.526 (2)C11—H11C0.9600
C3—C41.528 (2)C12—H12A0.9600
C3—C111.531 (2)C12—H12B0.9600
C4—C4A1.498 (2)C12—H12C0.9600
C4—H4A0.9700C13—H13A0.9600
C4—H4B0.9700C13—H13B0.9600
C4A—C9A1.358 (2)C13—H13C0.9600
C4A—N101.3766 (19)C14—H14A0.9600
C5—C5A1.495 (2)C14—H14B0.9600
C5—C61.532 (2)C14—H14C0.9600
C5—H5A0.9700C15—C201.382 (2)
C5—H5B0.9700C15—C161.387 (2)
C5A—C8A1.351 (2)C16—C171.377 (3)
C5A—N101.3772 (19)C16—H160.9300
C6—C71.525 (2)C17—C181.369 (3)
C6—C131.529 (3)C17—H170.9300
C6—C141.532 (2)C18—C191.363 (3)
C7—C81.506 (2)C18—H180.9300
C7—H7A0.9700C19—C201.367 (3)
C7—H7B0.9700C20—H200.9300
O1—C1—C9A121.51 (14)C8A—C9—C15108.64 (12)
O1—C1—C2120.49 (14)C9A—C9—H9108.7
C9A—C1—C2117.97 (13)C8A—C9—H9108.7
C1—C2—C3114.93 (13)C15—C9—H9108.7
C1—C2—H2A108.5C4A—C9A—C1120.54 (14)
C3—C2—H2A108.5C4A—C9A—C9120.86 (13)
C1—C2—H2B108.5C1—C9A—C9118.53 (12)
C3—C2—H2B108.5C4A—N10—C5A121.29 (12)
H2A—C2—H2B107.5C4A—N10—H10119.4
C12—C3—C4110.39 (14)C5A—N10—H10119.4
C12—C3—C11109.23 (14)C3—C11—H11A109.5
C4—C3—C11109.64 (14)C3—C11—H11B109.5
C12—C3—C2110.11 (14)H11A—C11—H11B109.5
C4—C3—C2108.35 (12)C3—C11—H11C109.5
C11—C3—C2109.09 (13)H11A—C11—H11C109.5
C4A—C4—C3112.70 (12)H11B—C11—H11C109.5
C4A—C4—H4A109.1C3—C12—H12A109.5
C3—C4—H4A109.1C3—C12—H12B109.5
C4A—C4—H4B109.1H12A—C12—H12B109.5
C3—C4—H4B109.1C3—C12—H12C109.5
H4A—C4—H4B107.8H12A—C12—H12C109.5
C9A—C4A—N10120.11 (13)H12B—C12—H12C109.5
C9A—C4A—C4123.13 (14)C6—C13—H13A109.5
N10—C4A—C4116.75 (12)C6—C13—H13B109.5
C5A—C5—C6112.79 (13)H13A—C13—H13B109.5
C5A—C5—H5A109.0C6—C13—H13C109.5
C6—C5—H5A109.0H13A—C13—H13C109.5
C5A—C5—H5B109.0H13B—C13—H13C109.5
C6—C5—H5B109.0C6—C14—H14A109.5
H5A—C5—H5B107.8C6—C14—H14B109.5
C8A—C5A—N10120.17 (14)H14A—C14—H14B109.5
C8A—C5A—C5123.37 (14)C6—C14—H14C109.5
N10—C5A—C5116.45 (12)H14A—C14—H14C109.5
C7—C6—C13110.98 (14)H14B—C14—H14C109.5
C7—C6—C14109.44 (15)C20—C15—C16117.63 (16)
C13—C6—C14109.17 (16)C20—C15—C9121.66 (13)
C7—C6—C5107.34 (14)C16—C15—C9120.53 (15)
C13—C6—C5110.50 (14)C17—C16—C15121.07 (19)
C14—C6—C5109.37 (14)C17—C16—H16119.5
C8—C7—C6114.23 (14)C15—C16—H16119.5
C8—C7—H7A108.7C18—C17—C16121.17 (18)
C6—C7—H7A108.7C18—C17—H17119.4
C8—C7—H7B108.7C16—C17—H17119.4
C6—C7—H7B108.7C19—C18—C17117.04 (18)
H7A—C7—H7B107.6C19—C18—H18121.5
O2—C8—C8A121.84 (15)C17—C18—H18121.5
O2—C8—C7120.85 (15)C18—C19—F1118.19 (17)
C8A—C8—C7117.28 (13)C18—C19—C20123.36 (19)
C5A—C8A—C8120.10 (14)F1—C19—C20118.45 (17)
C5A—C8A—C9120.50 (14)C19—C20—C15119.71 (16)
C8—C8A—C9119.38 (12)C19—C20—H20120.1
C9A—C9—C8A109.52 (12)C15—C20—H20120.1
C9A—C9—C15112.41 (13)
O1—C1—C2—C3153.20 (15)C8—C8A—C9—C1583.98 (16)
C9A—C1—C2—C328.8 (2)N10—C4A—C9A—C1177.60 (14)
C1—C2—C3—C1269.81 (17)C4—C4A—C9A—C13.2 (2)
C1—C2—C3—C451.02 (18)N10—C4A—C9A—C95.5 (2)
C1—C2—C3—C11170.33 (14)C4—C4A—C9A—C9173.74 (15)
C12—C3—C4—C4A71.15 (17)O1—C1—C9A—C4A178.70 (15)
C11—C3—C4—C4A168.46 (14)C2—C1—C9A—C4A3.3 (2)
C2—C3—C4—C4A49.50 (18)O1—C1—C9A—C94.3 (2)
C3—C4—C4A—C9A27.9 (2)C2—C1—C9A—C9173.69 (14)
C3—C4—C4A—N10152.80 (14)C8A—C9—C9A—C4A25.2 (2)
C6—C5—C5A—C8A19.5 (2)C15—C9—C9A—C4A95.64 (17)
C6—C5—C5A—N10161.31 (14)C8A—C9—C9A—C1157.80 (13)
C5A—C5—C6—C749.58 (19)C15—C9—C9A—C181.32 (17)
C5A—C5—C6—C1371.57 (18)C9A—C4A—N10—C5A14.6 (2)
C5A—C5—C6—C14168.23 (15)C4—C4A—N10—C5A166.08 (14)
C13—C6—C7—C866.14 (19)C8A—C5A—N10—C4A11.1 (2)
C14—C6—C7—C8173.31 (15)C5—C5A—N10—C4A168.07 (14)
C5—C6—C7—C854.70 (19)C9A—C9—C15—C2033.0 (2)
C6—C7—C8—O2153.47 (15)C8A—C9—C15—C2088.35 (18)
C6—C7—C8—C8A28.6 (2)C9A—C9—C15—C16152.02 (16)
N10—C5A—C8A—C8169.29 (14)C8A—C9—C15—C1686.61 (18)
C5—C5A—C8A—C89.8 (2)C20—C15—C16—C170.7 (3)
N10—C5A—C8A—C912.3 (2)C9—C15—C16—C17174.41 (18)
C5—C5A—C8A—C9168.58 (14)C15—C16—C17—C180.0 (3)
O2—C8—C8A—C5A172.64 (15)C16—C17—C18—C190.4 (3)
C7—C8—C8A—C5A5.3 (2)C17—C18—C19—F1179.82 (19)
O2—C8—C8A—C98.9 (2)C17—C18—C19—C200.2 (3)
C7—C8—C8A—C9173.17 (14)C18—C19—C20—C150.5 (3)
C5A—C8A—C9—C9A28.68 (19)F1—C19—C20—C15179.10 (16)
C8—C8A—C9—C9A152.89 (13)C16—C15—C20—C191.0 (3)
C5A—C8A—C9—C1594.45 (16)C9—C15—C20—C19174.13 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H10···O1i0.862.142.990 (2)168
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC23H26FNO2
Mr367.45
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.0505 (3), 12.8264 (3), 13.8548 (3)
β (°) 100.215 (2)
V3)1932.63 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire3
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.897, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
30330, 3789, 2922
Rint0.041
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.118, 1.03
No. of reflections3789
No. of parameters248
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.30

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H10···O1i0.862.142.990 (2)168
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

RK acknowledges the Department of Science & Technology for access to the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003.

References

First citationBalamurugan, P., Jagan, R., Thiagarajan, V. M., Yamin, B. & Sivakumar, K. (2009). Acta Cryst. E65, o271.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDuax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, Vol. 1. New York: Plenum Press.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJosephrajan, T., Ramakrishnan, V. T., Kathiravan, G. & Muthumary, J. (2005). ARKIVOC, pp. 124–136.  Google Scholar
First citationKant, R., Gupta, V. K., Kapoor, K., Patil, D. R., Jagadale, S. D. & Deshmukh, M. B. (2013). Acta Cryst. E69, o101.  CSD CrossRef IUCr Journals Google Scholar
First citationLeon, R., Rios, C., Contelles, J. M., Lopez, G. M., Garcia, A. G. & Villarroya, M. (2008). Eur. J. Med. Chem. 43, 668–674.  Web of Science PubMed CAS Google Scholar
First citationMurugan, P., Shanmugasundaram, P., Ramakrishnan, V. T., Venkatachalapathy, B., Srividya, N., Ramamurthy, P., Gunasekaran, K. & Velmurugan, D. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 999–1003.  Web of Science CSD CrossRef Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrividya, N., Ramamurthy, P. & Ramakrishnan, V. T. (1998). Spectrochim. Acta Part A, 54, 245–253.  Web of Science CrossRef Google Scholar
First citationSrividya, N., Ramamurthy, P., Shanmugasundaram, P. & Ramakrishnan, V. T. (1996). J. Org. Chem. 61, 5083–5089.  CrossRef CAS Web of Science Google Scholar
First citationZhao, L.-L. & Teng, D. (2008). Acta Cryst. E64, o1772–o1773.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds