organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(Adamantan-1-yl)-1,3-bis­­(4-methyl­phen­yl)propan-2-ol

aDepartment of Chemistry, Faculty of Technology, Tomas Bata University in Zlin, Nám. T. G. Masaryka 275, Zlín, 762 72, Czech Republic, and bDepartment of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno-Bohunice, 625 00, Czech Republic
*Correspondence e-mail: rvicha@ft.utb.cz

(Received 23 November 2012; accepted 12 December 2012; online 19 December 2012)

The conformation of the title compound, C27H34O, is stabilized by a weak intra­molecular C—H⋯π inter­action. The dihedral angle between the benzene rings is 54.79 (4)°. The adamantane cage consists of three fused cyclo­hexane rings in classical chair conformations, with C—C—C angles in the range 107.75 (10)–111.35 (9)°. Although the mol­ecule contains a hy­droxy group as a conceivable hydrogen-bond donor, this group is sterically hindered by bulky substituents and no hydrogen bonds are observed in the crystal structure.

Related literature

For the preparation of the title compound, see: Vícha et al. (2006[Vícha, R., Nečas, M. & Potáček, M. (2006). Collect. Czech. Chem. Commun. 71, 709-722.]). For other examples of sterically shielded carbinols, see: Babjaková et al. (2010[Babjaková, E., Nečas, M. & Vícha, R. (2010). Acta Cryst. E66, o2175.]); Vícha & Nečas (2010[Vícha, R. & Nečas, M. (2010). Acta Cryst. E66, o1626.]). For the structure of a related mol­ecule which does form a hydrogen-bonded dimer in the solid state, see: Vaissermann & Lomas (1997[Vaissermann, J. & Lomas, J. S. (1997). Acta Cryst. C53, 1341-1343.]).

[Scheme 1]

Experimental

Crystal data
  • C27H34O

  • Mr = 374.54

  • Triclinic, [P \overline 1]

  • a = 6.4065 (2) Å

  • b = 13.1474 (4) Å

  • c = 13.3466 (4) Å

  • α = 70.718 (3)°

  • β = 81.700 (3)°

  • γ = 80.134 (3)°

  • V = 1040.75 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 120 K

  • 0.50 × 0.50 × 0.40 mm

Data collection
  • Agilent Xcalibur (Sapphire2) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]) Tmin = 0.996, Tmax = 1.000

  • 6750 measured reflections

  • 3675 independent reflections

  • 2925 reflections with I > 2σ(I)

  • Rint = 0.010

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.094

  • S = 1.07

  • 3675 reflections

  • 258 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C31–C36 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯Cg1 0.94 2.61 3.3577 (12) 136

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title molecule consists of two p-methylated benzene rings, the adamantane cage and propane-2-ol backbone to form a strained tertiary alcohol (Fig. 1). Both benzene rings are essentially planar with maximum deviations from their least squares best planes of 0.0013 (14) Å for C16 and 0.0138 (14) Å for C36, respectively. The dihedral angle between these best planes is 54.79 (4)°. The torsion angles C20—C2—C3—C31, C20—C2—C1—C11, C2—C1—C11—C12, C2—C3—C31—C32 and C21—C20—C2—O2 are -174.97 (10), -129.54 (11), -97.69 (15), 104.62 (14) and 61.95 (12)°, respectively. The conformation of the molecules in the solid state is stabilized by a weak C—H···π interaction, C12—H12···Cg1 (Cg1 is the centre of gravity of C31–C36), with a C12–Cg1 distance of 3.3576 (12) Å (Fig. 2, Table 1). In contrast to the more strained molecules of di(1-adamantyl)(2,5-diisopropylphenyl)methanol those form H-bonded dimers in the solid state (Vaissermann & Lomas, 1997), no H-bonds were observed in the crystal packing of the title compound. The shortest distance between two adjacent O-atoms is 4.6340 (13) Å (Fig. 2). Some other examples of such sterically shielded carbinols have been previously published (Babjaková et al., 2010; Vícha & Nečas, 2010).

Related literature top

For the preparation of the title compound, see:Vícha et al. (2006). For other examples of sterically shielded carbinols, see: Babjaková et al. (2010); Vícha & Nečas (2010). For the structure of a related molecule which does form a hydrogen-bonded dimer in the solid state, see: Vaissermann & Lomas (1997).

Experimental top

The title compound was isolated from complex mixture obtained from the reaction of adamantane-1-carbonyl chloride with 4-methylbenzylmagnesium chloride in diethyl ether as described previously (Vícha et al., 2006). The crystal used for data collection was grown by slow evaporation of an n-hexane solution at room temperature.

Refinement top

All carbon bound H atoms were placed at calculated positions and were refined as riding with their Uiso set to either 1.2Ueq or 1.5Ueq (methyl) of the respective carrier atoms; in addition, the methyl H atoms were allowed to rotate about the C—C bond. Oxygen bound H atom was located in a difference Fourier map and refined isotropically with the Uiso set to 1.5Ueq of the carrier atom.

Structure description top

The title molecule consists of two p-methylated benzene rings, the adamantane cage and propane-2-ol backbone to form a strained tertiary alcohol (Fig. 1). Both benzene rings are essentially planar with maximum deviations from their least squares best planes of 0.0013 (14) Å for C16 and 0.0138 (14) Å for C36, respectively. The dihedral angle between these best planes is 54.79 (4)°. The torsion angles C20—C2—C3—C31, C20—C2—C1—C11, C2—C1—C11—C12, C2—C3—C31—C32 and C21—C20—C2—O2 are -174.97 (10), -129.54 (11), -97.69 (15), 104.62 (14) and 61.95 (12)°, respectively. The conformation of the molecules in the solid state is stabilized by a weak C—H···π interaction, C12—H12···Cg1 (Cg1 is the centre of gravity of C31–C36), with a C12–Cg1 distance of 3.3576 (12) Å (Fig. 2, Table 1). In contrast to the more strained molecules of di(1-adamantyl)(2,5-diisopropylphenyl)methanol those form H-bonded dimers in the solid state (Vaissermann & Lomas, 1997), no H-bonds were observed in the crystal packing of the title compound. The shortest distance between two adjacent O-atoms is 4.6340 (13) Å (Fig. 2). Some other examples of such sterically shielded carbinols have been previously published (Babjaková et al., 2010; Vícha & Nečas, 2010).

For the preparation of the title compound, see:Vícha et al. (2006). For other examples of sterically shielded carbinols, see: Babjaková et al. (2010); Vícha & Nečas (2010). For the structure of a related molecule which does form a hydrogen-bonded dimer in the solid state, see: Vaissermann & Lomas (1997).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP of the asymmetric unit with atoms represented as 50% probability ellipsoids. H-atoms are shown as small spheres at arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound showing the intramolecular C—H···π interactions. H-atoms have been omitted for clarity (except for those participating in H-bonds). Symmetry code: (i) -x + 1, -y + 1, -z + 1.
2-(Adamantan-1-yl)-1,3-bis(4-methylphenyl)propan-2-ol top
Crystal data top
C27H34OZ = 2
Mr = 374.54F(000) = 408
Triclinic, P1Dx = 1.195 Mg m3
Hall symbol: -P 1Melting point: 404 K
a = 6.4065 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.1474 (4) ÅCell parameters from 4289 reflections
c = 13.3466 (4) Åθ = 3.1–27.8°
α = 70.718 (3)°µ = 0.07 mm1
β = 81.700 (3)°T = 120 K
γ = 80.134 (3)°Block, colourless
V = 1040.75 (6) Å30.50 × 0.50 × 0.40 mm
Data collection top
Agilent Xcalibur (Sapphire2)
diffractometer
3675 independent reflections
Radiation source: Enhance (Mo) X-ray Source2925 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.010
Detector resolution: 8.4353 pixels mm-1θmax = 25.0°, θmin = 3.2°
ω scanh = 77
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1515
Tmin = 0.996, Tmax = 1.000l = 1015
6750 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0483P)2 + 0.1419P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.094(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.18 e Å3
3675 reflectionsΔρmin = 0.19 e Å3
258 parameters
Crystal data top
C27H34Oγ = 80.134 (3)°
Mr = 374.54V = 1040.75 (6) Å3
Triclinic, P1Z = 2
a = 6.4065 (2) ÅMo Kα radiation
b = 13.1474 (4) ŵ = 0.07 mm1
c = 13.3466 (4) ÅT = 120 K
α = 70.718 (3)°0.50 × 0.50 × 0.40 mm
β = 81.700 (3)°
Data collection top
Agilent Xcalibur (Sapphire2)
diffractometer
3675 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2925 reflections with I > 2σ(I)
Tmin = 0.996, Tmax = 1.000Rint = 0.010
6750 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.18 e Å3
3675 reflectionsΔρmin = 0.19 e Å3
258 parameters
Special details top

Experimental. Spectral properties of title compound: 1H NMR (500 MHz; CDCl3): δ 1.36 (bs, 1H); 1.71 (m, 6H); 1.82(m, 6H); 2.06 (m, 3H); 2.32(s, 6H); 2.68(d, 2H); 3.02(d, 2H); 6.87(d, 4H); 7.01(d, 4H) p.p.m.. 13C NMR (75.5 MHz; CDCl3): δ 21.2 (CH3); 29.0 (CH); 36.7 (CH2); 37.4 (CH2); 40.0 (CH2); 41.3 (C); 76.7(C); 128.9 (CH); 131.2 (CH); 135.5(C); 135.7(C) p.p.m.. IR (KBr): 3581(s), 2918(s), 2904(s), 2879(s), 2852(s), 1511(m), 1454(m), 1344(m), 1107(w), 1059(w), 1041(w), 997(w), 966(w), 847(w), 818(m), 808(m), 752(m), 714(w), 579(m), 496(w), 476(w) cm-1 MS (EI, 70 eV): 77 (5), 79 (15), 91 (6), 93 (10), 105 (24), 107 (6), 135 (100), 136 (11), 269 (27), 270 (6) m/z(%).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.52442 (14)0.31340 (7)0.53822 (7)0.0244 (2)
H20.577 (2)0.3189 (12)0.4778 (12)0.037*
C10.3383 (2)0.18382 (10)0.49612 (10)0.0227 (3)
H1A0.33650.11150.55080.027*
H1B0.20870.19900.45840.027*
C20.32531 (19)0.27081 (9)0.55451 (9)0.0203 (3)
C30.1531 (2)0.36778 (10)0.51005 (9)0.0246 (3)
H3A0.01140.34320.53450.030*
H3B0.16160.42550.54110.030*
C110.5301 (2)0.17801 (9)0.41677 (10)0.0214 (3)
C120.5241 (2)0.22950 (10)0.30754 (10)0.0255 (3)
H120.39550.27070.28100.031*
C130.7026 (2)0.22165 (11)0.23704 (10)0.0276 (3)
H130.69330.25750.16300.033*
C140.8939 (2)0.16309 (10)0.27152 (10)0.0242 (3)
C150.9002 (2)0.11175 (10)0.38029 (10)0.0270 (3)
H151.02910.07060.40660.032*
C160.7225 (2)0.11930 (10)0.45123 (10)0.0268 (3)
H160.73230.08350.52530.032*
C171.0884 (2)0.15472 (12)0.19488 (11)0.0322 (3)
H17A1.11670.22780.15040.048*
H17B1.06410.11350.14940.048*
H17C1.21100.11740.23500.048*
C200.28329 (19)0.21981 (9)0.67801 (9)0.0187 (3)
C210.26153 (19)0.30786 (9)0.73322 (9)0.0204 (3)
H21A0.39180.34390.71390.025*
H21B0.13960.36370.70770.025*
C220.22752 (19)0.25899 (10)0.85462 (9)0.0219 (3)
H220.21420.31790.88800.026*
C230.4157 (2)0.17335 (10)0.89566 (10)0.0249 (3)
H23A0.54840.20730.87770.030*
H23B0.39330.14190.97420.030*
C240.4346 (2)0.08420 (10)0.84410 (10)0.0233 (3)
H240.55800.02820.87040.028*
C250.2308 (2)0.03049 (10)0.87323 (10)0.0242 (3)
H25A0.20690.00180.95160.029*
H25B0.24430.02830.84080.029*
C260.04286 (19)0.11655 (10)0.83190 (10)0.0225 (3)
H260.09080.08190.85120.027*
C270.0222 (2)0.20631 (10)0.88350 (10)0.0237 (3)
H27A0.00340.17520.96190.028*
H27B0.10010.26180.85780.028*
C280.47010 (19)0.13264 (10)0.72260 (10)0.0217 (3)
H28A0.48490.07400.68990.026*
H28B0.60390.16570.70330.026*
C290.07725 (19)0.16575 (10)0.71028 (9)0.0212 (3)
H29A0.04580.22060.68430.025*
H29B0.08730.10800.67680.025*
C310.1692 (2)0.41644 (9)0.39017 (10)0.0224 (3)
C320.0303 (2)0.39663 (10)0.32966 (10)0.0245 (3)
H320.07850.35280.36460.029*
C330.0475 (2)0.43953 (10)0.21956 (10)0.0247 (3)
H330.05030.42510.18040.030*
C340.2054 (2)0.50325 (10)0.16543 (10)0.0243 (3)
C350.3418 (2)0.52453 (10)0.22592 (10)0.0271 (3)
H350.45060.56840.19090.033*
C360.3228 (2)0.48324 (10)0.33613 (10)0.0265 (3)
H360.41600.50080.37540.032*
C370.2247 (2)0.55055 (11)0.04572 (10)0.0321 (3)
H37A0.34660.59150.02230.048*
H37B0.09440.59920.02300.048*
H37C0.24570.49170.01400.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0262 (5)0.0263 (5)0.0211 (5)0.0112 (4)0.0051 (4)0.0072 (4)
C10.0260 (7)0.0196 (6)0.0224 (7)0.0041 (5)0.0023 (5)0.0058 (5)
C20.0207 (6)0.0182 (6)0.0213 (6)0.0051 (5)0.0002 (5)0.0047 (5)
C30.0308 (7)0.0203 (6)0.0199 (6)0.0006 (5)0.0008 (5)0.0047 (5)
C110.0252 (7)0.0168 (6)0.0235 (7)0.0021 (5)0.0040 (5)0.0077 (5)
C120.0266 (7)0.0263 (7)0.0240 (7)0.0019 (6)0.0073 (6)0.0091 (6)
C130.0350 (8)0.0279 (7)0.0191 (7)0.0023 (6)0.0027 (6)0.0070 (5)
C140.0268 (7)0.0222 (7)0.0273 (7)0.0042 (5)0.0011 (5)0.0130 (5)
C150.0260 (7)0.0252 (7)0.0297 (7)0.0046 (6)0.0074 (6)0.0107 (6)
C160.0342 (8)0.0233 (7)0.0200 (7)0.0026 (6)0.0044 (6)0.0051 (5)
C170.0304 (8)0.0355 (8)0.0336 (8)0.0048 (6)0.0016 (6)0.0165 (6)
C200.0176 (6)0.0175 (6)0.0199 (6)0.0038 (5)0.0005 (5)0.0043 (5)
C210.0198 (6)0.0189 (6)0.0217 (6)0.0051 (5)0.0016 (5)0.0042 (5)
C220.0235 (7)0.0220 (7)0.0202 (6)0.0049 (5)0.0021 (5)0.0058 (5)
C230.0227 (7)0.0290 (7)0.0207 (7)0.0072 (5)0.0041 (5)0.0021 (5)
C240.0191 (7)0.0215 (6)0.0247 (7)0.0007 (5)0.0039 (5)0.0012 (5)
C250.0249 (7)0.0208 (7)0.0228 (7)0.0056 (5)0.0001 (5)0.0009 (5)
C260.0177 (6)0.0227 (7)0.0246 (7)0.0074 (5)0.0006 (5)0.0029 (5)
C270.0216 (7)0.0261 (7)0.0195 (6)0.0038 (5)0.0018 (5)0.0031 (5)
C280.0172 (6)0.0206 (6)0.0243 (7)0.0037 (5)0.0001 (5)0.0033 (5)
C290.0189 (6)0.0203 (6)0.0238 (7)0.0041 (5)0.0031 (5)0.0051 (5)
C310.0274 (7)0.0162 (6)0.0222 (7)0.0011 (5)0.0032 (5)0.0061 (5)
C320.0227 (7)0.0196 (6)0.0279 (7)0.0007 (5)0.0015 (5)0.0044 (5)
C330.0248 (7)0.0242 (7)0.0263 (7)0.0003 (5)0.0078 (5)0.0092 (5)
C340.0289 (7)0.0213 (7)0.0214 (7)0.0019 (5)0.0040 (5)0.0068 (5)
C350.0314 (8)0.0229 (7)0.0252 (7)0.0074 (6)0.0030 (6)0.0029 (5)
C360.0357 (8)0.0211 (7)0.0245 (7)0.0075 (6)0.0077 (6)0.0054 (5)
C370.0338 (8)0.0370 (8)0.0233 (7)0.0013 (6)0.0040 (6)0.0077 (6)
Geometric parameters (Å, º) top
O2—C21.4395 (14)C22—H221.0000
O2—H20.812 (15)C23—C241.5239 (18)
C1—C111.5109 (17)C23—H23A0.9900
C1—C21.5683 (16)C23—H23B0.9900
C1—H1A0.9900C24—C251.5303 (16)
C1—H1B0.9900C24—C281.5324 (16)
C2—C31.5498 (17)C24—H241.0000
C2—C201.5630 (16)C25—C261.5320 (17)
C3—C311.5096 (16)C25—H25A0.9900
C3—H3A0.9900C25—H25B0.9900
C3—H3B0.9900C26—C271.5301 (17)
C11—C161.3894 (17)C26—C291.5342 (16)
C11—C121.3930 (17)C26—H261.0000
C12—C131.3841 (18)C27—H27A0.9900
C12—H120.9500C27—H27B0.9900
C13—C141.3828 (18)C28—H28A0.9900
C13—H130.9500C28—H28B0.9900
C14—C151.3875 (18)C29—H29A0.9900
C14—C171.5071 (17)C29—H29B0.9900
C15—C161.3836 (18)C31—C361.3900 (17)
C15—H150.9500C31—C321.3920 (18)
C16—H160.9500C32—C331.3845 (17)
C17—H17A0.9800C32—H320.9500
C17—H17B0.9800C33—C341.3881 (18)
C17—H17C0.9800C33—H330.9500
C20—C211.5430 (16)C34—C351.3891 (18)
C20—C281.5444 (17)C34—C371.5059 (17)
C20—C291.5454 (16)C35—C361.3845 (17)
C21—C221.5311 (16)C35—H350.9500
C21—H21A0.9900C36—H360.9500
C21—H21B0.9900C37—H37A0.9800
C22—C231.5293 (17)C37—H37B0.9800
C22—C271.5325 (17)C37—H37C0.9800
C2—O2—H2108.8 (11)C24—C23—H23B109.9
C11—C1—C2116.07 (10)C22—C23—H23B109.9
C11—C1—H1A108.3H23A—C23—H23B108.3
C2—C1—H1A108.3C23—C24—C25109.95 (10)
C11—C1—H1B108.3C23—C24—C28109.94 (10)
C2—C1—H1B108.3C25—C24—C28109.14 (10)
H1A—C1—H1B107.4C23—C24—H24109.3
O2—C2—C3107.41 (9)C25—C24—H24109.3
O2—C2—C20105.06 (9)C28—C24—H24109.3
C3—C2—C20111.35 (10)C24—C25—C26108.95 (10)
O2—C2—C1111.17 (9)C24—C25—H25A109.9
C3—C2—C1110.22 (10)C26—C25—H25A109.9
C20—C2—C1111.46 (9)C24—C25—H25B109.9
C31—C3—C2115.30 (10)C26—C25—H25B109.9
C31—C3—H3A108.4H25A—C25—H25B108.3
C2—C3—H3A108.4C27—C26—C25109.41 (10)
C31—C3—H3B108.4C27—C26—C29109.57 (10)
C2—C3—H3B108.4C25—C26—C29110.20 (10)
H3A—C3—H3B107.5C27—C26—H26109.2
C16—C11—C12117.03 (11)C25—C26—H26109.2
C16—C11—C1120.32 (11)C29—C26—H26109.2
C12—C11—C1122.66 (11)C26—C27—C22109.25 (10)
C13—C12—C11121.09 (12)C26—C27—H27A109.8
C13—C12—H12119.5C22—C27—H27A109.8
C11—C12—H12119.5C26—C27—H27B109.8
C14—C13—C12121.78 (12)C22—C27—H27B109.8
C14—C13—H13119.1H27A—C27—H27B108.3
C12—C13—H13119.1C24—C28—C20111.27 (10)
C13—C14—C15117.24 (12)C24—C28—H28A109.4
C13—C14—C17121.84 (12)C20—C28—H28A109.4
C15—C14—C17120.92 (12)C24—C28—H28B109.4
C16—C15—C14121.29 (12)C20—C28—H28B109.4
C16—C15—H15119.4H28A—C28—H28B108.0
C14—C15—H15119.4C26—C29—C20110.41 (10)
C15—C16—C11121.57 (12)C26—C29—H29A109.6
C15—C16—H16119.2C20—C29—H29A109.6
C11—C16—H16119.2C26—C29—H29B109.6
C14—C17—H17A109.5C20—C29—H29B109.6
C14—C17—H17B109.5H29A—C29—H29B108.1
H17A—C17—H17B109.5C36—C31—C32117.51 (11)
C14—C17—H17C109.5C36—C31—C3121.18 (11)
H17A—C17—H17C109.5C32—C31—C3121.31 (11)
H17B—C17—H17C109.5C33—C32—C31121.35 (12)
C21—C20—C28107.74 (10)C33—C32—H32119.3
C21—C20—C29107.66 (10)C31—C32—H32119.3
C28—C20—C29107.99 (9)C32—C33—C34121.08 (12)
C21—C20—C2110.48 (9)C32—C33—H33119.5
C28—C20—C2110.59 (9)C34—C33—H33119.5
C29—C20—C2112.22 (9)C33—C34—C35117.56 (11)
C22—C21—C20111.34 (9)C33—C34—C37121.41 (12)
C22—C21—H21A109.4C35—C34—C37121.00 (12)
C20—C21—H21A109.4C36—C35—C34121.48 (12)
C22—C21—H21B109.4C36—C35—H35119.3
C20—C21—H21B109.4C34—C35—H35119.3
H21A—C21—H21B108.0C35—C36—C31120.96 (12)
C23—C22—C21110.08 (10)C35—C36—H36119.5
C23—C22—C27109.69 (10)C31—C36—H36119.5
C21—C22—C27108.76 (10)C34—C37—H37A109.5
C23—C22—H22109.4C34—C37—H37B109.5
C21—C22—H22109.4H37A—C37—H37B109.5
C27—C22—H22109.4C34—C37—H37C109.5
C24—C23—C22108.95 (10)H37A—C37—H37C109.5
C24—C23—H23A109.9H37B—C37—H37C109.5
C22—C23—H23A109.9
C11—C1—C2—O212.69 (14)C27—C22—C23—C2460.05 (13)
C11—C1—C2—C3106.29 (12)C22—C23—C24—C2560.43 (12)
C11—C1—C2—C20129.54 (11)C22—C23—C24—C2859.76 (13)
O2—C2—C3—C3170.51 (13)C23—C24—C25—C2660.58 (13)
C20—C2—C3—C31174.97 (10)C28—C24—C25—C2660.10 (13)
C1—C2—C3—C3150.74 (14)C24—C25—C26—C2760.16 (12)
C2—C1—C11—C1682.61 (14)C24—C25—C26—C2960.37 (13)
C2—C1—C11—C1297.68 (14)C25—C26—C27—C2260.14 (12)
C16—C11—C12—C130.28 (18)C29—C26—C27—C2260.78 (13)
C1—C11—C12—C13179.44 (12)C23—C22—C27—C2660.16 (13)
C11—C12—C13—C140.2 (2)C21—C22—C27—C2660.29 (12)
C12—C13—C14—C150.21 (19)C23—C24—C28—C2060.11 (13)
C12—C13—C14—C17179.83 (12)C25—C24—C28—C2060.57 (13)
C13—C14—C15—C160.25 (19)C21—C20—C28—C2457.46 (12)
C17—C14—C15—C16179.79 (12)C29—C20—C28—C2458.57 (13)
C14—C15—C16—C110.3 (2)C2—C20—C28—C24178.29 (9)
C12—C11—C16—C150.32 (18)C27—C26—C29—C2060.53 (13)
C1—C11—C16—C15179.40 (12)C25—C26—C29—C2059.90 (13)
O2—C2—C20—C2161.95 (12)C21—C20—C29—C2658.42 (12)
C3—C2—C20—C2154.02 (13)C28—C20—C29—C2657.66 (13)
C1—C2—C20—C21177.55 (10)C2—C20—C29—C26179.80 (9)
O2—C2—C20—C2857.24 (12)C2—C3—C31—C3675.74 (15)
C3—C2—C20—C28173.21 (10)C2—C3—C31—C32104.61 (14)
C1—C2—C20—C2863.26 (12)C36—C31—C32—C331.60 (18)
O2—C2—C20—C29177.90 (9)C3—C31—C32—C33178.75 (11)
C3—C2—C20—C2966.14 (13)C31—C32—C33—C340.53 (19)
C1—C2—C20—C2957.40 (13)C32—C33—C34—C351.57 (19)
C28—C20—C21—C2257.24 (12)C32—C33—C34—C37179.77 (12)
C29—C20—C21—C2259.00 (12)C33—C34—C35—C360.49 (19)
C2—C20—C21—C22178.14 (9)C37—C34—C35—C36178.69 (12)
C20—C21—C22—C2359.62 (13)C34—C35—C36—C311.7 (2)
C20—C21—C22—C2760.58 (13)C32—C31—C36—C352.67 (18)
C21—C22—C23—C2459.59 (12)C3—C31—C36—C35177.67 (11)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C31–C36 ring.
D—H···AD—HH···AD···AD—H···A
C12—H12···Cg10.942.613.3577 (12)136

Experimental details

Crystal data
Chemical formulaC27H34O
Mr374.54
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)6.4065 (2), 13.1474 (4), 13.3466 (4)
α, β, γ (°)70.718 (3), 81.700 (3), 80.134 (3)
V3)1040.75 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.50 × 0.50 × 0.40
Data collection
DiffractometerAgilent Xcalibur (Sapphire2)
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.996, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6750, 3675, 2925
Rint0.010
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.094, 1.07
No. of reflections3675
No. of parameters258
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.19

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C31–C36 ring.
D—H···AD—HH···AD···AD—H···A
C12—H12···Cg10.942.613.3577 (12)135.5
 

Acknowledgements

The financial support of this work by the Inter­nal Founding Agency of Tomas Bata University in Zlin (project No. IGA/FT/2012/016) is gratefully acknowledged.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.  Google Scholar
First citationBabjaková, E., Nečas, M. & Vícha, R. (2010). Acta Cryst. E66, o2175.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVaissermann, J. & Lomas, J. S. (1997). Acta Cryst. C53, 1341–1343.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationVícha, R. & Nečas, M. (2010). Acta Cryst. E66, o1626.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVícha, R., Nečas, M. & Potáček, M. (2006). Collect. Czech. Chem. Commun. 71, 709–722.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds