organic compounds
9-(3-Fluorophenyl)-3,3,6,6-tetramethyl-1,2,3,4,5,6,7,8,9,10-decahydroacridine-1,8-dione
aX-ray Crystallography Laboratory, Post-Graduate Department of Physics & Electronics, University of Jammu, Jammu Tawi 180 006, India, and bDepartment of Chemistry, Shivaji University, Kolhapur, 416 004 (MS), India
*Correspondence e-mail: rkvk.paper11@gmail.com
In the title molecule, C23H26FNO2, the central ring of the acridinedione system adopts a slight boat conformation and the four essentially planar atoms of this ring [maximum deviation = 0.019 (1) Å] form a dihedral angle of 89.98 (6)° with the benzene ring. The two outer rings of the acridinedione system adopt sofa conformations. In the crystal, N—H⋯O hydrogen bonds link the molecules, forming chains along [001].
Related literature
For applications of acridines, see: Murugan et al. (1998); Leon et al. (2008). Josephrajan et al. (2005); Srividya et al. (1998, 1996). For related structures, see: Balamurugan et al. (2009); Zhao & Teng (2008); Kant et al. (2013). For ring conformations, see: Duax & Norton (1975).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).
Supporting information
https://doi.org/10.1107/S1600536812050556/lh5569sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812050556/lh5569Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536812050556/lh5569Isup3.cml
In a 50 ml rounded bottom flask, a mixture of dimedone (2 mmole), 3-fluoro benzaldehyde (1 mmole) and ammonium acetate (1.2 mmole) in mixture of aq. ethanol (7 ml) was stirred at RT for 5 min. To this[CMIM][HSO4](3-carboxy methyl-1-methylimidazolium bisulfate) (20 mol %) was added and the reaction mixture heated at 348-353K for 1.5 hrs. The progress of the reaction was monitored by TLC. After completion of the reaction, the mixture was gradually cooled to RT and poured on ice water under stirring. The precipitate was dried. Diffraction quality single crystals were grown from a solution of the title compound in ethanol.
M.P.: 573 K, Yield: 87%. IR(KBr): 3217, 3070, 2954, 1627 cm-1. 1H NMR (300 MHz, DMSO-d6): δ = 9.1 (brs, 1H,NH); 7.6–7.2 (m, 4H,Ar—H); 5.5 (s, 1H,CH); 3.3–2.5 (m,8H,CH2); 1.6 (s,6H, CH3); 1.4 (s, 6H, CH3).
All H atoms were positioned geometrically and were treated as riding on their parent C atoms, with N—H distance of 0.86 Å, C—H distances of 0.93–0.98 Å and with Uiso(H) = 1.2Ueq(C/N) or 1.5Ueq(methyl C).
The 1,4- dihydropyridine (DHP) nucleus act as a versatile intermediate for the synthesis of several pharmaceuticals together with those of cardiovascular drugs and as a calcium channel modulators, laser dyes and photo initiators (Leon et al., 2008). Acridines, the earliest known antibiotics, are toxic towards bacteria. Some acridinedione derivatives show good inhibition against the pathogen Vibrio isolate-I (Josephrajan et al., 2005). Certain acridine-1,8-diones exhibit fluorescence activities (Murugan et al., 1998) and a few acridinedione derivatives also show photophysical (Srividya et al., 1998) and electrochemical properties (Srividya et al., 1996). Thus, the accurate description of crystal structures of substituted acridinediones are expected to provide useful information on the role of substituents in influencing
which has a direct relationship to biological activity. This paper deals with the of a 3-fluorophenyl substituted tetramethyl acridinedione, (I).In (I) (Fig.1), all bond lengths and angles are normal and correspond to those observed in related structures (Balamurugan et al.,2009; Zhao & Teng 2008; Kant et al., 2013). The central ring (C4A/C5A/C8A/C9A/C9/N10) of the acridinedione moiety adopts a boat conformation (ΔCs(C9) = 4.85 & ΔCs (C9A—C4A) = 14.52) and the four essentially planar atoms (C4A/C5A/C8A/C9A) of this ring (maximum deviation = 0.019 (1) Å) form a dihedral angle of 89.98 (6)° with benzene ring. Both the outer rings adopt sofa conformations (ΔCs (C3) = 1.01; ΔCs (C8A) = 6.56) (Duax & Norton, 1975). In the crystal, N10—H10···O1i hydrogen bonds (Table 1) link molecules to form link molecules to form one-dimensional chains along [001] (Fig. 2).
For applications of acridines, see: Murugan et al. (1998); Leon et al. (2008). Josephrajan et al. (2005); Srividya et al. (1998,1996). For related structures, see: Balamurugan et al. (2009); Zhao & Teng (2008); Kant et al. (2013). For ring conformations, see: Duax & Norton (1975).
Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell
CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).C23H26FNO2 | F(000) = 784 |
Mr = 367.45 | Dx = 1.263 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 11314 reflections |
a = 11.0505 (3) Å | θ = 3.5–29.1° |
b = 12.8264 (3) Å | µ = 0.09 mm−1 |
c = 13.8548 (3) Å | T = 293 K |
β = 100.215 (2)° | Block, yellow |
V = 1932.63 (8) Å3 | 0.3 × 0.2 × 0.2 mm |
Z = 4 |
Oxford Diffraction Xcalibur Sapphire3 diffractometer | 3789 independent reflections |
Radiation source: fine-focus sealed tube | 2922 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.041 |
Detector resolution: 16.1049 pixels mm-1 | θmax = 26.0°, θmin = 3.5° |
ω scans | h = −13→13 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | k = −15→15 |
Tmin = 0.897, Tmax = 1.000 | l = −17→17 |
30330 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.118 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0534P)2 + 0.5565P] where P = (Fo2 + 2Fc2)/3 |
3789 reflections | (Δ/σ)max = 0.002 |
248 parameters | Δρmax = 0.21 e Å−3 |
0 restraints | Δρmin = −0.30 e Å−3 |
C23H26FNO2 | V = 1932.63 (8) Å3 |
Mr = 367.45 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 11.0505 (3) Å | µ = 0.09 mm−1 |
b = 12.8264 (3) Å | T = 293 K |
c = 13.8548 (3) Å | 0.3 × 0.2 × 0.2 mm |
β = 100.215 (2)° |
Oxford Diffraction Xcalibur Sapphire3 diffractometer | 3789 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) | 2922 reflections with I > 2σ(I) |
Tmin = 0.897, Tmax = 1.000 | Rint = 0.041 |
30330 measured reflections |
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.118 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.21 e Å−3 |
3789 reflections | Δρmin = −0.30 e Å−3 |
248 parameters |
Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.34.40 (release 27–08-2010 CrysAlis171. NET) (compiled Aug 27 2010,11:50:40) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
F1 | 0.41296 (13) | 0.61151 (11) | 0.95736 (11) | 0.0872 (5) | |
O1 | 0.37340 (11) | 0.15628 (10) | 1.02926 (8) | 0.0458 (3) | |
O2 | −0.05752 (11) | 0.26403 (9) | 0.87999 (9) | 0.0447 (3) | |
C1 | 0.40151 (14) | 0.17311 (12) | 0.94855 (10) | 0.0314 (3) | |
C2 | 0.52391 (14) | 0.13764 (13) | 0.92694 (11) | 0.0350 (4) | |
H2A | 0.5477 | 0.0743 | 0.9637 | 0.042* | |
H2B | 0.5849 | 0.1905 | 0.9503 | 0.042* | |
C3 | 0.52646 (14) | 0.11663 (12) | 0.81853 (11) | 0.0326 (4) | |
C4 | 0.47300 (15) | 0.21159 (14) | 0.75919 (11) | 0.0369 (4) | |
H4A | 0.5312 | 0.2687 | 0.7715 | 0.044* | |
H4B | 0.4616 | 0.1949 | 0.6899 | 0.044* | |
C4A | 0.35251 (14) | 0.24594 (11) | 0.78386 (11) | 0.0299 (3) | |
C5 | 0.06856 (15) | 0.34840 (14) | 0.62736 (11) | 0.0374 (4) | |
H5A | 0.0487 | 0.2898 | 0.5831 | 0.045* | |
H5B | 0.1117 | 0.3997 | 0.5947 | 0.045* | |
C5A | 0.15152 (14) | 0.31198 (12) | 0.71821 (11) | 0.0300 (3) | |
C6 | −0.05098 (15) | 0.39660 (14) | 0.64830 (12) | 0.0382 (4) | |
C7 | −0.10509 (15) | 0.32075 (15) | 0.71400 (13) | 0.0436 (4) | |
H7A | −0.1781 | 0.3519 | 0.7317 | 0.052* | |
H7B | −0.1303 | 0.2579 | 0.6769 | 0.052* | |
C8 | −0.01831 (15) | 0.29119 (12) | 0.80649 (12) | 0.0333 (4) | |
C8A | 0.11243 (14) | 0.29285 (11) | 0.80350 (11) | 0.0299 (3) | |
C9 | 0.20404 (14) | 0.27571 (12) | 0.89720 (11) | 0.0311 (3) | |
H9 | 0.1689 | 0.2262 | 0.9385 | 0.037* | |
C9A | 0.32076 (14) | 0.23003 (12) | 0.87301 (11) | 0.0304 (3) | |
N10 | 0.27307 (11) | 0.29683 (10) | 0.71127 (9) | 0.0329 (3) | |
H10 | 0.2999 | 0.3196 | 0.6606 | 0.039* | |
C11 | 0.65972 (16) | 0.09985 (16) | 0.80536 (13) | 0.0476 (5) | |
H11A | 0.6623 | 0.0897 | 0.7371 | 0.071* | |
H11B | 0.6926 | 0.0395 | 0.8418 | 0.071* | |
H11C | 0.7079 | 0.1599 | 0.8290 | 0.071* | |
C12 | 0.45147 (17) | 0.01935 (14) | 0.78447 (14) | 0.0487 (5) | |
H12A | 0.3677 | 0.0297 | 0.7923 | 0.073* | |
H12B | 0.4853 | −0.0394 | 0.8230 | 0.073* | |
H12C | 0.4543 | 0.0065 | 0.7166 | 0.073* | |
C13 | −0.02574 (19) | 0.50270 (14) | 0.69808 (15) | 0.0511 (5) | |
H13A | −0.1012 | 0.5313 | 0.7116 | 0.077* | |
H13B | 0.0084 | 0.5490 | 0.6555 | 0.077* | |
H13C | 0.0315 | 0.4944 | 0.7584 | 0.077* | |
C14 | −0.14131 (19) | 0.41061 (19) | 0.55164 (15) | 0.0616 (6) | |
H14A | −0.1582 | 0.3441 | 0.5205 | 0.092* | |
H14B | −0.1059 | 0.4562 | 0.5092 | 0.092* | |
H14C | −0.2165 | 0.4404 | 0.5647 | 0.092* | |
C15 | 0.22599 (15) | 0.37969 (12) | 0.95166 (11) | 0.0332 (4) | |
C16 | 0.1496 (2) | 0.41131 (15) | 1.01546 (14) | 0.0534 (5) | |
