organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2-Chloro­benzo­yl)-3-(3-meth­­oxy­phen­yl)thio­urea

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bDepartment of Chemistry, Faculty of Engineering, Gifu University Yanagido, Gifu 501-1193, Japan
*Correspondence e-mail: aminbadshah@yahoo.com, mkhawarrauf@yahoo.co.uk

(Received 19 November 2012; accepted 28 November 2012; online 5 December 2012)

The title compound, C15H13ClN2O2S, exists in the solid state in its thione form with typical thio­urea C—S and C—O bonds lengths as well as shortened C—N bonds. An intra­molecular N—H⋯O hydrogen bond stabilizes the mol­ecular conformation. In the crystal, N—H⋯S hydrogen bonds link the mol­ecules into centrosymmetric dimers.

Related literature

For previous work on N,N′-disubstituted thio­ureas, see: Rauf et al. (2012[Rauf, M. K., Ebihara, M., Badshah, A. & Imtiaz-ud-Din (2012). Acta Cryst. E68, o120.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13ClN2O2S

  • Mr = 320.78

  • Triclinic, [P \overline 1]

  • a = 6.276 (3) Å

  • b = 10.202 (5) Å

  • c = 11.411 (5) Å

  • α = 94.541 (7)°

  • β = 93.305 (6)°

  • γ = 96.918 (7)°

  • V = 721.3 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 123 K

  • 0.45 × 0.36 × 0.20 mm

Data collection
  • Rigaku/MSC Mercury CCD diffractometer

  • 5698 measured reflections

  • 3222 independent reflections

  • 3071 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.088

  • S = 1.09

  • 3222 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1 0.88 1.95 2.6500 (17) 135
N1—H1⋯S1i 0.88 2.64 3.4080 (17) 146
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001[Molecular Structure Corporation & Rigaku (2001). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: Yadokari-XG (Wakita, 2001[Wakita, K. (2001). Yadokari-XG. http://www.hat.hi-ho.ne.jp/k-wakita/yadokari.]; Kabuto et al., 2009[Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Crystallogr. Soc. Jpn, 51, 218-224.]).

Supporting information


Comment top

The background to this study has been set out in our previous work on the structural and coordination chemistry of N,N'-disubstituted thioureas (Rauf et al., 2012). Herein, as a continuation of these studies, the structure of the title compound (I) is described. A depiction of the molecule is given in Fig. 1. Bond lengths and angles are comparable to those for other N,N'-disubstituted thioureas reported in the Cambridge Structural Database (Allen, 2002). The molecule exists in the thione form with typical thiourea C—S and C—O bonds as well as shortened C—N bond lengths. The molecule features an intramolecular N—H···O hydrogen bond and in the solid molecules associate via intermolecular N—H···S hydrogen bonds which link the molecules into centrosymmetric dimers (Table 1 and Fig. 2).

Related literature top

For previous work on N,N'-disubstituted thioureas, see: Rauf et al. (2012). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

Freshly prepared 2-chlorobenzoyl isothiocyanate (1.98 g, 10 mmol) was stirred in acetone (50 mL) for 30 minutes. Distilled 3-methoxyaniline (1.23 g, 10 mmol)was then added and the resulting mixture was stirred for 1 h. The reaction mixture was then poured into acidified (pH 4) water and stirred. The solid product was separated and washed with deionized water and purified by recrystallization from methanol/dichloromethane (1:10 v/v) to give fine crystals of (I) with an overall yield of 93% (2.98 g). M.P; 109–109.5°C. Anal. calcd. for C15H13ClN2O2S; C, 56.16 H, 4.08 N, 8.73 S, 10.00 Found: C, 56.12 H, 4.07 N, 8.73 S, 9.98.

Refinement top

Hydrogen atoms were included in calculated positions and refined as riding on their parent atom with N—H = 0.88 Å and Uiso(H) = 1.2U(Neq), Caromatic—H = 0.95 Å and Uiso(H) = 1.2U(Ceq) or C—H = 0.98 Å and Uiso(H) = 1.5U(Ceq), for methyl C atoms.

Structure description top

The background to this study has been set out in our previous work on the structural and coordination chemistry of N,N'-disubstituted thioureas (Rauf et al., 2012). Herein, as a continuation of these studies, the structure of the title compound (I) is described. A depiction of the molecule is given in Fig. 1. Bond lengths and angles are comparable to those for other N,N'-disubstituted thioureas reported in the Cambridge Structural Database (Allen, 2002). The molecule exists in the thione form with typical thiourea C—S and C—O bonds as well as shortened C—N bond lengths. The molecule features an intramolecular N—H···O hydrogen bond and in the solid molecules associate via intermolecular N—H···S hydrogen bonds which link the molecules into centrosymmetric dimers (Table 1 and Fig. 2).

For previous work on N,N'-disubstituted thioureas, see: Rauf et al. (2012). For a description of the Cambridge Structural Database, see: Allen (2002).

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 2001); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: Yadokari-XG (Wakita, 2001; Kabuto et al., 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. Packing diagram of (I) with view onto the ab plane. Hydrogen bonds shown as dashed lines.
1-(2-Chlorobenzoyl)-3-(3-methoxyphenyl)thiourea top
Crystal data top
C15H13ClN2O2SZ = 2
Mr = 320.78F(000) = 332
Triclinic, P1Dx = 1.477 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71070 Å
a = 6.276 (3) ÅCell parameters from 2546 reflections
b = 10.202 (5) Åθ = 3.3–27.5°
c = 11.411 (5) ŵ = 0.41 mm1
α = 94.541 (7)°T = 123 K
β = 93.305 (6)°Block, colorless
γ = 96.918 (7)°0.45 × 0.36 × 0.20 mm
V = 721.3 (6) Å3
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
3071 reflections with I > 2σ(I)
Radiation source: Rotating AnodeRint = 0.052
Graphite Monochromator monochromatorθmax = 27.5°, θmin = 3.3°
Detector resolution: 14.62 pixels mm-1h = 85
ω scansk = 1313
5698 measured reflectionsl = 1414
3222 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0309P)2 + 0.5054P]
where P = (Fo2 + 2Fc2)/3
3222 reflections(Δ/σ)max = 0.001
191 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C15H13ClN2O2Sγ = 96.918 (7)°
Mr = 320.78V = 721.3 (6) Å3
Triclinic, P1Z = 2
a = 6.276 (3) ÅMo Kα radiation
b = 10.202 (5) ŵ = 0.41 mm1
c = 11.411 (5) ÅT = 123 K
α = 94.541 (7)°0.45 × 0.36 × 0.20 mm
β = 93.305 (6)°
Data collection top
Rigaku/MSC Mercury CCD
diffractometer
3071 reflections with I > 2σ(I)
5698 measured reflectionsRint = 0.052
3222 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.09Δρmax = 0.33 e Å3
3222 reflectionsΔρmin = 0.34 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6542 (2)0.57142 (13)0.79707 (12)0.0144 (3)
O10.58303 (17)0.56062 (10)0.89370 (9)0.0186 (2)
N10.56572 (19)0.49567 (12)0.69582 (11)0.0155 (2)
H10.63640.50520.63200.019*
C20.3774 (2)0.40595 (13)0.68314 (13)0.0147 (3)
S10.28505 (7)0.34880 (4)0.54559 (3)0.02392 (12)
N20.28727 (18)0.37856 (12)0.78283 (10)0.0148 (2)
H20.36600.40850.84790.018*
C30.8470 (2)0.66726 (14)0.77733 (12)0.0149 (3)
C40.8823 (2)0.79519 (14)0.83489 (13)0.0168 (3)
C51.0642 (3)0.88129 (15)0.81696 (14)0.0217 (3)
H51.08630.96780.85660.026*
C61.2135 (2)0.84109 (16)0.74122 (15)0.0236 (3)
H61.33790.90010.72920.028*
C71.1816 (2)0.71488 (16)0.68298 (14)0.0219 (3)
H71.28370.68750.63090.026*
C80.9996 (2)0.62846 (15)0.70116 (13)0.0179 (3)
H80.97870.54200.66140.021*
Cl10.69817 (6)0.85411 (4)0.92737 (3)0.02243 (11)
C90.0829 (2)0.30814 (13)0.79995 (12)0.0141 (3)
C100.0238 (2)0.20764 (14)0.72013 (13)0.0166 (3)
H100.03990.18010.65030.020*
C110.2262 (2)0.14852 (14)0.74534 (13)0.0164 (3)
C120.3209 (2)0.18776 (14)0.84774 (13)0.0181 (3)
H120.46050.14820.86270.022*
C130.2092 (2)0.28502 (15)0.92748 (13)0.0186 (3)
H130.27120.31070.99840.022*
C140.0068 (2)0.34540 (14)0.90434 (13)0.0169 (3)
H140.06970.41160.95950.020*
O20.34498 (17)0.04884 (11)0.67328 (10)0.0236 (3)
C150.2488 (3)0.00094 (16)0.57046 (14)0.0243 (3)
H15C0.21940.07320.51970.037*
H15A0.34730.07100.52740.037*
H15B0.11380.03220.59370.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0126 (6)0.0132 (6)0.0166 (7)0.0001 (5)0.0020 (5)0.0008 (5)
O10.0193 (5)0.0203 (5)0.0144 (5)0.0045 (4)0.0003 (4)0.0006 (4)
N10.0148 (6)0.0161 (6)0.0139 (6)0.0037 (4)0.0018 (4)0.0010 (4)
C20.0147 (6)0.0110 (6)0.0176 (7)0.0007 (5)0.0001 (5)0.0003 (5)
S10.0298 (2)0.0236 (2)0.01342 (19)0.01405 (15)0.00077 (14)0.00207 (14)
N20.0127 (5)0.0153 (6)0.0147 (6)0.0028 (4)0.0013 (4)0.0005 (4)
C30.0137 (6)0.0156 (6)0.0141 (6)0.0021 (5)0.0029 (5)0.0029 (5)
C40.0175 (7)0.0171 (7)0.0147 (6)0.0009 (5)0.0030 (5)0.0017 (5)
C50.0230 (7)0.0183 (7)0.0207 (7)0.0069 (6)0.0058 (6)0.0030 (6)
C60.0161 (7)0.0268 (8)0.0260 (8)0.0070 (6)0.0048 (6)0.0099 (6)
C70.0136 (7)0.0283 (8)0.0239 (8)0.0003 (6)0.0003 (5)0.0071 (6)
C80.0148 (6)0.0184 (7)0.0197 (7)0.0001 (5)0.0022 (5)0.0026 (5)
Cl10.0263 (2)0.01867 (18)0.02099 (19)0.00013 (14)0.00284 (14)0.00308 (13)
C90.0124 (6)0.0128 (6)0.0164 (7)0.0008 (5)0.0007 (5)0.0031 (5)
C100.0163 (7)0.0162 (7)0.0163 (7)0.0011 (5)0.0027 (5)0.0015 (5)
C110.0152 (6)0.0144 (6)0.0183 (7)0.0021 (5)0.0003 (5)0.0002 (5)
C120.0144 (6)0.0178 (7)0.0220 (7)0.0003 (5)0.0042 (5)0.0033 (5)
C130.0204 (7)0.0188 (7)0.0168 (7)0.0020 (5)0.0047 (5)0.0009 (5)
C140.0186 (7)0.0150 (6)0.0159 (7)0.0002 (5)0.0004 (5)0.0005 (5)
O20.0190 (5)0.0236 (6)0.0239 (6)0.0095 (4)0.0047 (4)0.0077 (4)
C150.0230 (7)0.0252 (8)0.0220 (8)0.0020 (6)0.0012 (6)0.0074 (6)
Geometric parameters (Å, º) top
C1—O11.2213 (18)C7—H70.9500
C1—N11.3862 (18)C8—H80.9500
C1—C31.5007 (19)C9—C141.392 (2)
N1—C21.3981 (18)C9—C101.3948 (19)
N1—H10.8800C10—C111.394 (2)
C2—N21.3334 (19)C10—H100.9500
C2—S11.6758 (16)C11—O21.3713 (17)
N2—C91.4243 (18)C11—C121.394 (2)
N2—H20.8800C12—C131.385 (2)
C3—C41.401 (2)C12—H120.9500
C3—C81.401 (2)C13—C141.393 (2)
C4—C51.389 (2)C13—H130.9500
C4—Cl11.7370 (16)C14—H140.9500
C5—C61.387 (2)O2—C151.4288 (19)
C5—H50.9500C15—H15C0.9800
C6—C71.388 (2)C15—H15A0.9800
C6—H60.9500C15—H15B0.9800
C7—C81.392 (2)
O1—C1—N1123.20 (13)C7—C8—H8119.6
O1—C1—C3122.98 (12)C3—C8—H8119.6
N1—C1—C3113.82 (12)C14—C9—C10120.87 (13)
C1—N1—C2127.64 (12)C14—C9—N2115.32 (12)
C1—N1—H1116.2C10—C9—N2123.81 (13)
C2—N1—H1116.2C11—C10—C9118.42 (13)
N2—C2—N1115.74 (12)C11—C10—H10120.8
N2—C2—S1127.15 (11)C9—C10—H10120.8
N1—C2—S1117.08 (11)O2—C11—C12115.39 (13)
C2—N2—C9129.80 (12)O2—C11—C10123.32 (13)
C2—N2—H2115.1C12—C11—C10121.30 (13)
C9—N2—H2115.1C13—C12—C11119.29 (13)
C4—C3—C8118.29 (13)C13—C12—H12120.4
C4—C3—C1121.86 (13)C11—C12—H12120.4
C8—C3—C1119.84 (13)C12—C13—C14120.44 (13)
C5—C4—C3120.81 (14)C12—C13—H13119.8
C5—C4—Cl1117.49 (12)C14—C13—H13119.8
C3—C4—Cl1121.67 (11)C9—C14—C13119.61 (13)
C6—C5—C4120.05 (14)C9—C14—H14120.2
C6—C5—H5120.0C13—C14—H14120.2
C4—C5—H5120.0C11—O2—C15117.13 (12)
C5—C6—C7120.15 (14)O2—C15—H15C109.5
C5—C6—H6119.9O2—C15—H15A109.5
C7—C6—H6119.9H15C—C15—H15A109.5
C6—C7—C8119.81 (15)O2—C15—H15B109.5
C6—C7—H7120.1H15C—C15—H15B109.5
C8—C7—H7120.1H15A—C15—H15B109.5
C7—C8—C3120.88 (14)
O1—C1—N1—C26.0 (2)C6—C7—C8—C30.3 (2)
C3—C1—N1—C2174.52 (13)C4—C3—C8—C70.1 (2)
C1—N1—C2—N28.8 (2)C1—C3—C8—C7178.91 (13)
C1—N1—C2—S1169.20 (12)C2—N2—C9—C14151.59 (15)
N1—C2—N2—C9169.91 (13)C2—N2—C9—C1028.9 (2)
S1—C2—N2—C97.9 (2)C14—C9—C10—C112.3 (2)
O1—C1—C3—C439.5 (2)N2—C9—C10—C11178.27 (13)
N1—C1—C3—C4141.05 (14)C9—C10—C11—O2179.88 (14)
O1—C1—C3—C8139.31 (15)C9—C10—C11—C120.2 (2)
N1—C1—C3—C840.16 (18)O2—C11—C12—C13177.99 (13)
C8—C3—C4—C50.1 (2)C10—C11—C12—C131.7 (2)
C1—C3—C4—C5178.72 (13)C11—C12—C13—C141.6 (2)
C8—C3—C4—Cl1177.95 (11)C10—C9—C14—C132.4 (2)
C1—C3—C4—Cl13.24 (19)N2—C9—C14—C13178.10 (13)
C3—C4—C5—C60.1 (2)C12—C13—C14—C90.4 (2)
Cl1—C4—C5—C6178.03 (12)C12—C11—O2—C15176.82 (14)
C4—C5—C6—C70.1 (2)C10—C11—O2—C152.9 (2)
C5—C6—C7—C80.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.881.952.6500 (17)135
N1—H1···S1i0.882.643.4080 (17)146
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H13ClN2O2S
Mr320.78
Crystal system, space groupTriclinic, P1
Temperature (K)123
a, b, c (Å)6.276 (3), 10.202 (5), 11.411 (5)
α, β, γ (°)94.541 (7), 93.305 (6), 96.918 (7)
V3)721.3 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.45 × 0.36 × 0.20
Data collection
DiffractometerRigaku/MSC Mercury CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5698, 3222, 3071
Rint0.052
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.088, 1.09
No. of reflections3222
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.34

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2001), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976), Yadokari-XG (Wakita, 2001; Kabuto et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O10.881.952.6500 (17)135
N1—H1···S1i0.882.643.4080 (17)146
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

MKR is grateful to The Quaid-i-Azam University, Islama­bad for financial support for a postdoctoral fellowship.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationKabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Crystallogr. Soc. Jpn, 51, 218–224.  CrossRef Google Scholar
First citationMolecular Structure Corporation & Rigaku (2001). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRauf, M. K., Ebihara, M., Badshah, A. & Imtiaz-ud-Din (2012). Acta Cryst. E68, o120.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWakita, K. (2001). Yadokari-XG. http://www.hat.hi-ho.ne.jp/k-wakita/yadokariGoogle Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds