organic compounds
6,12-Bis(hexyloxy)-5H,11H-indolo[3,2-b]carbazole
aUniversity Mainz, Duesbergweg 10-14, 55099 Mainz, Germany, and bLaboratoire de Chimie Moléculaire et Thio-organique, UMR 6507, ENSICAEN, 6 Boulevard Maréchal Juin, 14050 Caen, France
*Correspondence e-mail: detert@uni-mainz.de
The title compound, C30H36N2O2, was prepared in a twofold Cadogan The molecule is located about a center of inversion. The indolocarbazole skeleton is essentially planar [maximum deviation = 0.028 (2) Å], the C—N bond lengths are nearly identical and the C—C bond lengths of the pyrrole unit are significantly longer than those of the benzene subunits.
Related literature
For the synthesis and structure of the starting material, see: Wrobel et al. (2012). For the Cadogan reaction, see: Cadogan (1962, 1969). For other approaches to Indolocarbazoles, see: Knölker & Reddy (2002); Katritzky et al. (1995). For electronic properties of indolocarbazoles, see: Hu et al. (1999); Wakim et al. (2004); Nemkovich et al. (2009). For heteroanalogous carbazoles, see: Dassonneville et al. (2011); Nissen & Detert (2011); Letessier & Detert (2012); Letessier et al. (2012). For conjugated oligomers see: Detert et al. (2010).
Experimental
Crystal data
|
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536812050611/nc2301sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812050611/nc2301Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536812050611/nc2301Isup3.cml
6,12-Dihexyloxyindolo[3,2-b]carbazole was prepared from 1,4-dihexyloxy-2,5-bis(2-nitrophenyl)benzene (Wrobel et al. 2012) via Cadogan
In a microwave reactor tube 400 mg of the dinitro-compound were mixed with triethyl phosphite (4 ml) and irradiated (300 W, 483 K) for 15 min. The cooled mixture was dissolved in ethyl acetate (50 ml), and the same amount of hydrochloric acid (6 N) was added and the mixture heated for 3 h to reflux. After dilution with water, the product was extracted with dichloromethane (3x), the pooled organic solutions were washed with brine, dried (MgSO4), and concentrated. Purification by (SiO2, petroleum ether/ethyl acetate = 9/1 (v/v), Rf = 0.40). Yield: 213 mg (61%) of an off-white solid with m.p. = 422–424 K. Single crystals were obtained by slow evaporation of a solution of the title compound in chloroform/ethanol (5/1).Hydrogen atoms attached to carbons were placed at calculated positions (methyl H atoms allowed to rotate but not to tip) with C—H = 0.93 Å for aromatic, 0.97 Å for methylene and 0.96 Å for methyl H atoms and were refined in the riding-model approximation with a common isotropic displacement parameters for those H atoms connected to the same C atom. The N—H atom was located in the difference Fourier map and were refined using a riding model additional allowing drifting along the N–H vector.
As part of a larger project on the synthesis of carbazoles (Letessier & Detert, 2012) and carbolines (Dassonneville et al. 2011; Nissen & Detert, 2011; Letessier et al. 2012); indolo-annulated carbazoles were prepared for optoelectronic applications. The title compounds adopts a centrosymmetric geometry. The pentacyclic indolocarbazole framework is essentially planar with maximum deviations of 0.028 (2) Å from the mean plane. The dihedral angle between the mean plane of the aromatic system and and the adjacend O-alkyl unit (C3—C1—O1—C12) is -101.5 (2)° and the all-trans configured hexyl chain lies in a plane parallel to that of the aromatic system. Whereas the O11—C12—C13—C14 unit adopts a
conformation (torsion angle = -71.5 (3)°) the tail of the hexyl chain is nearly planar (dihedral angles -171.3 (2)°, 175.0 (2)°, 176.7 (2)°). The C—N bonds in the pyrrole units are nearly identical. The C—C bonds in the pyrrole subunit (C2—C3 = 1.418 (3) Å, C3—C4 1.448 (3) Å, C4—C9 1.406 (3) Å) are significantly longer than those of the benzene units (C4—C5 = 1.402 (3) Å, C5—C6 = 1.383 (3) Å, C6—C7 = 1.386 (3) Å, C7—C8 = 1.385 (3) Å, C8—C9 = 1.392 (3) Å, C1—C2 = 1.388 (3) Å, C1—C3 = 1.395 (3) Å). The hexyloxy chains are interdigitated.For the synthesis and structure of the starting material, see: Wrobel et al. (2012). For the Cadogan reaction, see: Cadogan (1962, 1969). For other approaches to Indolocarbazoles, see: Knölker & Reddy (2002); Katritzky et al. (1995). For electronic properties of indolocarbazoles, see: Hu et al. (1999); Wakim et al. (2004); Nemkovich et al. (2009). For heteroanalogous carbazoles, see: Dassonneville et al. (2011); Nissen & Detert (2011); Letessier & Detert (2012); Letessier et al. (2012). For conjugated oligomers see: Detert et al. (2010).
