metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis[μ-2-(meth­­oxy­carbon­yl)benzoato-κ2O1:O1′]bis­­[(aceto­nitrile-κN)copper(II)](CuCu)

aDepartment of Chemistry, Changzhi University, Changzhi, Shanxi 046011, People's Republic of China, and bInstitute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
*Correspondence e-mail: jlwangczu@163.com

(Received 5 November 2012; accepted 2 December 2012; online 8 December 2012)

In the binuclear copper(II) title complex, [Cu2(C9H7O4)4(C2H3N)2], an inversion centre is situtated at the mid-point of the Cu—Cu bond. The CuII atom together with its four coordinated O atoms are in a distorted planar square arrangement while the nitro­gen and the other CuII atom are located in apical positions. The whole mol­ecule looks like a paddle-wheel. In the crystal, chains are assembled along the b axis through C—H⋯O hydrogen bonds and slipped ππ inter­actions between the benzene rings of neighbouring mol­ecules [centroid–centroid distance = 3.6929 (3) Å and slippage = 0.641 (1) Å].

Related literature

For a review on related binuclear CuII carboxyl­ato compounds with subnormal magnetic moments, see: Kato et al. (1964[Kato, M., Jonassen, H. B. & Fanning, J. C. (1964). Chem. Rev. 64, 99-128.]). For the electrochemical behavior of related compounds, see: Reinhard et al. (2003[Reinhard, P., Stefan, L., Carsten, T., Michael, A. O. & Ekkehard, S. (2003). Inorg. Chem. 42, 8230-8240.]). For the synthesis of related compounds, see: Liu et al. (2008[Liu, T.-H., Huang, L., Chen, F.-J., Xi, P.-X., Xu, Z.-H., Xu, M. & Zeng, Z.-Z. (2008). Anal. Sci. 24, x303-x304.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C9H7O4)4(C2H3N)2]

  • Mr = 925.77

  • Triclinic, [P \overline 1]

  • a = 8.2332 (10) Å

  • b = 10.5730 (13) Å

  • c = 12.6673 (15) Å

  • α = 104.774 (1)°

  • β = 108.061 (2)°

  • γ = 91.152 (1)°

  • V = 1007.8 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.13 mm−1

  • T = 298 K

  • 0.41 × 0.30 × 0.27 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.654, Tmax = 0.750

  • 5143 measured reflections

  • 3466 independent reflections

  • 2906 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.105

  • S = 1.07

  • 3466 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O5i 0.93 2.51 3.379 (4) 156
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

A large number of binuclear CuII carboxylato compounds are an attractive target of chemical research due to their magnetism (Kato et al., 1964) and electrochemical behavior (Reinhard et al., 2003). In general, binuclear copper (II) carboxylates consist of four three-atom bridges, uniting two contiguous copper(II) ions and exhibit a paddle-wheel cage structure.

Herein we report synthesis and crystal structure of binuclear copper(II) carboxylato compound with 2-(methoxycarbonyl)benzoic acid acting as a bidentate chelating ligand. Each copper(II) is coordinated by four carboxylate O donor atoms from four ligands, and by N donor atoms from the solvent molecule, The Cu—O distances and related angles are all within expected ranges (Kato et al., 1964) and Cu—N distance is 2.186 (3) Å. A binuclear copper carboxylate unit is formed by four (HL) ligands and two Cu centres with a Cu—Cu separation of 2.6662 (7) Å.

In the crystal structure, weak C—H···O hydrogen bonds (H···O distance of 2.5087 (22) Å) and π-π interactions (centroid–centroid distance of 3.6929 (3) Å) link the molecules into an infinite one-dimensional chain extending along the b axis.

Related literature top

For a review on related binuclear CuII carboxylato compounds with subnormal magnetic moments, see: Kato et al. (1964). For the electrochemical behavior of related compounds, see: Reinhard et al. (2003). For the synthesis of related compounds, see: Liu et al. (2008).

Experimental top

The title complex was prepared by adapting a reported procedure (Liu et al., 2008) by stirring a methanolic solutions of 2-(methoxycarbonyl)benzoic acid (180.0 mg, 1.0 mmol) and NaOH (40.0 mg, 1.0 mmol) for 30 min at room temperature. Then, 10 ml of a methanol solution containing Cu(NO3)2.3H2O (121 mg, 0.5 mmol) was added to the mixture, the blue precipitate obtained was separated by filtration, washed with methanol and dried. The blue powder was dissolved in acetonitrile, and single crystals of the title complex suitable for X-ray analysis were obtained after slow evaporation at room temperature for several weeks.

Refinement top

H atoms attached to C atoms are placed in geometrically idealized position, with C–H=0.93 and 0.96 Å, for CH and CH3 groups, respectively, and with Uiso(H)=1.2Ueq (Csp2) or 1.5Ueq (Csp3).

Structure description top

A large number of binuclear CuII carboxylato compounds are an attractive target of chemical research due to their magnetism (Kato et al., 1964) and electrochemical behavior (Reinhard et al., 2003). In general, binuclear copper (II) carboxylates consist of four three-atom bridges, uniting two contiguous copper(II) ions and exhibit a paddle-wheel cage structure.

Herein we report synthesis and crystal structure of binuclear copper(II) carboxylato compound with 2-(methoxycarbonyl)benzoic acid acting as a bidentate chelating ligand. Each copper(II) is coordinated by four carboxylate O donor atoms from four ligands, and by N donor atoms from the solvent molecule, The Cu—O distances and related angles are all within expected ranges (Kato et al., 1964) and Cu—N distance is 2.186 (3) Å. A binuclear copper carboxylate unit is formed by four (HL) ligands and two Cu centres with a Cu—Cu separation of 2.6662 (7) Å.

In the crystal structure, weak C—H···O hydrogen bonds (H···O distance of 2.5087 (22) Å) and π-π interactions (centroid–centroid distance of 3.6929 (3) Å) link the molecules into an infinite one-dimensional chain extending along the b axis.

For a review on related binuclear CuII carboxylato compounds with subnormal magnetic moments, see: Kato et al. (1964). For the electrochemical behavior of related compounds, see: Reinhard et al. (2003). For the synthesis of related compounds, see: Liu et al. (2008).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. The H atoms attached to C atoms were omitted for clarity. Atoms with the A label are generated by the (1 - x, 1 - y, 1 - z) symmetry operation.
[Figure 2] Fig. 2. View of the crystal packing along the a axis. Hydrogen-bonding and π-π interactions are represented by black dashed lines and pink dashed lines, respectively (all distances in Å). For the sake of clarity, H atoms not involved in hydrogen bonding have been omitted.
Tetrakis[µ-2-(methoxycarbonyl)benzoato- κ2O1:O1']bis[(acetonitrile- κN)copper(II)](CuCu) top
Crystal data top
[Cu2(C9H7O4)4(C2H3N)2]Z = 1
Mr = 925.77F(000) = 474
Triclinic, P1Dx = 1.525 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2332 (10) ÅCell parameters from 2861 reflections
b = 10.5730 (13) Åθ = 2.3–27.6°
c = 12.6673 (15) ŵ = 1.13 mm1
α = 104.774 (1)°T = 298 K
β = 108.061 (2)°Block, blue
γ = 91.152 (1)°0.41 × 0.30 × 0.27 mm
V = 1007.8 (2) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3466 independent reflections
Radiation source: fine-focus sealed tube2906 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
phi and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 99
Tmin = 0.654, Tmax = 0.750k = 1212
5143 measured reflectionsl = 1115
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0576P)2 + 0.2799P]
where P = (Fo2 + 2Fc2)/3
3466 reflections(Δ/σ)max = 0.001
271 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Cu2(C9H7O4)4(C2H3N)2]γ = 91.152 (1)°
Mr = 925.77V = 1007.8 (2) Å3
Triclinic, P1Z = 1
a = 8.2332 (10) ÅMo Kα radiation
b = 10.5730 (13) ŵ = 1.13 mm1
c = 12.6673 (15) ÅT = 298 K
α = 104.774 (1)°0.41 × 0.30 × 0.27 mm
β = 108.061 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3466 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2906 reflections with I > 2σ(I)
Tmin = 0.654, Tmax = 0.750Rint = 0.022
5143 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.07Δρmax = 0.55 e Å3
3466 reflectionsΔρmin = 0.32 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.66718 (4)0.48669 (3)0.52396 (3)0.02864 (14)
N10.9334 (4)0.4460 (3)0.5907 (3)0.0511 (7)
O10.5939 (3)0.33112 (19)0.56430 (17)0.0356 (5)
O20.3117 (3)0.3521 (2)0.52217 (19)0.0407 (5)
O30.6624 (3)0.3323 (2)0.8074 (2)0.0519 (6)
O40.8468 (4)0.1920 (3)0.7599 (3)0.0758 (9)
O50.6016 (3)0.3852 (2)0.36022 (17)0.0370 (5)
O60.3193 (3)0.4033 (2)0.32214 (17)0.0373 (5)
O70.1070 (3)0.1505 (2)0.2080 (2)0.0489 (6)
O80.0269 (3)0.2908 (3)0.1135 (2)0.0591 (7)
C10.4421 (4)0.2953 (3)0.5562 (2)0.0320 (7)
C20.4171 (4)0.1705 (3)0.5883 (3)0.0341 (7)
C30.2681 (4)0.0870 (3)0.5272 (3)0.0481 (9)
H30.18310.11150.47030.058*
C40.2426 (5)0.0317 (3)0.5485 (3)0.0531 (9)
H40.14060.08610.50720.064*
C50.3681 (5)0.0695 (3)0.6311 (3)0.0497 (9)
H50.35190.15020.64510.060*
C60.5178 (5)0.0117 (3)0.6930 (3)0.0475 (8)
H60.60260.01420.74900.057*
C70.5432 (4)0.1324 (3)0.6725 (3)0.0366 (7)
C80.7035 (5)0.2203 (4)0.7487 (3)0.0466 (8)
C90.8041 (6)0.4269 (4)0.8868 (3)0.0730 (13)
H9A0.89140.38210.92810.109*
H9B0.76410.48890.94050.109*
H9C0.85100.47260.84460.109*
C100.4473 (4)0.3629 (3)0.2946 (2)0.0314 (7)
C110.4130 (4)0.2844 (3)0.1715 (2)0.0340 (7)
C120.5451 (4)0.2722 (3)0.1247 (3)0.0458 (8)
H120.65620.30650.17210.055*
C130.5161 (5)0.2104 (4)0.0094 (3)0.0612 (10)
H130.60660.20320.02020.073*
C140.3510 (5)0.1593 (4)0.0613 (3)0.0667 (11)
H140.32990.11820.13920.080*
C150.2173 (5)0.1693 (4)0.0162 (3)0.0549 (10)
H150.10660.13440.06430.066*
C160.2458 (4)0.2306 (3)0.0994 (3)0.0380 (7)
C170.0956 (4)0.2320 (3)0.1417 (3)0.0413 (8)
C180.0319 (5)0.1442 (4)0.2536 (3)0.0629 (11)
H18A0.02470.22460.31190.094*
H18B0.02400.07160.28690.094*
H18C0.13960.13230.19250.094*
C191.0408 (4)0.4208 (4)0.6578 (3)0.0467 (8)
C201.1799 (5)0.3891 (5)0.7485 (4)0.0714 (12)
H20A1.19280.45110.82140.107*
H20B1.28520.39330.73130.107*
H20C1.15310.30190.75240.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0319 (2)0.0312 (2)0.0265 (2)0.00672 (14)0.01079 (15)0.01251 (15)
N10.0412 (16)0.062 (2)0.0581 (19)0.0198 (14)0.0169 (14)0.0284 (16)
O10.0416 (12)0.0331 (11)0.0384 (12)0.0063 (9)0.0153 (9)0.0181 (9)
O20.0420 (12)0.0384 (12)0.0496 (13)0.0073 (10)0.0158 (10)0.0245 (10)
O30.0625 (15)0.0520 (15)0.0372 (13)0.0001 (12)0.0093 (11)0.0144 (11)
O40.0478 (16)0.082 (2)0.093 (2)0.0159 (15)0.0066 (15)0.0341 (18)
O50.0397 (12)0.0452 (13)0.0268 (11)0.0078 (10)0.0105 (9)0.0111 (9)
O60.0379 (12)0.0428 (13)0.0302 (11)0.0077 (10)0.0123 (9)0.0067 (9)
O70.0455 (13)0.0544 (15)0.0515 (14)0.0058 (11)0.0150 (11)0.0236 (12)
O80.0462 (14)0.0785 (19)0.0617 (17)0.0205 (13)0.0176 (12)0.0339 (14)
C10.0418 (18)0.0336 (16)0.0242 (14)0.0047 (14)0.0140 (13)0.0099 (12)
C20.0412 (17)0.0319 (16)0.0350 (16)0.0061 (13)0.0179 (13)0.0123 (13)
C30.050 (2)0.045 (2)0.048 (2)0.0028 (16)0.0097 (16)0.0195 (16)
C40.059 (2)0.042 (2)0.061 (2)0.0027 (17)0.0232 (18)0.0148 (17)
C50.071 (2)0.0314 (18)0.065 (2)0.0131 (17)0.041 (2)0.0215 (17)
C60.061 (2)0.045 (2)0.054 (2)0.0211 (17)0.0298 (18)0.0284 (17)
C70.0462 (18)0.0360 (17)0.0393 (17)0.0120 (14)0.0237 (14)0.0176 (14)
C80.049 (2)0.051 (2)0.048 (2)0.0102 (17)0.0129 (16)0.0299 (17)
C90.084 (3)0.063 (3)0.051 (2)0.009 (2)0.011 (2)0.020 (2)
C100.0415 (17)0.0281 (15)0.0292 (15)0.0069 (13)0.0129 (14)0.0142 (12)
C110.0412 (17)0.0329 (16)0.0287 (15)0.0074 (13)0.0118 (13)0.0089 (12)
C120.0457 (19)0.055 (2)0.0348 (18)0.0047 (16)0.0144 (15)0.0086 (15)
C130.063 (2)0.081 (3)0.042 (2)0.010 (2)0.0296 (19)0.0068 (19)
C140.072 (3)0.086 (3)0.0330 (19)0.011 (2)0.0174 (19)0.0013 (19)
C150.051 (2)0.065 (2)0.0349 (19)0.0045 (18)0.0053 (16)0.0020 (17)
C160.0424 (17)0.0359 (17)0.0335 (17)0.0065 (14)0.0110 (14)0.0076 (13)
C170.0405 (18)0.0426 (19)0.0361 (17)0.0053 (15)0.0070 (14)0.0094 (14)
C180.054 (2)0.081 (3)0.061 (3)0.002 (2)0.0207 (19)0.030 (2)
C190.0412 (19)0.057 (2)0.053 (2)0.0121 (16)0.0240 (17)0.0224 (18)
C200.059 (2)0.107 (4)0.061 (3)0.027 (2)0.018 (2)0.045 (2)
Geometric parameters (Å, º) top
Cu1—O2i1.959 (2)C5—H50.9300
Cu1—O6i1.967 (2)C6—C71.390 (4)
Cu1—O51.973 (2)C6—H60.9300
Cu1—O11.9775 (19)C7—C81.497 (5)
Cu1—N12.186 (3)C9—H9A0.9600
Cu1—Cu1i2.6662 (7)C9—H9B0.9600
N1—C191.111 (4)C9—H9C0.9600
O1—C11.264 (4)C10—C111.503 (4)
O2—C11.253 (4)C11—C121.385 (5)
O2—Cu1i1.9590 (19)C11—C161.405 (4)
O3—C81.338 (4)C12—C131.380 (5)
O3—C91.445 (4)C12—H120.9300
O4—C81.197 (4)C13—C141.382 (6)
O5—C101.263 (3)C13—H130.9300
O6—C101.259 (4)C14—C151.383 (5)
O6—Cu1i1.967 (2)C14—H140.9300
O7—C171.335 (4)C15—C161.385 (4)
O7—C181.439 (4)C15—H150.9300
O8—C171.202 (4)C16—C171.492 (5)
C1—C21.505 (4)C18—H18A0.9600
C2—C31.380 (4)C18—H18B0.9600
C2—C71.388 (4)C18—H18C0.9600
C3—C41.375 (5)C19—C201.464 (5)
C3—H30.9300C20—H20A0.9600
C4—C51.371 (5)C20—H20B0.9600
C4—H40.9300C20—H20C0.9600
C5—C61.373 (5)
O2i—Cu1—O6i88.57 (9)O3—C8—C7109.7 (3)
O2i—Cu1—O589.00 (9)O3—C9—H9A109.5
O6i—Cu1—O5167.59 (8)O3—C9—H9B109.5
O2i—Cu1—O1167.74 (9)H9A—C9—H9B109.5
O6i—Cu1—O189.31 (9)O3—C9—H9C109.5
O5—Cu1—O190.49 (9)H9A—C9—H9C109.5
O2i—Cu1—N1103.49 (10)H9B—C9—H9C109.5
O6i—Cu1—N190.66 (10)O6—C10—O5125.9 (3)
O5—Cu1—N1101.74 (10)O6—C10—C11116.7 (2)
O1—Cu1—N188.60 (10)O5—C10—C11117.3 (3)
O2i—Cu1—Cu1i86.83 (6)C12—C11—C16118.7 (3)
O6i—Cu1—Cu1i83.15 (6)C12—C11—C10120.0 (3)
O5—Cu1—Cu1i84.57 (6)C16—C11—C10121.2 (3)
O1—Cu1—Cu1i80.93 (6)C13—C12—C11121.7 (3)
N1—Cu1—Cu1i167.87 (8)C13—C12—H12119.1
C19—N1—Cu1151.4 (3)C11—C12—H12119.1
C1—O1—Cu1125.83 (19)C12—C13—C14119.3 (4)
C1—O2—Cu1i120.03 (19)C12—C13—H13120.3
C8—O3—C9116.4 (3)C14—C13—H13120.3
C10—O5—Cu1122.1 (2)C13—C14—C15120.0 (3)
C10—O6—Cu1i124.20 (19)C13—C14—H14120.0
C17—O7—C18115.9 (3)C15—C14—H14120.0
O2—C1—O1126.4 (3)C14—C15—C16120.9 (3)
O2—C1—C2117.5 (3)C14—C15—H15119.5
O1—C1—C2116.1 (3)C16—C15—H15119.5
C3—C2—C7118.7 (3)C15—C16—C11119.4 (3)
C3—C2—C1118.9 (3)C15—C16—C17117.3 (3)
C7—C2—C1122.3 (3)C11—C16—C17123.3 (3)
C4—C3—C2121.3 (3)O8—C17—O7123.6 (3)
C4—C3—H3119.3O8—C17—C16124.9 (3)
C2—C3—H3119.3O7—C17—C16111.3 (3)
C5—C4—C3119.7 (3)O7—C18—H18A109.5
C5—C4—H4120.1O7—C18—H18B109.5
C3—C4—H4120.1H18A—C18—H18B109.5
C4—C5—C6120.1 (3)O7—C18—H18C109.5
C4—C5—H5120.0H18A—C18—H18C109.5
C6—C5—H5120.0H18B—C18—H18C109.5
C5—C6—C7120.3 (3)N1—C19—C20178.4 (4)
C5—C6—H6119.8C19—C20—H20A109.5
C7—C6—H6119.8C19—C20—H20B109.5
C2—C7—C6119.8 (3)H20A—C20—H20B109.5
C2—C7—C8122.5 (3)C19—C20—H20C109.5
C6—C7—C8117.6 (3)H20A—C20—H20C109.5
O4—C8—O3125.1 (4)H20B—C20—H20C109.5
O4—C8—C7125.1 (4)
O2i—Cu1—N1—C19131.8 (6)C5—C6—C7—C8175.7 (3)
O6i—Cu1—N1—C1943.1 (7)C9—O3—C8—O42.5 (5)
O5—Cu1—N1—C19136.4 (7)C9—O3—C8—C7178.8 (3)
O1—Cu1—N1—C1946.2 (7)C2—C7—C8—O4125.1 (4)
Cu1i—Cu1—N1—C1915.9 (10)C6—C7—C8—O458.7 (5)
O2i—Cu1—O1—C14.0 (5)C2—C7—C8—O358.5 (4)
O6i—Cu1—O1—C184.0 (2)C6—C7—C8—O3117.7 (3)
O5—Cu1—O1—C183.6 (2)Cu1i—O6—C10—O50.6 (4)
N1—Cu1—O1—C1174.7 (2)Cu1i—O6—C10—C11177.57 (17)
Cu1i—Cu1—O1—C10.8 (2)Cu1—O5—C10—O61.9 (4)
O2i—Cu1—O5—C1089.3 (2)Cu1—O5—C10—C11179.96 (17)
O6i—Cu1—O5—C1010.6 (5)O6—C10—C11—C12159.6 (3)
O1—Cu1—O5—C1078.5 (2)O5—C10—C11—C1218.8 (4)
N1—Cu1—O5—C10167.1 (2)O6—C10—C11—C1615.6 (4)
Cu1i—Cu1—O5—C102.4 (2)O5—C10—C11—C16166.0 (3)
Cu1i—O2—C1—O10.4 (4)C16—C11—C12—C130.8 (5)
Cu1i—O2—C1—C2178.87 (18)C10—C11—C12—C13174.5 (3)
Cu1—O1—C1—O20.5 (4)C11—C12—C13—C140.0 (6)
Cu1—O1—C1—C2177.95 (18)C12—C13—C14—C150.6 (7)
O2—C1—C2—C334.7 (4)C13—C14—C15—C160.3 (6)
O1—C1—C2—C3143.9 (3)C14—C15—C16—C110.6 (5)
O2—C1—C2—C7149.3 (3)C14—C15—C16—C17177.5 (4)
O1—C1—C2—C732.1 (4)C12—C11—C16—C151.1 (5)
C7—C2—C3—C40.3 (5)C10—C11—C16—C15174.1 (3)
C1—C2—C3—C4176.4 (3)C12—C11—C16—C17176.8 (3)
C2—C3—C4—C50.9 (6)C10—C11—C16—C177.9 (4)
C3—C4—C5—C60.8 (6)C18—O7—C17—O85.2 (5)
C4—C5—C6—C70.1 (5)C18—O7—C17—C16180.0 (3)
C3—C2—C7—C60.4 (5)C15—C16—C17—O866.9 (5)
C1—C2—C7—C6175.5 (3)C11—C16—C17—O8115.1 (4)
C3—C2—C7—C8175.7 (3)C15—C16—C17—O7107.8 (3)
C1—C2—C7—C88.4 (5)C11—C16—C17—O770.2 (4)
C5—C6—C7—C20.5 (5)Cu1—N1—C19—C2023 (16)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O5ii0.932.513.379 (4)156
Symmetry code: (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(C9H7O4)4(C2H3N)2]
Mr925.77
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.2332 (10), 10.5730 (13), 12.6673 (15)
α, β, γ (°)104.774 (1), 108.061 (2), 91.152 (1)
V3)1007.8 (2)
Z1
Radiation typeMo Kα
µ (mm1)1.13
Crystal size (mm)0.41 × 0.30 × 0.27
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.654, 0.750
No. of measured, independent and
observed [I > 2σ(I)] reflections
5143, 3466, 2906
Rint0.022
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.105, 1.07
No. of reflections3466
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.32

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O5i0.932.513.3793 (40)156
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

The authors thank the National Natural Science Foundation of the People's Republic of China (grant No. 21201024), the Natural Science Foundation of Shanxi Province (grant No. 2012021009–1), and the Scientific Research Foundation for PhDs of Changzhi University.

References

First citationBruker (1999). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKato, M., Jonassen, H. B. & Fanning, J. C. (1964). Chem. Rev. 64, 99–128.  CrossRef CAS Web of Science Google Scholar
First citationLiu, T.-H., Huang, L., Chen, F.-J., Xi, P.-X., Xu, Z.-H., Xu, M. & Zeng, Z.-Z. (2008). Anal. Sci. 24, x303–x304.  Google Scholar
First citationReinhard, P., Stefan, L., Carsten, T., Michael, A. O. & Ekkehard, S. (2003). Inorg. Chem. 42, 8230–8240.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds