organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(Prop-2-yn-1-yl­­oxy)benzaldehyde

aDepartment of Material Science and Chemistry, Wakayama University, Sakaedani, Wakayama 640-8510, Japan
*Correspondence e-mail: okuno@center.wakayama-u.ac.jp

(Received 10 December 2012; accepted 14 December 2012; online 22 December 2012)

In the title mol­ecule, C10H8O2, all non-H atoms are essentailly coplanar (r.m.s. deviation = 0.0192 Å), indicating an effective conjugation of the carbonyl group, the benzene ring and the lone pair of the propyn­yloxy O atom. In the crystal, ππ stacking inter­actions [centroid–centroid distance = 3.5585 (15) Å] connect mol­ecules into inversion dimers which are linked by Csp—H⋯O=C hydrogen bonds, forming a ladder-like structure.

Related literature

For related structures of 4-(prop-2-yn-1-yl­oxy)benzenes, see: Berscheid et al. (1992[Berscheid, R., Nieger, M. & Vogtle, F. (1992). Chem. Ber. 125, 2539-2552.]); Mohr et al. (2003[Mohr, F., Eisler, D. J., McArdle, C. P., Atieh, K., Jennings, M. C. & Puddephatt, R. J. (2003). J. Organomet. Chem. 670, 27-36.]); Nieger et al. (2004[Nieger, M., Michel, I. & Vogtle, F. (2004). Private communication (deposition number 246025). CCDC, Cambridge, England.]); Ranjith et al. (2010[Ranjith, S., Thirunarayanan, A., Raja, S., Rajakumar, P. & SubbiahPandi, A. (2010). Acta Cryst. E66, o2261-o2262.]); Zhang et al. (2011[Zhang, C.-H., Zhao, J.-M. & Chen, B.-G. (2011). Acta Cryst. E67, o150.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8O2

  • Mr = 160.17

  • Monoclinic, P 21 /n

  • a = 7.906 (3) Å

  • b = 7.385 (2) Å

  • c = 14.036 (5) Å

  • β = 102.025 (5)°

  • V = 801.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 93 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Rigaku Saturn724+ diffractometer

  • Absorption correction: numerical (NUMABS; Rigaku, 1999[Rigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.984, Tmax = 0.991

  • 6309 measured reflections

  • 1832 independent reflections

  • 1669 reflections with F2 > 2σ(F2)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.101

  • S = 1.06

  • 1831 reflections

  • 141 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O1i 0.95 2.23 3.1575 (14) 166
Symmetry code: (i) [x+{\script{3\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXD (Schneider & Sheldrick, 2002[Schneider, T. R. & Sheldrick, G. M. (2002). Acta Cryst. D58, 1772-1779.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Comment top

The title compound, C10H8O2, is a benzaldehyde derivative whose structure is often observed in macrocyclic compounds (Berscheid et al. 1992; Mohr et al. 2003). Analogues of the title compound have already been reported as an ester (Nieger et al., 2004), as a ketone (Ranjith et al., 2010) and as an α,β-unsatuated ketone (Zhang et al., 2011). The molecule has a planar structure (atoms C1—C10/O1—O2 are essentailly co-planar with an r.m.s. deviation = 0.0192 Å), indicating an effective conjugation of the carbonyl group, the C1—C6 benzene ring and the lone pair of atom O2.

The molecular structure of the title compound is shown in Fig. 1. In the crystal, molecules form dimers across inversion centers (Fig. 2), owing to ππ stacking interactions. The intermolecular distance of C4···C6iii is 3.3026 (16) Å [Symmetry code:(iii) -x + 1, -y + 1, -z + 2.]. The molecules also form weak intermolecular C—H···OC hydrogen bonds between the carbonyl oxygen and acetylene group to give a ladder-like structure where the distances of C10···O1i and O1···C10ii are 3.1575 (14) Å [Symmetry codes:(i) x + 3/2, -y + 1/2, z + 1/2 and (ii) x - 3/2, -y + 1/2, z - 1/2.].

Related literature top

For related structures of 4-(prop-2-yn-1-yloxy)benzenes, see: Berscheid et al. (1992); Mohr et al. (2003); Nieger et al. (2004); Ranjith et al. (2010); Zhang et al. (2011).

Experimental top

A mixture of 4-hydroxybenzaldehyde (1.22 g, 10 mmol) and 3-bromoprop-1-yne (3.57 g, 30 mmol) in 1-methylpyrrolidin-2-one (20 ml) was heated at 473K for 2 h in the presence of K2CO3 (4.15 g). The solution was poured into water and extracted by benzene (100 ml). The organic layer was washed with 5% NaOHaq, 5% Na2CO3aq and water, and was dried over Na2SO4. After removal of Na2SO4 and benzene, the residue was recrystallized by hexane to give 0.96 g (60%) of the title compound as a pale yellow powder. Single crystals with sufficient quality were prepared by sublimation at room temperature.

Refinement top

The C-bound H atoms were placed at ideal positions and were refined as riding on their parent C atoms. Uiso(H) values of the H atoms were set at 1.2Ueq(parent atom).

Structure description top

The title compound, C10H8O2, is a benzaldehyde derivative whose structure is often observed in macrocyclic compounds (Berscheid et al. 1992; Mohr et al. 2003). Analogues of the title compound have already been reported as an ester (Nieger et al., 2004), as a ketone (Ranjith et al., 2010) and as an α,β-unsatuated ketone (Zhang et al., 2011). The molecule has a planar structure (atoms C1—C10/O1—O2 are essentailly co-planar with an r.m.s. deviation = 0.0192 Å), indicating an effective conjugation of the carbonyl group, the C1—C6 benzene ring and the lone pair of atom O2.

The molecular structure of the title compound is shown in Fig. 1. In the crystal, molecules form dimers across inversion centers (Fig. 2), owing to ππ stacking interactions. The intermolecular distance of C4···C6iii is 3.3026 (16) Å [Symmetry code:(iii) -x + 1, -y + 1, -z + 2.]. The molecules also form weak intermolecular C—H···OC hydrogen bonds between the carbonyl oxygen and acetylene group to give a ladder-like structure where the distances of C10···O1i and O1···C10ii are 3.1575 (14) Å [Symmetry codes:(i) x + 3/2, -y + 1/2, z + 1/2 and (ii) x - 3/2, -y + 1/2, z - 1/2.].

For related structures of 4-(prop-2-yn-1-yloxy)benzenes, see: Berscheid et al. (1992); Mohr et al. (2003); Nieger et al. (2004); Ranjith et al. (2010); Zhang et al. (2011).

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXD (Schneider & Sheldrick, 2002); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level and H atoms are shown as small spheres.
[Figure 2] Fig. 2. Part of the crystal structure showing the ladder-like array formed by ππ stacking interactions and weak C—H···O hydrogen bonds (dashed lines) [Symmetry codes: (i) x + 3/2, -y + 1/2, z + 1/2; (ii) x - 3/2, -y + 1/2, z - 1/2; (iii) -x + 1, -y + 1, -z + 2].
4-(Prop-2-yn-1-yloxy)benzaldehyde top
Crystal data top
C10H8O2F(000) = 336.00
Mr = 160.17Dx = 1.327 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ynCell parameters from 2598 reflections
a = 7.906 (3) Åθ = 2.6–31.1°
b = 7.385 (2) ŵ = 0.09 mm1
c = 14.036 (5) ÅT = 93 K
β = 102.025 (5)°Prism, colorless
V = 801.5 (5) Å30.20 × 0.10 × 0.10 mm
Z = 4
Data collection top
Rigaku Saturn724+
diffractometer
1669 reflections with F2 > 2σ(F2)
Detector resolution: 7.111 pixels mm-1Rint = 0.044
ω scansθmax = 27.5°
Absorption correction: numerical
(NUMABS; Rigaku, 1999)
h = 1010
Tmin = 0.984, Tmax = 0.991k = 98
6309 measured reflectionsl = 1813
1832 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0503P)2 + 0.2315P]
where P = (Fo2 + 2Fc2)/3
1831 reflections(Δ/σ)max = 0.001
141 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.17 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C10H8O2V = 801.5 (5) Å3
Mr = 160.17Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.906 (3) ŵ = 0.09 mm1
b = 7.385 (2) ÅT = 93 K
c = 14.036 (5) Å0.20 × 0.10 × 0.10 mm
β = 102.025 (5)°
Data collection top
Rigaku Saturn724+
diffractometer
1832 independent reflections
Absorption correction: numerical
(NUMABS; Rigaku, 1999)
1669 reflections with F2 > 2σ(F2)
Tmin = 0.984, Tmax = 0.991Rint = 0.044
6309 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.06Δρmax = 0.32 e Å3
1831 reflectionsΔρmin = 0.17 e Å3
141 parameters
Special details top

Refinement. Refinement was performed using all reflections. except for one with very negative F2. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.02874 (9)0.43434 (11)0.86519 (6)0.0269 (3)
O20.72238 (8)0.20161 (10)1.09425 (5)0.0184 (2)
C10.26055 (12)0.32435 (14)0.90578 (7)0.0169 (3)
C20.39397 (13)0.24978 (14)0.86774 (7)0.0183 (3)
C30.55122 (13)0.20458 (14)0.92785 (7)0.0176 (3)
C40.57337 (12)0.23630 (13)1.02780 (7)0.0160 (3)
C50.43929 (12)0.30938 (13)1.06687 (7)0.0167 (3)
C60.28397 (12)0.35345 (13)1.00640 (7)0.0171 (3)
C70.09823 (13)0.37510 (14)0.83968 (7)0.0206 (3)
C80.86477 (12)0.13260 (14)1.05624 (7)0.0185 (3)
C91.00867 (12)0.09585 (15)1.13789 (7)0.0198 (3)
C101.12987 (14)0.06479 (16)1.20170 (8)0.0242 (3)
H20.37600.23140.79790.0271*
H30.64280.15340.90010.0187*
H50.46180.33091.13840.0247*
H60.19100.40601.03360.0199*
H70.10330.35590.76910.0267*
H8A0.89960.22401.01270.0191*
H8B0.82950.01991.02080.0222*
H101.22910.04291.25160.0372*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0204 (4)0.0323 (5)0.0256 (5)0.0041 (3)0.0007 (3)0.0039 (3)
O20.0168 (4)0.0228 (4)0.0150 (4)0.0031 (3)0.0020 (3)0.0004 (3)
C10.0187 (5)0.0144 (5)0.0168 (5)0.0028 (4)0.0016 (4)0.0003 (4)
C20.0219 (5)0.0178 (5)0.0149 (5)0.0030 (4)0.0030 (4)0.0011 (4)
C30.0194 (5)0.0172 (5)0.0169 (5)0.0003 (4)0.0051 (4)0.0014 (4)
C40.0174 (5)0.0134 (5)0.0162 (5)0.0015 (4)0.0015 (4)0.0013 (4)
C50.0197 (5)0.0167 (5)0.0138 (5)0.0015 (4)0.0034 (4)0.0004 (4)
C60.0177 (5)0.0158 (5)0.0180 (5)0.0007 (4)0.0040 (4)0.0003 (4)
C70.0214 (5)0.0203 (5)0.0182 (5)0.0019 (4)0.0004 (4)0.0022 (4)
C80.0179 (5)0.0202 (5)0.0177 (5)0.0025 (4)0.0041 (4)0.0002 (4)
C90.0196 (5)0.0207 (5)0.0199 (5)0.0007 (4)0.0060 (4)0.0011 (4)
C100.0213 (5)0.0303 (6)0.0210 (5)0.0026 (5)0.0045 (4)0.0001 (5)
Geometric parameters (Å, º) top
O1—C71.2154 (14)C8—C91.4622 (13)
O2—C41.3659 (11)C9—C101.1897 (14)
O2—C81.4360 (13)C2—H20.970
C1—C21.3913 (16)C3—H30.968
C1—C61.4021 (15)C5—H50.995
C1—C71.4670 (14)C6—H60.977
C2—C31.3899 (14)C7—H71.010
C3—C41.3968 (15)C8—H8A0.988
C4—C51.3993 (15)C8—H8B0.980
C5—C61.3784 (13)C10—H100.950
O1···C62.8906 (13)C7···H8Biv3.4936
O2···C103.4132 (15)C7···H10iii2.9850
C1···C42.7763 (14)C8···H2viii3.5206
C2···C52.7778 (17)C8···H6xiii3.3423
C3···C62.8035 (17)C8···H8Avi3.4770
C3···C82.7953 (15)C8···H8Bvi3.0613
O1···O2i3.5839 (13)C9···H2viii2.9585
O1···C6ii3.3603 (15)C9···H3vi3.4464
O1···C8i3.5397 (16)C9···H6xiii3.2166
O1···C9i3.4739 (17)C9···H8Avi3.3479
O1···C10iii3.1575 (14)C9···H8Bvi2.9185
O2···O1i3.5839 (13)C10···H2viii3.0407
O2···C1i3.5034 (17)C10···H3vi2.9896
O2···C2iv3.5282 (16)C10···H3viii3.4607
O2···C6i3.5729 (15)C10···H5xiii3.5367
O2···C7i3.4779 (15)C10···H5xiv3.0372
C1···O2i3.5034 (17)C10···H6xiii3.5534
C1···C4i3.5512 (17)C10···H8Bvi3.2660
C1···C5i3.5660 (16)H2···O1xi3.5583
C1···C8iv3.5880 (18)H2···O2v2.9057
C2···O2iv3.5282 (16)H2···C7xi3.2950
C2···C5i3.5602 (17)H2···C8v3.5206
C2···C10v3.5491 (18)H2···C9v2.9585
C3···C4iv3.4949 (17)H2···C10v3.0407
C3···C5i3.5907 (18)H2···H5i3.5239
C3···C6i3.5640 (17)H2···H5v3.5908
C4···C1i3.5512 (17)H2···H7xi2.9435
C4···C3iv3.4949 (17)H2···H10v3.4275
C4···C6i3.3026 (16)H3···O1xiii3.4379
C5···C1i3.5660 (16)H3···C4iv3.5984
C5···C2i3.5602 (17)H3···C5iv3.5273
C5···C3i3.5907 (18)H3···C9vi3.4464
C6···O1ii3.3603 (15)H3···C10vi2.9896
C6···O2i3.5729 (15)H3···C10v3.4607
C6···C3i3.5640 (17)H3···H6i3.5598
C6···C4i3.3026 (16)H3···H7xi3.5107
C7···O2i3.4779 (15)H3···H10vi2.9257
C8···O1i3.5397 (16)H3···H10v3.2297
C8···C1iv3.5880 (18)H5···C1i3.5007
C8···C8vi3.5082 (17)H5···C2i3.3077
C8···C9vi3.5225 (17)H5···C3i3.5504
C9···O1i3.4739 (17)H5···C7viii3.1921
C9···C8vi3.5225 (17)H5···C10x3.5367
C10···O1vii3.1575 (14)H5···C10xii3.0372
C10···C2viii3.5491 (18)H5···H2i3.5239
O1···H62.6337H5···H2viii3.5908
O2···H32.6899H5···H7viii2.3799
O2···H52.4642H5···H10x3.4131
C1···H33.2914H5···H10xii2.8432
C1···H53.3209H6···O1ii2.4110
C2···H63.2988H6···O2i3.5493
C2···H72.5468H6···C3i3.5012
C3···H53.3126H6···C4i3.4439
C3···H8A2.7677H6···C7ii3.5637
C3···H8B2.6843H6···C8x3.3423
C4···H23.2789H6···C9x3.2166
C4···H63.2895H6···C10x3.5534
C4···H8A2.6337H6···H3i3.5598
C4···H8B2.5972H6···H6ii3.2783
C5···H33.3114H6···H8Ax2.6299
C6···H23.2855H6···H8Ai2.8648
C6···H73.3396H6···H8Biv3.2330
C7···H22.6135H6···H10xii3.1175
C7···H62.6767H7···O2v2.8373
C8···H32.5110H7···C2ix3.4881
C10···H8A3.1180H7···C4v3.4138
C10···H8B3.1119H7···C5v3.1133
H2···H32.3616H7···H2ix2.9435
H2···H72.3008H7···H3ix3.5107
H3···H8A2.3572H7···H5v2.3799
H3···H8B2.2315H7···H10iii3.0118
H5···H62.3967H8A···O1xiii2.7399
O1···H2ix3.5583H8A···O1i3.1014
O1···H3x3.4379H8A···C1xiii3.5673
O1···H6ii2.4110H8A···C6xiii3.2041
O1···H8Ax2.7399H8A···C6i3.4287
O1···H8Ai3.1014H8A···C7xiii3.3458
O1···H10iii2.2281H8A···C8vi3.4770
O2···H2viii2.9057H8A···C9vi3.3479
O2···H6i3.5493H8A···H6xiii2.6299
O2···H7viii2.8373H8A···H6i2.8648
C1···H5i3.5007H8A···H8Bvi2.9105
C1···H8Ax3.5673H8B···C1iv2.8875
C1···H8Biv2.8875H8B···C2iv3.2690
C2···H5i3.3077H8B···C5iv3.2946
C2···H7xi3.4881H8B···C6iv2.9001
C2···H8Biv3.2690H8B···C7iv3.4936
C3···H5i3.5504H8B···C8vi3.0613
C3···H6i3.5012H8B···C9vi2.9185
C4···H3iv3.5984H8B···C10vi3.2660
C4···H6i3.4439H8B···H6iv3.2330
C4···H7viii3.4138H8B···H8Avi2.9105
C5···H3iv3.5273H8B···H8Bvi2.8905
C5···H7viii3.1133H10···O1vii2.2281
C5···H8Biv3.2946H10···C5xiv3.5569
C5···H10xii3.5569H10···C7vii2.9850
C6···H8Ax3.2041H10···H2viii3.4275
C6···H8Ai3.4287H10···H3vi2.9257
C6···H8Biv2.9001H10···H3viii3.2297
C7···H2ix3.2950H10···H5xiii3.4131
C7···H5v3.1921H10···H5xiv2.8432
C7···H6ii3.5637H10···H6xiv3.1175
C7···H8Ax3.3458H10···H7vii3.0118
C4—O2—C8116.38 (8)C3—C2—H2120.247
C2—C1—C6119.71 (9)C2—C3—H3119.929
C2—C1—C7119.45 (9)C4—C3—H3121.483
C6—C1—C7120.82 (10)C4—C5—H5117.787
C1—C2—C3121.06 (10)C6—C5—H5122.175
C2—C3—C4118.59 (10)C1—C6—H6120.143
O2—C4—C3124.34 (10)C5—C6—H6120.002
O2—C4—C5114.89 (9)O1—C7—H7122.939