H16 | 0.0891 | 0.3662 | 1.0294 | 0.064* | |
C17 | 0.1618 (2) | 0.50844 (17) | 1.05846 (16) | 0.0634 (6) | |
H17 | 0.1094 | 0.5278 | 1.1010 | 0.076* | |
C18 | 0.2498 (2) | 0.57702 (16) | 1.03973 (14) | 0.0558 (5) | |
H18 | 0.2580 | 0.6429 | 1.0682 | 0.067* | |
C19 | 0.32474 (18) | 0.54449 (15) | 0.97744 (14) | 0.0503 (5) | |
C20 | 0.31554 (16) | 0.44858 (14) | 0.93376 (12) | 0.0437 (4) | |
H20 | 0.3693 | 0.4298 | 0.8922 | 0.052* |
U11 | U22 | U33 | U12 | U13 | U23 | |
F1 | 0.0871 (10) | 0.0698 (9) | 0.1120 (11) | −0.0351 (8) | 0.0372 (9) | −0.0326 (8) |
O1 | 0.0544 (8) | 0.0560 (8) | 0.0294 (6) | 0.0148 (6) | 0.0140 (5) | 0.0112 (5) |
O2 | 0.0456 (7) | 0.0442 (7) | 0.0505 (7) | 0.0011 (5) | 0.0255 (6) | 0.0061 (6) |
C1 | 0.0385 (9) | 0.0287 (8) | 0.0280 (8) | 0.0023 (6) | 0.0083 (6) | 0.0000 (6) |
C2 | 0.0345 (9) | 0.0362 (9) | 0.0338 (8) | 0.0049 (7) | 0.0043 (7) | 0.0029 (7) |
C3 | 0.0305 (8) | 0.0338 (9) | 0.0339 (8) | 0.0066 (7) | 0.0069 (6) | −0.0026 (7) |
C4 | 0.0370 (9) | 0.0426 (10) | 0.0343 (8) | 0.0091 (7) | 0.0154 (7) | 0.0055 (7) |
C4A | 0.0342 (8) | 0.0258 (8) | 0.0315 (8) | 0.0057 (6) | 0.0110 (6) | 0.0037 (6) |
C5 | 0.0414 (9) | 0.0411 (9) | 0.0304 (8) | 0.0066 (7) | 0.0085 (7) | 0.0025 (7) |
C5A | 0.0339 (8) | 0.0260 (8) | 0.0316 (8) | 0.0054 (6) | 0.0104 (6) | 0.0010 (6) |
C6 | 0.0336 (9) | 0.0433 (10) | 0.0376 (9) | 0.0076 (7) | 0.0064 (7) | 0.0030 (7) |
C7 | 0.0336 (9) | 0.0462 (10) | 0.0520 (10) | −0.0009 (8) | 0.0100 (8) | −0.0008 (8) |
C8 | 0.0381 (9) | 0.0236 (8) | 0.0412 (9) | 0.0013 (6) | 0.0149 (7) | −0.0021 (7) |
C8A | 0.0357 (8) | 0.0242 (7) | 0.0321 (8) | 0.0051 (6) | 0.0118 (6) | 0.0021 (6) |
C9 | 0.0367 (8) | 0.0301 (8) | 0.0299 (8) | 0.0071 (6) | 0.0153 (6) | 0.0063 (6) |
C9A | 0.0366 (8) | 0.0263 (8) | 0.0304 (8) | 0.0063 (6) | 0.0118 (6) | 0.0024 (6) |
N10 | 0.0359 (7) | 0.0377 (7) | 0.0282 (6) | 0.0085 (6) | 0.0143 (5) | 0.0087 (6) |
C11 | 0.0371 (10) | 0.0608 (12) | 0.0459 (10) | 0.0141 (8) | 0.0097 (8) | −0.0022 (9) |
C12 | 0.0481 (11) | 0.0399 (10) | 0.0565 (11) | 0.0047 (8) | 0.0044 (9) | −0.0111 (8) |
C13 | 0.0585 (12) | 0.0388 (10) | 0.0592 (12) | 0.0117 (9) | 0.0189 (9) | 0.0052 (9) |
C14 | 0.0457 (11) | 0.0861 (16) | 0.0504 (11) | 0.0153 (11) | 0.0015 (9) | 0.0114 (11) |
C15 | 0.0390 (9) | 0.0343 (9) | 0.0273 (8) | 0.0102 (7) | 0.0087 (6) | 0.0035 (6) |
C16 | 0.0703 (13) | 0.0418 (10) | 0.0577 (12) | 0.0033 (9) | 0.0375 (10) | −0.0041 (9) |
C17 | 0.0827 (16) | 0.0515 (12) | 0.0660 (13) | 0.0086 (11) | 0.0410 (12) | −0.0144 (10) |
C18 | 0.0690 (13) | 0.0433 (11) | 0.0550 (12) | 0.0076 (10) | 0.0108 (10) | −0.0158 (9) |
C19 | 0.0508 (11) | 0.0471 (11) | 0.0525 (11) | −0.0065 (9) | 0.0080 (9) | −0.0068 (9) |
C20 | 0.0439 (10) | 0.0485 (11) | 0.0414 (9) | 0.0020 (8) | 0.0145 (8) | −0.0071 (8) |
F1—C19 | 1.365 (2) | C8—C8A | 1.453 (2) |
O1—C1 | 1.2317 (18) | C8A—C9 | 1.514 (2) |
O2—C8 | 1.2257 (18) | C9—C9A | 1.508 (2) |
C1—C9A | 1.447 (2) | C9—C15 | 1.530 (2) |
C1—C2 | 1.507 (2) | C9—H9 | 0.9800 |
C2—C3 | 1.531 (2) | N10—H10 | 0.8600 |
C2—H2A | 0.9700 | C11—H11A | 0.9600 |
C2—H2B | 0.9700 | C11—H11B | 0.9600 |
C3—C12 | 1.526 (2) | C11—H11C | 0.9600 |
C3—C4 | 1.528 (2) | C12—H12A | 0.9600 |
C3—C11 | 1.531 (2) | C12—H12B | 0.9600 |
C4—C4A | 1.498 (2) | C12—H12C | 0.9600 |
C4—H4A | 0.9700 | C13—H13A | 0.9600 |
C4—H4B | 0.9700 | C13—H13B | 0.9600 |
C4A—C9A | 1.358 (2) | C13—H13C | 0.9600 |
C4A—N10 | 1.3766 (19) | C14—H14A | 0.9600 |
C5—C5A | 1.495 (2) | C14—H14B | 0.9600 |
C5—C6 | 1.532 (2) | C14—H14C | 0.9600 |
C5—H5A | 0.9700 | C15—C20 | 1.382 (2) |
C5—H5B | 0.9700 | C15—C16 | 1.387 (2) |
C5A—C8A | 1.351 (2) | C16—C17 | 1.377 (3) |
C5A—N10 | 1.3772 (19) | C16—H16 | 0.9300 |
C6—C7 | 1.525 (2) | C17—C18 | 1.369 (3) |
C6—C13 | 1.529 (3) | C17—H17 | 0.9300 |
C6—C14 | 1.532 (2) | C18—C19 | 1.363 (3) |
C7—C8 | 1.506 (2) | C18—H18 | 0.9300 |
C7—H7A | 0.9700 | C19—C20 | 1.367 (3) |
C7—H7B | 0.9700 | C20—H20 | 0.9300 |
O1—C1—C9A | 121.51 (14) | C8A—C9—C15 | 108.64 (12) |
O1—C1—C2 | 120.49 (14) | C9A—C9—H9 | 108.7 |
C9A—C1—C2 | 117.97 (13) | C8A—C9—H9 | 108.7 |
C1—C2—C3 | 114.93 (13) | C15—C9—H9 | 108.7 |
C1—C2—H2A | 108.5 | C4A—C9A—C1 | 120.54 (14) |
C3—C2—H2A | 108.5 | C4A—C9A—C9 | 120.86 (13) |
C1—C2—H2B | 108.5 | C1—C9A—C9 | 118.53 (12) |
C3—C2—H2B | 108.5 | C4A—N10—C5A | 121.29 (12) |
H2A—C2—H2B | 107.5 | C4A—N10—H10 | 119.4 |
C12—C3—C4 | 110.39 (14) | C5A—N10—H10 | 119.4 |
C12—C3—C11 | 109.23 (14) | C3—C11—H11A | 109.5 |
C4—C3—C11 | 109.64 (14) | C3—C11—H11B | 109.5 |
C12—C3—C2 | 110.11 (14) | H11A—C11—H11B | 109.5 |
C4—C3—C2 | 108.35 (12) | C3—C11—H11C | 109.5 |
C11—C3—C2 | 109.09 (13) | H11A—C11—H11C | 109.5 |
C4A—C4—C3 | 112.70 (12) | H11B—C11—H11C | 109.5 |
C4A—C4—H4A | 109.1 | C3—C12—H12A | 109.5 |
C3—C4—H4A | 109.1 | C3—C12—H12B | 109.5 |
C4A—C4—H4B | 109.1 | H12A—C12—H12B | 109.5 |
C3—C4—H4B | 109.1 | C3—C12—H12C | 109.5 |
H4A—C4—H4B | 107.8 | H12A—C12—H12C | 109.5 |
C9A—C4A—N10 | 120.11 (13) | H12B—C12—H12C | 109.5 |
C9A—C4A—C4 | 123.13 (14) | C6—C13—H13A | 109.5 |
N10—C4A—C4 | 116.75 (12) | C6—C13—H13B | 109.5 |
C5A—C5—C6 | 112.79 (13) | H13A—C13—H13B | 109.5 |
C5A—C5—H5A | 109.0 | C6—C13—H13C | 109.5 |
C6—C5—H5A | 109.0 | H13A—C13—H13C | 109.5 |
C5A—C5—H5B | 109.0 | H13B—C13—H13C | 109.5 |
C6—C5—H5B | 109.0 | C6—C14—H14A | 109.5 |
H5A—C5—H5B | 107.8 | C6—C14—H14B | 109.5 |
C8A—C5A—N10 | 120.17 (14) | H14A—C14—H14B | 109.5 |
C8A—C5A—C5 | 123.37 (14) | C6—C14—H14C | 109.5 |
N10—C5A—C5 | 116.45 (12) | H14A—C14—H14C | 109.5 |
C7—C6—C13 | 110.98 (14) | H14B—C14—H14C | 109.5 |
C7—C6—C14 | 109.44 (15) | C20—C15—C16 | 117.63 (16) |
C13—C6—C14 | 109.17 (16) | C20—C15—C9 | 121.66 (13) |
C7—C6—C5 | 107.34 (14) | C16—C15—C9 | 120.53 (15) |
C13—C6—C5 | 110.50 (14) | C17—C16—C15 | 121.07 (19) |
C14—C6—C5 | 109.37 (14) | C17—C16—H16 | 119.5 |
C8—C7—C6 | 114.23 (14) | C15—C16—H16 | 119.5 |
C8—C7—H7A | 108.7 | C18—C17—C16 | 121.17 (18) |
C6—C7—H7A | 108.7 | C18—C17—H17 | 119.4 |
C8—C7—H7B | 108.7 | C16—C17—H17 | 119.4 |
C6—C7—H7B | 108.7 | C19—C18—C17 | 117.04 (18) |
H7A—C7—H7B | 107.6 | C19—C18—H18 | 121.5 |
O2—C8—C8A | 121.84 (15) | C17—C18—H18 | 121.5 |
O2—C8—C7 | 120.85 (15) | C18—C19—F1 | 118.19 (17) |
C8A—C8—C7 | 117.28 (13) | C18—C19—C20 | 123.36 (19) |
C5A—C8A—C8 | 120.10 (14) | F1—C19—C20 | 118.45 (17) |
C5A—C8A—C9 | 120.50 (14) | C19—C20—C15 | 119.71 (16) |
C8—C8A—C9 | 119.38 (12) | C19—C20—H20 | 120.1 |
C9A—C9—C8A | 109.52 (12) | C15—C20—H20 | 120.1 |
C9A—C9—C15 | 112.41 (13) | ||
O1—C1—C2—C3 | 153.20 (15) | C8—C8A—C9—C15 | −83.98 (16) |
C9A—C1—C2—C3 | −28.8 (2) | N10—C4A—C9A—C1 | 177.60 (14) |
C1—C2—C3—C12 | −69.81 (17) | C4—C4A—C9A—C1 | −3.2 (2) |
C1—C2—C3—C4 | 51.02 (18) | N10—C4A—C9A—C9 | −5.5 (2) |
C1—C2—C3—C11 | 170.33 (14) | C4—C4A—C9A—C9 | 173.74 (15) |
C12—C3—C4—C4A | 71.15 (17) | O1—C1—C9A—C4A | −178.70 (15) |
C11—C3—C4—C4A | −168.46 (14) | C2—C1—C9A—C4A | 3.3 (2) |
C2—C3—C4—C4A | −49.50 (18) | O1—C1—C9A—C9 | 4.3 (2) |
C3—C4—C4A—C9A | 27.9 (2) | C2—C1—C9A—C9 | −173.69 (14) |
C3—C4—C4A—N10 | −152.80 (14) | C8A—C9—C9A—C4A | 25.2 (2) |
C6—C5—C5A—C8A | 19.5 (2) | C15—C9—C9A—C4A | −95.64 (17) |
C6—C5—C5A—N10 | −161.31 (14) | C8A—C9—C9A—C1 | −157.80 (13) |
C5A—C5—C6—C7 | −49.58 (19) | C15—C9—C9A—C1 | 81.32 (17) |
C5A—C5—C6—C13 | 71.57 (18) | C9A—C4A—N10—C5A | −14.6 (2) |
C5A—C5—C6—C14 | −168.23 (15) | C4—C4A—N10—C5A | 166.08 (14) |
C13—C6—C7—C8 | −66.14 (19) | C8A—C5A—N10—C4A | 11.1 (2) |
C14—C6—C7—C8 | 173.31 (15) | C5—C5A—N10—C4A | −168.07 (14) |
C5—C6—C7—C8 | 54.70 (19) | C9A—C9—C15—C20 | 33.0 (2) |
C6—C7—C8—O2 | 153.47 (15) | C8A—C9—C15—C20 | −88.35 (18) |
C6—C7—C8—C8A | −28.6 (2) | C9A—C9—C15—C16 | −152.02 (16) |
N10—C5A—C8A—C8 | −169.29 (14) | C8A—C9—C15—C16 | 86.61 (18) |
C5—C5A—C8A—C8 | 9.8 (2) | C20—C15—C16—C17 | 0.7 (3) |
N10—C5A—C8A—C9 | 12.3 (2) | C9—C15—C16—C17 | −174.41 (18) |
C5—C5A—C8A—C9 | −168.58 (14) | C15—C16—C17—C18 | 0.0 (3) |
O2—C8—C8A—C5A | 172.64 (15) | C16—C17—C18—C19 | −0.4 (3) |
C7—C8—C8A—C5A | −5.3 (2) | C17—C18—C19—F1 | 179.82 (19) |
O2—C8—C8A—C9 | −8.9 (2) | C17—C18—C19—C20 | 0.2 (3) |
C7—C8—C8A—C9 | 173.17 (14) | C18—C19—C20—C15 | 0.5 (3) |
C5A—C8A—C9—C9A | −28.68 (19) | F1—C19—C20—C15 | −179.10 (16) |
C8—C8A—C9—C9A | 152.89 (13) | C16—C15—C20—C19 | −1.0 (3) |
C5A—C8A—C9—C15 | 94.45 (16) | C9—C15—C20—C19 | 174.13 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
N10—H10···O1i | 0.86 | 2.14 | 2.990 (2) | 168 |
Symmetry code: (i) x, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C23H26FNO2 |
Mr | 367.45 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 11.0505 (3), 12.8264 (3), 13.8548 (3) |
β (°) | 100.215 (2) |
V (Å3) | 1932.63 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.3 × 0.2 × 0.2 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Sapphire3 |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) |
Tmin, Tmax | 0.897, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 30330, 3789, 2922 |
Rint | 0.041 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.118, 1.03 |
No. of reflections | 3789 |
No. of parameters | 248 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.21, −0.30 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012), PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N10—H10···O1i | 0.86 | 2.14 | 2.990 (2) | 168 |
Symmetry code: (i) x, −y+1/2, z−1/2. |
Acknowledgements
RK acknowledges the Department of Science & Technology for access to the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003.
References
Balamurugan, P., Jagan, R., Thiagarajan, V. M., Yamin, B. & Sivakumar, K. (2009). Acta Cryst. E65, o271. Web of Science CSD CrossRef IUCr Journals Google Scholar
Duax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, Vol. 1. New York: Plenum Press. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Josephrajan, T., Ramakrishnan, V. T., Kathiravan, G. & Muthumary, J. (2005). ARKIVOC, pp. 124–136. Google Scholar
Kant, R., Gupta, V. K., Kapoor, K., Patil, D. R., Jagadale, S. D. & Deshmukh, M. B. (2013). Acta Cryst. E69, o101. CSD CrossRef IUCr Journals Google Scholar
Leon, R., Rios, C., Contelles, J. M., Lopez, G. M., Garcia, A. G. & Villarroya, M. (2008). Eur. J. Med. Chem. 43, 668–674. Web of Science PubMed CAS Google Scholar
Murugan, P., Shanmugasundaram, P., Ramakrishnan, V. T., Venkatachalapathy, B., Srividya, N., Ramamurthy, P., Gunasekaran, K. & Velmurugan, D. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 999–1003. Web of Science CSD CrossRef Google Scholar
Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Srividya, N., Ramamurthy, P. & Ramakrishnan, V. T. (1998). Spectrochim. Acta Part A, 54, 245–253. Web of Science CrossRef Google Scholar
Srividya, N., Ramamurthy, P., Shanmugasundaram, P. & Ramakrishnan, V. T. (1996). J. Org. Chem. 61, 5083–5089. CrossRef CAS Web of Science Google Scholar
Zhao, L.-L. & Teng, D. (2008). Acta Cryst. E64, o1772–o1773. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The 1,4- dihydropyridine (DHP) nucleus act as a versatile intermediate for the synthesis of several pharmaceuticals together with those of cardiovascular drugs and as a calcium channel modulators, laser dyes and photo initiators (Leon et al., 2008). Acridines, the earliest known antibiotics, are toxic towards bacteria. Some acridinedione derivatives show good inhibition against the pathogen Vibrio isolate-I (Josephrajan et al., 2005). Certain acridine-1,8-diones exhibit fluorescence activities (Murugan et al., 1998) and a few acridinedione derivatives also show photophysical (Srividya et al., 1998) and electrochemical properties (Srividya et al., 1996). Thus, the accurate description of crystal structures of substituted acridinediones are expected to provide useful information on the role of substituents in influencing molecular conformation which has a direct relationship to biological activity. This paper deals with the crystal structure of a 3-fluorophenyl substituted tetramethyl acridinedione, (I).
In (I) (Fig.1), all bond lengths and angles are normal and correspond to those observed in related structures (Balamurugan et al.,2009; Zhao & Teng 2008; Kant et al., 2013). The central ring (C4A/C5A/C8A/C9A/C9/N10) of the acridinedione moiety adopts a boat conformation (ΔCs(C9) = 4.85 & ΔCs (C9A—C4A) = 14.52) and the four essentially planar atoms (C4A/C5A/C8A/C9A) of this ring (maximum deviation = 0.019 (1) Å) form a dihedral angle of 89.98 (6)° with benzene ring. Both the outer rings adopt sofa conformations (ΔCs (C3) = 1.01; ΔCs (C8A) = 6.56) (Duax & Norton, 1975). In the crystal, N10—H10···O1i hydrogen bonds (Table 1) link molecules to form link molecules to form one-dimensional chains along [001] (Fig. 2).