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell
CAD-4 Software (Enraf–Nonius, 1989); data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 50% probability level. Symmetry codes: i = 1 - x,1 - y,1 - z. |
C30H36N2O2 | F(000) = 492 |
Mr = 456.61 | Dx = 1.215 Mg m−3 |
Monoclinic, P21/c | Melting point: 423 K |
Hall symbol: -P 2ybc | Cu Kα radiation, λ = 1.54178 Å |
a = 13.7136 (4) Å | Cell parameters from 25 reflections |
b = 5.5026 (4) Å | θ = 35–52° |
c = 16.5563 (5) Å | µ = 0.59 mm−1 |
β = 92.665 (3)° | T = 298 K |
V = 1247.99 (10) Å3 | Needle, colourless |
Z = 2 | 0.48 × 0.26 × 0.18 mm |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.052 |
Radiation source: rotating anode | θmax = 70.0°, θmin = 3.2° |
Graphite monochromator | h = 0→16 |
ω/2θ scans | k = −6→0 |
2466 measured reflections | l = −20→20 |
2363 independent reflections | 3 standard reflections every 60 min |
1993 reflections with I > 2σ(I) | intensity decay: 5% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.057 | Only H-atom displacement parameters refined |
wR(F2) = 0.181 | w = 1/[σ2(Fo2) + (0.0992P)2 + 0.4797P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
2363 reflections | Δρmax = 0.26 e Å−3 |
168 parameters | Δρmin = −0.29 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0083 (12) |
C30H36N2O2 | V = 1247.99 (10) Å3 |
Mr = 456.61 | Z = 2 |
Monoclinic, P21/c | Cu Kα radiation |
a = 13.7136 (4) Å | µ = 0.59 mm−1 |
b = 5.5026 (4) Å | T = 298 K |
c = 16.5563 (5) Å | 0.48 × 0.26 × 0.18 mm |
β = 92.665 (3)° |
Enraf–Nonius CAD-4 diffractometer | Rint = 0.052 |
2466 measured reflections | 3 standard reflections every 60 min |
2363 independent reflections | intensity decay: 5% |
1993 reflections with I > 2σ(I) |
R[F2 > 2σ(F2)] = 0.057 | 0 restraints |
wR(F2) = 0.181 | Only H-atom displacement parameters refined |
S = 1.06 | Δρmax = 0.26 e Å−3 |
2363 reflections | Δρmin = −0.29 e Å−3 |
168 parameters |
Experimental. H-NMR (400 MHz, CDCl3): 10.94 (s, 2 H, NH), 8.20 (d, J = 7.7 Hz, 2 H), 7.49 (d, J = 8.1 Hz, 2 H), 7.38 (dt, J = 7.6 Hz, JX= 1.2 Hz, 2 H), 7.12 (dt, J = 7.4 Hz, JX= 0.9 Hz, 2 H), 4.25 (t, J = 7.0 Hz, 4 H, OCH2), 1.98 (m, 4 H, β-CH2), 1.56 - 1.31 (m, 12 H), 0.87 (m, 6 H, CH3). C-NMR (75 MHz, CDCl3): 140.9 (s), 133.7 (s), 127.7 (s), 125.4 (d), 122.0 (d), 121.7 (s), 118.1 (d), 116.4 (s), 110.8 (d), 72.7 (t), 31.3 (t), 30.0 (t), 25.3 (t), 22.2 (t), 14.0 (q). IR (ATR) 3435, 3292, 2954, 2924, 2909, 2863, 2357, 1916, 1886, 1776, 1615, 1539, 1455, 1403, 1383, 1334, 1298, m1251, 1215, 1149, 1123, 1074, 1049, 1028, 1006, 983, 916 cm-1. MS (EI): 456 (59%) [M]+; 187 (100%) [M-2 C6H12]+ UV-Vis (dichloromethane): λ = 377 nm (log ε = 3.82); 394 nm (log ε = 3.84); Fluorescence: 407 nm (dichloromethane). Combustion analysis: calc. for C30H36N2O2: C: 78.91%, H: 7.95%, N: 6.13%. Found: C: 78.56%, H: 8.04%, N: 6.09%. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.42601 (13) | 0.3175 (3) | 0.48922 (12) | 0.0434 (5) | |
C2 | 0.49063 (13) | 0.3189 (3) | 0.55632 (12) | 0.0433 (5) | |
C3 | 0.43593 (12) | 0.5015 (3) | 0.43222 (12) | 0.0430 (5) | |
C4 | 0.38310 (13) | 0.5621 (4) | 0.35713 (12) | 0.0442 (5) | |
C5 | 0.30437 (14) | 0.4564 (4) | 0.31300 (13) | 0.0501 (5) | |
H5 | 0.2752 | 0.3154 | 0.3314 | 0.050 (6)* | |
C6 | 0.27074 (16) | 0.5650 (5) | 0.24173 (14) | 0.0587 (6) | |
H6 | 0.2182 | 0.4969 | 0.2122 | 0.068 (7)* | |
C7 | 0.31424 (17) | 0.7740 (5) | 0.21368 (14) | 0.0607 (6) | |
H7 | 0.2902 | 0.8433 | 0.1655 | 0.078 (8)* | |
C8 | 0.39253 (16) | 0.8825 (4) | 0.25545 (13) | 0.0545 (6) | |
H8 | 0.4216 | 1.0223 | 0.2361 | 0.060 (7)* | |
C9 | 0.42607 (13) | 0.7741 (4) | 0.32748 (12) | 0.0449 (5) | |
N10 | 0.50337 (11) | 0.8415 (3) | 0.37876 (10) | 0.0463 (5) | |
H10 | 0.5328 (10) | 0.985 (5) | 0.37714 (11) | 0.067 (7)* | |
O11 | 0.35653 (9) | 0.1369 (2) | 0.47790 (8) | 0.0478 (4) | |
C12 | 0.27228 (15) | 0.1745 (4) | 0.52366 (14) | 0.0552 (6) | |
H12A | 0.2391 | 0.3220 | 0.5058 | 0.071 (5)* | |
H12B | 0.2914 | 0.1920 | 0.5805 | 0.071 (5)* | |
C13 | 0.20475 (16) | −0.0403 (5) | 0.51188 (14) | 0.0613 (6) | |
H13A | 0.2423 | −0.1877 | 0.5216 | 0.086 (6)* | |
H13B | 0.1559 | −0.0326 | 0.5523 | 0.086 (6)* | |
C14 | 0.15331 (16) | −0.0584 (4) | 0.42985 (14) | 0.0577 (6) | |
H14A | 0.2009 | −0.0930 | 0.3899 | 0.071 (5)* | |
H14B | 0.1233 | 0.0968 | 0.4163 | 0.071 (5)* | |
C15 | 0.07519 (17) | −0.2551 (5) | 0.42592 (15) | 0.0627 (6) | |
H15A | 0.1065 | −0.4114 | 0.4352 | 0.088 (7)* | |
H15B | 0.0315 | −0.2283 | 0.4694 | 0.088 (7)* | |
C16 | 0.01583 (19) | −0.2668 (6) | 0.34785 (17) | 0.0729 (8) | |
H16A | 0.0588 | −0.3037 | 0.3046 | 0.131 (10)* | |
H16B | −0.0128 | −0.1083 | 0.3369 | 0.131 (10)* | |
C17 | −0.0645 (2) | −0.4534 (6) | 0.34732 (18) | 0.0794 (8) | |
H17A | −0.1012 | −0.4470 | 0.2965 | 0.114 (7)* | |
H17B | −0.1070 | −0.4198 | 0.3905 | 0.114 (7)* | |
H17C | −0.0366 | −0.6123 | 0.3546 | 0.114 (7)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0352 (9) | 0.0377 (10) | 0.0578 (11) | −0.0060 (7) | 0.0076 (8) | −0.0050 (8) |
C2 | 0.0374 (9) | 0.0390 (10) | 0.0539 (11) | −0.0025 (8) | 0.0068 (8) | −0.0003 (8) |
C3 | 0.0357 (9) | 0.0399 (10) | 0.0537 (11) | −0.0016 (8) | 0.0051 (8) | −0.0040 (8) |
C4 | 0.0387 (9) | 0.0418 (10) | 0.0526 (11) | 0.0013 (7) | 0.0058 (8) | −0.0055 (8) |
C5 | 0.0436 (10) | 0.0495 (11) | 0.0571 (12) | −0.0043 (9) | 0.0004 (9) | −0.0048 (9) |
C6 | 0.0502 (12) | 0.0659 (14) | 0.0593 (13) | −0.0025 (10) | −0.0070 (10) | −0.0077 (11) |
C7 | 0.0572 (12) | 0.0666 (15) | 0.0577 (13) | 0.0078 (11) | −0.0028 (10) | 0.0035 (11) |
C8 | 0.0527 (12) | 0.0503 (12) | 0.0608 (13) | 0.0037 (9) | 0.0051 (9) | 0.0057 (10) |
C9 | 0.0394 (9) | 0.0425 (10) | 0.0531 (11) | 0.0015 (8) | 0.0052 (8) | −0.0030 (8) |
N10 | 0.0436 (9) | 0.0399 (9) | 0.0554 (10) | −0.0058 (7) | 0.0031 (7) | 0.0018 (7) |
O11 | 0.0406 (7) | 0.0415 (8) | 0.0618 (9) | −0.0100 (6) | 0.0071 (6) | −0.0094 (6) |
C12 | 0.0434 (11) | 0.0580 (13) | 0.0650 (13) | −0.0121 (10) | 0.0104 (9) | −0.0111 (10) |
C13 | 0.0526 (12) | 0.0632 (14) | 0.0683 (14) | −0.0213 (11) | 0.0049 (10) | 0.0022 (11) |
C14 | 0.0501 (12) | 0.0532 (13) | 0.0697 (14) | −0.0101 (10) | 0.0003 (10) | 0.0028 (10) |
C15 | 0.0562 (13) | 0.0605 (14) | 0.0710 (15) | −0.0148 (11) | −0.0016 (11) | 0.0019 (11) |
C16 | 0.0620 (14) | 0.0834 (18) | 0.0731 (16) | −0.0141 (13) | −0.0005 (12) | −0.0021 (14) |
C17 | 0.0616 (14) | 0.087 (2) | 0.0886 (19) | −0.0149 (14) | −0.0026 (13) | −0.0178 (16) |
C1—O11 | 1.383 (2) | O11—C12 | 1.426 (2) |
C1—C2 | 1.388 (3) | C12—C13 | 1.508 (3) |
C1—C3 | 1.395 (3) | C12—H12A | 0.9700 |
C2—N10i | 1.390 (3) | C12—H12B | 0.9700 |
C2—C3i | 1.418 (3) | C13—C14 | 1.504 (3) |
C3—C2i | 1.418 (3) | C13—H13A | 0.9700 |
C3—C4 | 1.448 (3) | C13—H13B | 0.9700 |
C4—C5 | 1.402 (3) | C14—C15 | 1.522 (3) |
C4—C9 | 1.406 (3) | C14—H14A | 0.9700 |
C5—C6 | 1.383 (3) | C14—H14B | 0.9700 |
C5—H5 | 0.9300 | C15—C16 | 1.496 (4) |
C6—C7 | 1.386 (3) | C15—H15A | 0.9700 |
C6—H6 | 0.9300 | C15—H15B | 0.9700 |
C7—C8 | 1.385 (3) | C16—C17 | 1.506 (4) |
C7—H7 | 0.9300 | C16—H16A | 0.9700 |
C8—C9 | 1.392 (3) | C16—H16B | 0.9700 |
C8—H8 | 0.9300 | C17—H17A | 0.9600 |
C9—N10 | 1.378 (2) | C17—H17B | 0.9600 |
N10—C2i | 1.390 (3) | C17—H17C | 0.9600 |
N10—H10 | 0.89 (3) | ||
O11—C1—C2 | 121.48 (17) | O11—C12—H12B | 109.9 |
O11—C1—C3 | 121.19 (18) | C13—C12—H12B | 109.9 |
C2—C1—C3 | 117.30 (17) | H12A—C12—H12B | 108.3 |
C1—C2—N10i | 128.88 (17) | C14—C13—C12 | 115.3 (2) |
C1—C2—C3i | 122.28 (18) | C14—C13—H13A | 108.4 |
N10i—C2—C3i | 108.84 (17) | C12—C13—H13A | 108.4 |
C1—C3—C2i | 120.43 (18) | C14—C13—H13B | 108.4 |
C1—C3—C4 | 133.40 (17) | C12—C13—H13B | 108.4 |
C2i—C3—C4 | 106.16 (16) | H13A—C13—H13B | 107.5 |
C5—C4—C9 | 119.18 (19) | C13—C14—C15 | 112.67 (19) |
C5—C4—C3 | 133.98 (19) | C13—C14—H14A | 109.1 |
C9—C4—C3 | 106.84 (16) | C15—C14—H14A | 109.1 |
C6—C5—C4 | 118.9 (2) | C13—C14—H14B | 109.1 |
C6—C5—H5 | 120.5 | C15—C14—H14B | 109.1 |
C4—C5—H5 | 120.5 | H14A—C14—H14B | 107.8 |
C5—C6—C7 | 120.9 (2) | C16—C15—C14 | 114.9 (2) |
C5—C6—H6 | 119.6 | C16—C15—H15A | 108.5 |
C7—C6—H6 | 119.6 | C14—C15—H15A | 108.5 |
C8—C7—C6 | 121.7 (2) | C16—C15—H15B | 108.5 |
C8—C7—H7 | 119.1 | C14—C15—H15B | 108.5 |
C6—C7—H7 | 119.1 | H15A—C15—H15B | 107.5 |
C7—C8—C9 | 117.4 (2) | C15—C16—C17 | 113.8 (2) |
C7—C8—H8 | 121.3 | C15—C16—H16A | 108.8 |
C9—C8—H8 | 121.3 | C17—C16—H16A | 108.8 |
N10—C9—C8 | 128.81 (19) | C15—C16—H16B | 108.8 |
N10—C9—C4 | 109.33 (17) | C17—C16—H16B | 108.8 |
C8—C9—C4 | 121.83 (19) | H16A—C16—H16B | 107.7 |
C9—N10—C2i | 108.77 (16) | C16—C17—H17A | 109.5 |
C9—N10—H10 | 123.97 (11) | C16—C17—H17B | 109.5 |
C2i—N10—H10 | 125.27 (11) | H17A—C17—H17B | 109.5 |
C1—O11—C12 | 113.19 (14) | C16—C17—H17C | 109.5 |
O11—C12—C13 | 108.99 (18) | H17A—C17—H17C | 109.5 |
O11—C12—H12A | 109.9 | H17B—C17—H17C | 109.5 |
C13—C12—H12A | 109.9 | ||
O11—C1—C2—N10i | −1.9 (3) | C6—C7—C8—C9 | −0.3 (3) |
C3—C1—C2—N10i | −179.96 (18) | C7—C8—C9—N10 | 178.2 (2) |
O11—C1—C2—C3i | 178.17 (16) | C7—C8—C9—C4 | 0.3 (3) |
C3—C1—C2—C3i | 0.2 (3) | C5—C4—C9—N10 | −178.17 (17) |
O11—C1—C3—C2i | −178.18 (16) | C3—C4—C9—N10 | 1.7 (2) |
C2—C1—C3—C2i | −0.2 (3) | C5—C4—C9—C8 | 0.1 (3) |
O11—C1—C3—C4 | 3.1 (3) | C3—C4—C9—C8 | 179.96 (17) |
C2—C1—C3—C4 | −178.89 (19) | C8—C9—N10—C2i | 179.61 (19) |
C1—C3—C4—C5 | −1.8 (4) | C4—C9—N10—C2i | −2.3 (2) |
C2i—C3—C4—C5 | 179.4 (2) | C2—C1—O11—C12 | 80.5 (2) |
C1—C3—C4—C9 | 178.37 (19) | C3—C1—O11—C12 | −101.5 (2) |
C2i—C3—C4—C9 | −0.5 (2) | C1—O11—C12—C13 | −175.89 (17) |
C9—C4—C5—C6 | −0.5 (3) | O11—C12—C13—C14 | −71.5 (3) |
C3—C4—C5—C6 | 179.7 (2) | C12—C13—C14—C15 | −171.3 (2) |
C4—C5—C6—C7 | 0.5 (3) | C13—C14—C15—C16 | 175.0 (2) |
C5—C6—C7—C8 | −0.1 (4) | C14—C15—C16—C17 | −176.7 (2) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C30H36N2O2 |
Mr | 456.61 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 298 |
a, b, c (Å) | 13.7136 (4), 5.5026 (4), 16.5563 (5) |
β (°) | 92.665 (3) |
V (Å3) | 1247.99 (10) |
Z | 2 |
Radiation type | Cu Kα |
µ (mm−1) | 0.59 |
Crystal size (mm) | 0.48 × 0.26 × 0.18 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2466, 2363, 1993 |
Rint | 0.052 |
(sin θ/λ)max (Å−1) | 0.609 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.057, 0.181, 1.06 |
No. of reflections | 2363 |
No. of parameters | 168 |
H-atom treatment | Only H-atom displacement parameters refined |
Δρmax, Δρmin (e Å−3) | 0.26, −0.29 |
Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CORINC (Dräger & Gattow, 1971), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).
Acknowledgements
The authors are grateful to Heinz Kolshorn for helpful discussions.
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Cadogan, J. I. G. (1962). Q. Rev. 16, 208–239. CrossRef CAS Web of Science Google Scholar
Cadogan, J. I. G. (1969). Synthesis, pp. 11–17. CrossRef Google Scholar
Dassonneville, B., Witulski, B. & Detert, H. (2011). Eur. J. Org. Chem. pp. 2836–2844. Web of Science CSD CrossRef Google Scholar
Detert, H., Lehmann, M. & Meier, H. (2010). Materials, 3, 3218–3330. Web of Science CrossRef CAS Google Scholar
Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761–762. Google Scholar
Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Hu, N.-X., Xie, S., Popovic, Z., Ong, B. & Hor, A.-M. (1999). J. Am. Chem. Soc. 121, 5097–5098. Web of Science CSD CrossRef CAS Google Scholar
Katritzky, A. R., Li, J. & Stevens, C. V. (1995). J. Org. Chem. 60, 3401–3404. CrossRef CAS Web of Science Google Scholar
Knölker, H.-J. & Reddy, K. R. (2002). Chem. Rev. 39, 6521–6527. Google Scholar
Letessier, J. & Detert, H. (2012). Synthesis, 44, 290–296. CAS Google Scholar
Letessier, J., Detert, H., Götz, K. & Opatz, T. (2012). Synthesis, 44, 747–754. CAS Google Scholar
Nemkovich, N. A., Kruchenok, Yu. V., Sobchuk, A. N., Detert, H., Wrobel, N. & Chernyavskii, E. A. (2009). Opt. Spectrosc. 107, 275–281. Web of Science CrossRef CAS Google Scholar
Nissen, F. & Detert, H. (2011). Eur. J. Org. Chem. pp. 2845–2854. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wakim, S., Bouchard, J., Simard, M., Drolet, N., Tao, Y. & Leclerc, M. (2004). Chem. Mater. 16, 4386–4388. Web of Science CSD CrossRef CAS Google Scholar
Wrobel, N., Schollmeyer, D. & Detert, H. (2012). Acta Cryst. E68, o1022. CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As part of a larger project on the synthesis of carbazoles (Letessier & Detert, 2012) and carbolines (Dassonneville et al. 2011; Nissen & Detert, 2011; Letessier et al. 2012); indolo-annulated carbazoles were prepared for optoelectronic applications. The title compounds adopts a centrosymmetric geometry. The pentacyclic indolocarbazole framework is essentially planar with maximum deviations of 0.028 (2) Å from the mean plane. The dihedral angle between the mean plane of the aromatic system and and the adjacend O-alkyl unit (C3—C1—O1—C12) is -101.5 (2)° and the all-trans configured hexyl chain lies in a plane parallel to that of the aromatic system. Whereas the O11—C12—C13—C14 unit adopts a gauche conformation (torsion angle = -71.5 (3)°) the tail of the hexyl chain is nearly planar (dihedral angles -171.3 (2)°, 175.0 (2)°, 176.7 (2)°). The C—N bonds in the pyrrole units are nearly identical. The C—C bonds in the pyrrole subunit (C2—C3 = 1.418 (3) Å, C3—C4 1.448 (3) Å, C4—C9 1.406 (3) Å) are significantly longer than those of the benzene units (C4—C5 = 1.402 (3) Å, C5—C6 = 1.383 (3) Å, C6—C7 = 1.386 (3) Å, C7—C8 = 1.385 (3) Å, C8—C9 = 1.392 (3) Å, C1—C2 = 1.388 (3) Å, C1—C3 = 1.395 (3) Å). The hexyloxy chains are interdigitated.