C3—C4—C5120.77 (9)C1—C7—H7112.094
C4—C5—C6120.02 (10)O2—C8—H8A109.216
C1—C6—C5119.85 (10)O2—C8—H8B109.121
O1—C7—C1124.97 (10)C9—C8—H8A109.879
O2—C8—C9108.48 (9)C9—C8—H8B109.452
C8—C9—C10177.37 (12)H8A—C8—H8B110.659
C1—C2—H2118.687C9—C10—H10177.936
C4—O2—C8—C9177.31 (7)C7—C1—C6—C5178.20 (9)
C8—O2—C4—C31.73 (13)C1—C2—C3—C40.28 (15)
C8—O2—C4—C5177.84 (8)C2—C3—C4—O2178.56 (9)
C2—C1—C6—C50.50 (15)C2—C3—C4—C50.99 (15)
C6—C1—C2—C30.46 (15)O2—C4—C5—C6178.63 (8)
C2—C1—C7—O1176.92 (10)C3—C4—C5—C60.96 (14)
C7—C1—C2—C3178.26 (9)C4—C5—C6—C10.20 (14)
C6—C1—C7—O14.38 (16)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z+2; (iii) x3/2, y+1/2, z1/2; (iv) x+1, y, z+2; (v) x1/2, y+1/2, z1/2; (vi) x+2, y, z+2; (vii) x+3/2, y+1/2, z+1/2; (viii) x+1/2, y+1/2, z+1/2; (ix) x+1/2, y+1/2, z+3/2; (x) x1, y, z; (xi) x+1/2, y1/2, z+3/2; (xii) x+3/2, y+1/2, z+5/2; (xiii) x+1, y, z; (xiv) x+3/2, y1/2, z+5/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O1vii0.952.233.1575 (14)166
Symmetry code: (vii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC10H8O2
Mr160.17
Crystal system, space groupMonoclinic, P21/n
Temperature (K)93
a, b, c (Å)7.906 (3), 7.385 (2), 14.036 (5)
β (°) 102.025 (5)
V3)801.5 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerRigaku Saturn724+
Absorption correctionNumerical
(NUMABS; Rigaku, 1999)
Tmin, Tmax0.984, 0.991
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
6309, 1832, 1669
Rint0.044
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.101, 1.06
No. of reflections1831
No. of parameters141
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.17

Computer programs: CrystalClear (Rigaku, 2008), SHELXD (Schneider & Sheldrick, 2002), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012), CrystalStructure (Rigaku, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O1i0.952.22813.1575 (14)166
Symmetry code: (i) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Research for Promoting Technological Seeds from the Japan Science and Technology Agency (JST).

References

First citationBerscheid, R., Nieger, M. & Vogtle, F. (1992). Chem. Ber. 125, 2539–2552.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMohr, F., Eisler, D. J., McArdle, C. P., Atieh, K., Jennings, M. C. & Puddephatt, R. J. (2003). J. Organomet. Chem. 670, 27–36.  Web of Science CSD CrossRef CAS Google Scholar
First citationNieger, M., Michel, I. & Vogtle, F. (2004). Private communication (deposition number 246025). CCDC, Cambridge, England.  Google Scholar
First citationRanjith, S., Thirunarayanan, A., Raja, S., Rajakumar, P. & SubbiahPandi, A. (2010). Acta Cryst. E66, o2261–o2262.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSchneider, T. R. & Sheldrick, G. M. (2002). Acta Cryst. D58, 1772–1779.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, C.-H., Zhao, J.-M. & Chen, B.-G. (2011). Acta Cryst. E67, o150.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds