metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The mixed-valent copper thiol­ate complex hexa­kis­{μ3-2-[(1,3-di­methyl­imidazol­­idene)amino]­benzene­thiol­ato}dicopper(II)tetra­copper(I) bis­­(hexa­fluoridophosphate) aceto­nitrile disolvate di­chloro­methane disolvate

aUniversität Paderborn, Fakultät für Naturwissenschaften, Department Chemie, Warburger Strasse 100, 33098 Paderborn, Germany
*Correspondence e-mail: ulrich.floerke@upb.de

(Received 6 December 2012; accepted 11 December 2012; online 15 December 2012)

The mol­ecular structure of the title compound, [Cu4ICu2II(C11H14N3S)6](PF6)2·2CH3CN·2CH2Cl2, shows a mixed-valent copper(I/II) thiol­ate complex with a distorted tetra­hedral coordination of the CuI and CuII cations by one guanidine N atom and three S atoms each. Characteristic features of the Cu6S6 skeleton are a total of six chemically identical μ3-thiol­ate bridges and almost planar Cu2S2 units with a maximum deviation of 0.110 (1) Å from the best plane. Each Cu2S2 unit then shares common Cu–S edges with a neighbouring unit; the enclosed dihedral angle is 60.14 (2)°. The geometric centre of the Cu6S6 cation lies on a crystallographic inversion centre. Cu—S bond lengths range from 2.294 (1) to 2.457 (1) Å, Cu—N bond lengths from 2.005 (3) to 2.018 (3) Å and the non-bonding Cu⋯Cu distances from 2.5743 (7) to 2.5892 (6) Å. C—H⋯F hydrogen-bond inter­actions occur between the PF6 anion and the complex mol­ecule and between the PF6 anion and the acetonitrile solvent mol­ecule.

Related literature

For bifunctional peralkyl­ated guanidine ligands, see: Bienemann et al. (2011[Bienemann, O., Hoffmann, A. & Herres-Pawlis, S. (2011). Rev. Inorg. Chem. 31, 83-108.]); Börner et al. (2009[Börner, J., Flörke, U., Huber, K., Döring, A., Kuckling, D. & Herres-Pawlis, S. (2009). Chem. Eur. J. 15, 2362-2376.]); Herres-Pawlis et al. (2005[Herres-Pawlis, S., Neuba, A., Seewald, O., Seshadri, T., Egold, H., Flörke, U. & Henkel, G. (2005). Eur. J. Org. Chem. pp. 4879-4890.], 2009[Herres-Pawlis, S., Verma, P., Haase, R., Kang, P., Lyons, C. T., Wasinger, E. C., Flörke, U., Henkel, G. & Stack, T. D. P. (2009). J. Am. Chem. Soc. 131, 1154-1169.]); Neuba et al. (2008[Neuba, A., Haase, R., Bernard, M., Flörke, U. & Herres-Pawlis, S. (2008). Z. Anorg. Allg. Chem. 634, 2511-2517.], 2010[Neuba, A., Herres-Pawlis, S., Seewald, O., Börner, J., Heuwing, J., Flörke, U. & Henkel, G. (2010). Z. Anorg. Allg. Chem. 636, 2641-2649.]); Pohl et al. (2000[Pohl, S., Harmjanz, M., Schneider, J., Saak, W. & Henkel, G. (2000). J. Chem. Soc. Dalton Trans. pp. 3473-3479.]); Raab et al. (2003[Raab, V., Harms, K., Sundermeyer, J., Kovacevic, B. & Maksic, Z. B. (2003). J. Org. Chem. 68, 8790-8797.]); Wittmann et al. (2001[Wittmann, H., Raab, V., Schorm, A., Plackmeyer, J. & Sundermeyer, J. (2001). Eur. J. Inorg. Chem. pp. 1937-1948.]). This investigation is part of our work towards bi- and polyfunctional guanidine–sulfur hybrids to mimic the structural and physical, as well as functional characteristics of the CuA center in cytochrom c oxidase and N2O reductase, see: Neuba et al. (2011[Neuba, A., Flörke, U., Meyer-Klaucke, W., Salomone-Stagni, M., Bill, E., Bothe, E., Höfer, P. & Henkel, G. (2011). Angew. Chem. 123, 4596-4600.], 2012[Neuba, A., Haase, R. U., Meyer-Klaucke, W., Flörke, U. & Henkel, G. (2012). Angew. Chem. 124, 1746-1750.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu6(C11H14N3S)6](PF6)2·2C2H3N·2CH2Cl2

  • Mr = 2245.01

  • Triclinic, [P \overline 1]

  • a = 13.019 (2) Å

  • b = 13.687 (3) Å

  • c = 13.875 (3) Å

  • α = 108.371 (4)°

  • β = 94.768 (4)°

  • γ = 102.691 (4)°

  • V = 2257.8 (7) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.76 mm−1

  • T = 120 K

  • 0.44 × 0.38 × 0.25 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.512, Tmax = 0.668

  • 18315 measured reflections

  • 10640 independent reflections

  • 8260 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.138

  • S = 1.03

  • 10640 reflections

  • 557 parameters

  • H-atom parameters constrained

  • Δρmax = 0.97 e Å−3

  • Δρmin = −0.90 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C31—H31A⋯F6i 0.95 2.49 3.290 (5) 141
C102—H10F⋯F4ii 0.98 2.43 3.173 (6) 133
C102—H10E⋯F1iii 0.98 2.44 3.187 (7) 133
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y+1, -z+1; (iii) x-1, y+1, z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Related literature top

For bifunctional peralkylated guanidine ligands, see: Bienemann et al. (2011); Börner et al. (2009); Herres-Pawlis et al. (2005, 2009); Neuba et al. (2008, 2010); Pohl et al. (2000); Raab et al. (2003); Wittmann et al. (2001). This investigation is part of our work towards bi- and polyfunctional guanidine–sulfur hybrids to mimic the structural and physical, as well as functional characteristics of the CuA center in cytochrom c oxidase and N2O reductase, see: Neuba et al. (2011, 2012).

Experimental top

The reaction of N-(1,3-dimethylimidazolidin-2-ylidene)-2-(tritylthio)aniline (510 mg, 1.1 mmol) with [Cu(MeCN)4](PF6) (186.2 mg, 0.5 mmol) dissolved in 5 ml of ABS. MeCN leads to a deep blue/green solution which was stirred for 30 min. at room temperature followed by heating under reflux for 30 min. After cooling the solution was filtered. Diffusion of Et2O into the filtrate afforded a black precipitate which was dissolved in MeCN/CH2Cl2 (5:1). Slow diffusion of Et2O in this solution afforded black crystals of [Cu6(C11H14N3S)6](PF6)2 2 CH2Cl2 2 MeCN suitable for X-ray diffraction. The mechanism of the complex formation is not completely understood (Neuba et al., 2011). We suppose a combination of homo- and heterolytic cleavage of the S-CPh3 bond with partial oxidation of copper(I) to copper(II) during the reaction.

Refinement top

Hydrogen atoms were clearly identified in difference syntheses, refined at idealized positions riding on the carbon atoms with isotropic displacement parameters Uiso(H) = 1.2U(Ceq) or 1.5U(–CH3) and C–H 0.95–0.99 Å. All CH3 hydrogen atoms were allowed to rotate but not to tip.

Structure description top

For bifunctional peralkylated guanidine ligands, see: Bienemann et al. (2011); Börner et al. (2009); Herres-Pawlis et al. (2005, 2009); Neuba et al. (2008, 2010); Pohl et al. (2000); Raab et al. (2003); Wittmann et al. (2001). This investigation is part of our work towards bi- and polyfunctional guanidine–sulfur hybrids to mimic the structural and physical, as well as functional characteristics of the CuA center in cytochrom c oxidase and N2O reductase, see: Neuba et al. (2011, 2012).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Anistropic displacement parameters are shown at the 50% probability level.
[Figure 2] Fig. 2. Structure of the cation, H-atoms omitted.
Hexakis{µ3-2-[(1,3- dimethylimidazolidene)amino]benzenethiolato}dicopper(II)tetracopper(I) bis(hexafluoridophosphate) acetonitrile disolvate dichloromethane disolvate top
Crystal data top
[Cu6(C11H14N3S)6](PF6)2·2C2H3N·2CH2Cl2Z = 1
Mr = 2245.01F(000) = 1142
Triclinic, P1Dx = 1.651 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 13.019 (2) ÅCell parameters from 5162 reflections
b = 13.687 (3) Åθ = 2.4–27.4°
c = 13.875 (3) ŵ = 1.76 mm1
α = 108.371 (4)°T = 120 K
β = 94.768 (4)°Prism, black
γ = 102.691 (4)°0.44 × 0.38 × 0.25 mm
V = 2257.8 (7) Å3
Data collection top
Bruker SMART APEX
diffractometer
10640 independent reflections
Radiation source: sealed tube8260 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
φ and ω scansθmax = 27.9°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1317
Tmin = 0.512, Tmax = 0.668k = 1718
18315 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: difference Fourier map
wR(F2) = 0.138H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0733P)2 + 1.372P]
where P = (Fo2 + 2Fc2)/3
10640 reflections(Δ/σ)max = 0.007
557 parametersΔρmax = 0.97 e Å3
0 restraintsΔρmin = 0.90 e Å3
Crystal data top
[Cu6(C11H14N3S)6](PF6)2·2C2H3N·2CH2Cl2γ = 102.691 (4)°
Mr = 2245.01V = 2257.8 (7) Å3
Triclinic, P1Z = 1
a = 13.019 (2) ÅMo Kα radiation
b = 13.687 (3) ŵ = 1.76 mm1
c = 13.875 (3) ÅT = 120 K
α = 108.371 (4)°0.44 × 0.38 × 0.25 mm
β = 94.768 (4)°
Data collection top
Bruker SMART APEX
diffractometer
10640 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
8260 reflections with I > 2σ(I)
Tmin = 0.512, Tmax = 0.668Rint = 0.031
18315 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.03Δρmax = 0.97 e Å3
10640 reflectionsΔρmin = 0.90 e Å3
557 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.62734 (3)0.54975 (3)0.13981 (3)0.01963 (11)
Cu20.54012 (3)0.67921 (3)0.08413 (3)0.01902 (10)
Cu30.55066 (3)0.59234 (3)0.10848 (3)0.01968 (11)
S10.45590 (6)0.58501 (6)0.18015 (6)0.01848 (16)
S20.69051 (6)0.61789 (6)0.01818 (6)0.01843 (16)
S30.38980 (6)0.62400 (6)0.03894 (6)0.01842 (16)
N10.6730 (2)0.5961 (2)0.2925 (2)0.0223 (6)
N20.8297 (3)0.5366 (3)0.2911 (3)0.0335 (7)
N30.7236 (3)0.4993 (3)0.3983 (2)0.0304 (7)
N40.6463 (2)0.8206 (2)0.1608 (2)0.0204 (6)
N50.5361 (3)0.9110 (3)0.2603 (2)0.0289 (7)
N60.6917 (3)0.9194 (2)0.3424 (2)0.0279 (7)
N70.5452 (2)0.7096 (2)0.1660 (2)0.0230 (6)
N80.7187 (3)0.7395 (3)0.2063 (2)0.0323 (7)
N90.6661 (3)0.8836 (3)0.1248 (2)0.0322 (7)
C10.7392 (3)0.5479 (3)0.3274 (3)0.0249 (7)
C20.8823 (3)0.5962 (4)0.2311 (3)0.0387 (9)
H2A0.84300.64760.22390.058*
H2B0.88390.54700.16280.058*
H2C0.95540.63420.26610.058*
C30.8860 (3)0.4806 (3)0.3424 (3)0.0378 (9)
H3A0.95530.52780.38310.045*
H3B0.89850.41660.29190.045*
C40.8101 (4)0.4500 (4)0.4119 (3)0.0401 (10)
H4A0.78290.37160.39060.048*
H4B0.84580.47820.48460.048*
C50.6194 (4)0.4573 (3)0.4214 (3)0.0378 (9)
H5A0.56340.46230.37280.057*
H5B0.61380.49880.49170.057*
H5C0.61080.38250.41530.057*
C60.6089 (3)0.6453 (3)0.3558 (2)0.0222 (7)
C70.6436 (3)0.7019 (3)0.4631 (3)0.0290 (8)
H7A0.71280.70490.49350.035*
C80.5792 (3)0.7521 (3)0.5236 (3)0.0325 (9)
H8A0.60450.78910.59500.039*
C90.4774 (3)0.7495 (3)0.4817 (3)0.0312 (8)
H9A0.43300.78360.52430.037*
C100.4412 (3)0.6965 (3)0.3767 (3)0.0252 (7)
H10A0.37170.69410.34740.030*
C110.5070 (3)0.6467 (3)0.3142 (2)0.0207 (7)
C120.6285 (3)0.8814 (3)0.2505 (3)0.0219 (7)
C130.4489 (3)0.8864 (3)0.1790 (3)0.0311 (8)
H13A0.47610.87970.11410.047*
H13B0.41230.94350.19470.047*
H13C0.39860.81900.17260.047*
C140.5292 (3)0.9639 (3)0.3666 (3)0.0304 (8)
H14A0.47660.91770.39180.036*
H14B0.50921.03160.37590.036*
C150.6431 (3)0.9841 (3)0.4219 (3)0.0323 (8)
H15A0.68151.06050.44460.039*
H15B0.64240.96040.48230.039*
C160.7869 (3)0.8878 (3)0.3696 (3)0.0306 (8)
H16A0.78600.81870.31910.046*
H16B0.78800.88190.43820.046*
H16C0.85070.94140.36960.046*
C170.7492 (3)0.8350 (3)0.1357 (3)0.0222 (7)
C180.8246 (3)0.9346 (3)0.1699 (3)0.0261 (7)
H18A0.80760.99440.21620.031*
C190.9228 (3)0.9478 (3)0.1380 (3)0.0340 (9)
H19A0.97241.01610.16270.041*
C200.9495 (3)0.8614 (3)0.0697 (3)0.0379 (9)
H20A1.01710.87040.04780.045*
C210.8772 (3)0.7629 (3)0.0345 (3)0.0281 (8)
H21A0.89500.70420.01260.034*
C220.7778 (3)0.7479 (3)0.0668 (3)0.0215 (7)
C230.6375 (3)0.7756 (3)0.1655 (3)0.0256 (7)
C240.7053 (4)0.6345 (3)0.2809 (3)0.0380 (9)
H24A0.63110.59300.29130.057*
H24B0.75280.59830.25550.057*
H24C0.72280.64090.34630.057*
C250.8059 (4)0.8277 (4)0.2029 (4)0.0434 (11)
H25A0.80590.83670.27090.052*
H25B0.87570.81730.18030.052*
C260.7820 (4)0.9227 (3)0.1238 (3)0.0413 (10)
H26A0.82380.93990.05490.050*
H26B0.79740.98650.14480.050*
C270.6231 (4)0.9424 (3)0.0361 (3)0.0352 (9)
H27A0.54830.93830.05780.053*
H27B0.66451.01710.00940.053*
H27C0.62800.91080.01790.053*
C280.4523 (3)0.7436 (3)0.1644 (2)0.0229 (7)
C290.4281 (3)0.8071 (3)0.2221 (3)0.0296 (8)
H29A0.47960.83210.25940.035*
C300.3324 (4)0.8333 (3)0.2255 (3)0.0348 (9)
H30A0.31880.87600.26490.042*
C310.2559 (3)0.7986 (3)0.1726 (3)0.0323 (8)
H31A0.19000.81750.17530.039*
C320.2754 (3)0.7358 (3)0.1152 (3)0.0267 (7)
H32A0.22260.71190.07850.032*
C330.3722 (3)0.7076 (3)0.1111 (2)0.0211 (7)
P10.99842 (9)0.22393 (9)0.42113 (8)0.0350 (2)
F11.0487 (4)0.1249 (3)0.3935 (3)0.0978 (14)
F20.9544 (3)0.3243 (3)0.4447 (3)0.0989 (14)
F30.8879 (3)0.1500 (4)0.4215 (3)0.1167 (18)
F41.0369 (3)0.2506 (3)0.5397 (2)0.0782 (11)
F51.1110 (3)0.2967 (3)0.4188 (2)0.0779 (10)
F60.9664 (3)0.1973 (3)0.3009 (2)0.0729 (10)
C1000.8296 (5)0.4191 (6)0.8897 (5)0.0758 (19)
H10B0.75270.38140.87320.091*
H10C0.84000.48140.95330.091*
Cl10.86150 (19)0.4642 (3)0.7934 (2)0.1522 (14)
Cl20.89884 (19)0.3361 (2)0.91445 (19)0.1187 (9)
N1000.2667 (4)0.9850 (5)0.3182 (4)0.0770 (16)
C1010.1838 (5)0.9396 (5)0.3266 (4)0.0587 (14)
C1020.0791 (5)0.8897 (5)0.3378 (5)0.0701 (16)
H10D0.03400.85570.26990.105*
H10E0.04840.94340.38170.105*
H10F0.08330.83560.36940.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0198 (2)0.0180 (2)0.0206 (2)0.00440 (16)0.00325 (15)0.00639 (16)
Cu20.0183 (2)0.0166 (2)0.0207 (2)0.00298 (15)0.00323 (15)0.00534 (15)
Cu30.0200 (2)0.0167 (2)0.0216 (2)0.00346 (16)0.00395 (16)0.00638 (16)
S10.0183 (4)0.0164 (4)0.0198 (4)0.0035 (3)0.0037 (3)0.0055 (3)
S20.0171 (4)0.0158 (4)0.0209 (4)0.0027 (3)0.0036 (3)0.0052 (3)
S30.0174 (4)0.0168 (4)0.0208 (4)0.0043 (3)0.0025 (3)0.0064 (3)
N10.0211 (15)0.0234 (15)0.0213 (13)0.0043 (12)0.0016 (11)0.0074 (11)
N20.0283 (17)0.0384 (19)0.0370 (17)0.0124 (15)0.0019 (14)0.0157 (15)
N30.0328 (18)0.0264 (17)0.0333 (16)0.0051 (13)0.0003 (13)0.0152 (14)
N40.0204 (14)0.0142 (13)0.0230 (13)0.0028 (11)0.0048 (11)0.0024 (11)
N50.0289 (17)0.0315 (17)0.0243 (15)0.0134 (14)0.0056 (12)0.0028 (13)
N60.0297 (17)0.0254 (16)0.0245 (15)0.0049 (13)0.0047 (12)0.0042 (12)
N70.0272 (16)0.0191 (14)0.0251 (14)0.0050 (12)0.0061 (12)0.0109 (12)
N80.0285 (17)0.0316 (18)0.0360 (17)0.0027 (14)0.0144 (14)0.0117 (14)
N90.0356 (19)0.0243 (17)0.0313 (16)0.0031 (13)0.0074 (14)0.0092 (13)
C10.0249 (18)0.0219 (18)0.0233 (16)0.0026 (14)0.0008 (13)0.0049 (14)
C20.025 (2)0.050 (3)0.041 (2)0.0100 (18)0.0087 (17)0.0144 (19)
C30.036 (2)0.031 (2)0.042 (2)0.0138 (18)0.0060 (18)0.0056 (17)
C40.047 (3)0.035 (2)0.038 (2)0.0153 (19)0.0057 (19)0.0134 (18)
C50.049 (3)0.031 (2)0.033 (2)0.0030 (18)0.0069 (18)0.0152 (17)
C60.0264 (18)0.0170 (16)0.0216 (16)0.0024 (13)0.0037 (13)0.0069 (13)
C70.031 (2)0.028 (2)0.0222 (17)0.0002 (15)0.0023 (14)0.0069 (14)
C80.047 (2)0.0237 (19)0.0208 (17)0.0040 (17)0.0044 (16)0.0040 (14)
C90.047 (2)0.0236 (19)0.0260 (18)0.0131 (17)0.0149 (16)0.0073 (15)
C100.0297 (19)0.0213 (18)0.0261 (17)0.0066 (14)0.0094 (14)0.0089 (14)
C110.0269 (18)0.0144 (16)0.0198 (15)0.0032 (13)0.0049 (13)0.0058 (12)
C120.0246 (18)0.0135 (15)0.0252 (16)0.0000 (13)0.0025 (13)0.0072 (13)
C130.032 (2)0.030 (2)0.0303 (19)0.0153 (16)0.0052 (15)0.0044 (15)
C140.037 (2)0.0248 (19)0.0276 (18)0.0094 (16)0.0100 (16)0.0050 (15)
C150.041 (2)0.030 (2)0.0233 (17)0.0091 (17)0.0093 (16)0.0037 (15)
C160.0269 (19)0.030 (2)0.0310 (19)0.0049 (15)0.0002 (15)0.0083 (16)
C170.0228 (17)0.0194 (17)0.0220 (16)0.0030 (13)0.0038 (13)0.0054 (13)
C180.0256 (19)0.0216 (18)0.0267 (17)0.0004 (14)0.0059 (14)0.0063 (14)
C190.031 (2)0.024 (2)0.038 (2)0.0053 (15)0.0039 (16)0.0067 (16)
C200.0208 (19)0.038 (2)0.048 (2)0.0006 (16)0.0128 (17)0.0100 (19)
C210.0213 (18)0.029 (2)0.0316 (18)0.0064 (15)0.0095 (14)0.0052 (15)
C220.0196 (16)0.0173 (16)0.0243 (16)0.0014 (13)0.0016 (13)0.0074 (13)
C230.0306 (19)0.0223 (18)0.0257 (17)0.0032 (14)0.0060 (14)0.0127 (14)
C240.045 (3)0.035 (2)0.041 (2)0.0154 (19)0.0193 (19)0.0165 (18)
C250.031 (2)0.048 (3)0.051 (3)0.0031 (19)0.0103 (19)0.025 (2)
C260.040 (2)0.035 (2)0.041 (2)0.0085 (18)0.0041 (18)0.0153 (19)
C270.045 (2)0.024 (2)0.0312 (19)0.0059 (17)0.0042 (17)0.0050 (16)
C280.0277 (18)0.0163 (16)0.0201 (15)0.0034 (13)0.0012 (13)0.0023 (13)
C290.044 (2)0.0202 (18)0.0263 (17)0.0090 (16)0.0053 (16)0.0098 (14)
C300.050 (3)0.025 (2)0.0313 (19)0.0127 (18)0.0006 (17)0.0121 (16)
C310.030 (2)0.029 (2)0.038 (2)0.0140 (16)0.0021 (16)0.0087 (16)
C320.0253 (19)0.0238 (18)0.0319 (18)0.0082 (15)0.0015 (15)0.0101 (15)
C330.0260 (18)0.0173 (16)0.0185 (15)0.0052 (13)0.0010 (13)0.0049 (12)
P10.0344 (6)0.0298 (6)0.0353 (5)0.0065 (4)0.0010 (4)0.0064 (4)
F10.133 (4)0.066 (2)0.091 (3)0.060 (3)0.006 (2)0.005 (2)
F20.096 (3)0.070 (3)0.112 (3)0.056 (2)0.019 (2)0.008 (2)
F30.084 (3)0.099 (3)0.110 (3)0.043 (2)0.042 (2)0.004 (2)
F40.111 (3)0.077 (2)0.0349 (15)0.005 (2)0.0047 (16)0.0191 (15)
F50.053 (2)0.093 (3)0.063 (2)0.0158 (18)0.0042 (16)0.0190 (18)
F60.070 (2)0.088 (3)0.0459 (16)0.0163 (19)0.0128 (15)0.0108 (16)
C1000.065 (4)0.095 (5)0.104 (5)0.049 (4)0.040 (4)0.058 (4)
Cl10.1117 (17)0.280 (4)0.207 (3)0.136 (2)0.1072 (19)0.200 (3)
Cl20.1235 (17)0.164 (2)0.165 (2)0.1046 (17)0.0989 (16)0.1237 (19)
N1000.054 (3)0.116 (5)0.056 (3)0.021 (3)0.011 (2)0.023 (3)
C1010.052 (3)0.090 (4)0.038 (3)0.022 (3)0.004 (2)0.026 (3)
C1020.073 (4)0.071 (4)0.079 (4)0.015 (3)0.030 (3)0.040 (3)
Geometric parameters (Å, º) top
Cu1—N12.005 (3)C10—C111.398 (5)
Cu1—S22.2977 (9)C10—H10A0.9500
Cu1—S3i2.2981 (10)C13—H13A0.9800
Cu1—S12.4573 (10)C13—H13B0.9800
Cu2—N42.018 (3)C13—H13C0.9800
Cu2—S32.3017 (9)C14—C151.536 (6)
Cu2—S12.3117 (9)C14—H14A0.9900
Cu2—S22.4312 (9)C14—H14B0.9900
Cu3—N72.017 (3)C15—H15A0.9900
Cu3—S1i2.2939 (10)C15—H15B0.9900
Cu3—S22.3079 (9)C16—H16A0.9800
Cu3—S32.4446 (10)C16—H16B0.9800
S1—C111.782 (3)C16—H16C0.9800
S1—Cu3i2.2939 (10)C17—C181.405 (5)
S2—C221.772 (3)C17—C221.418 (5)
S3—C331.779 (3)C18—C191.381 (5)
S3—Cu1i2.2981 (10)C18—H18A0.9500
N1—C11.339 (4)C19—C201.396 (6)
N1—C61.385 (4)C19—H19A0.9500
N2—C11.340 (5)C20—C211.376 (5)
N2—C21.450 (5)C20—H20A0.9500
N2—C31.461 (5)C21—C221.398 (5)
N3—C11.356 (4)C21—H21A0.9500
N3—C51.456 (5)C24—H24A0.9800
N3—C41.462 (5)C24—H24B0.9800
N4—C121.333 (4)C24—H24C0.9800
N4—C171.400 (4)C25—C261.525 (7)
N5—C121.355 (5)C25—H25A0.9900
N5—C131.433 (5)C25—H25B0.9900
N5—C141.443 (4)C26—H26A0.9900
N6—C121.339 (4)C26—H26B0.9900
N6—C161.458 (5)C27—H27A0.9800
N6—C151.465 (5)C27—H27B0.9800
N7—C231.333 (4)C27—H27C0.9800
N7—C281.387 (5)C28—C331.417 (5)
N8—C231.354 (5)C28—C291.418 (5)
N8—C241.445 (5)C29—C301.371 (6)
N8—C251.450 (5)C29—H29A0.9500
N9—C231.357 (5)C30—C311.374 (6)
N9—C271.470 (5)C30—H30A0.9500
N9—C261.483 (5)C31—C321.390 (5)
C2—H2A0.9800C31—H31A0.9500
C2—H2B0.9800C32—C331.399 (5)
C2—H2C0.9800C32—H32A0.9500
C3—C41.522 (6)P1—F21.555 (3)
C3—H3A0.9900P1—F31.568 (4)
C3—H3B0.9900P1—F41.579 (3)
C4—H4A0.9900P1—F11.587 (3)
C4—H4B0.9900P1—F61.589 (3)
C5—H5A0.9800P1—F51.590 (3)
C5—H5B0.9800C100—Cl11.685 (6)
C5—H5C0.9800C100—Cl21.692 (6)
C6—C111.408 (5)C100—H10B0.9900
C6—C71.424 (5)C100—H10C0.9900
C7—C81.373 (5)N100—C1011.156 (7)
C7—H7A0.9500C101—C1021.428 (8)
C8—C91.390 (6)C102—H10D0.9800
C8—H8A0.9500C102—H10E0.9800
C9—C101.393 (5)C102—H10F0.9800
C9—H9A0.9500
N1—Cu1—S2131.91 (9)H13A—C13—H13B109.5
N1—Cu1—S3i119.76 (9)N5—C13—H13C109.5
S2—Cu1—S3i93.84 (3)H13A—C13—H13C109.5
N1—Cu1—S185.99 (9)H13B—C13—H13C109.5
S2—Cu1—S1113.14 (3)N5—C14—C15102.7 (3)
S3i—Cu1—S1112.85 (3)N5—C14—H14A111.2
N4—Cu2—S3134.56 (8)C15—C14—H14A111.2
N4—Cu2—S1117.78 (8)N5—C14—H14B111.2
S3—Cu2—S192.23 (3)C15—C14—H14B111.2
N4—Cu2—S286.45 (8)H14A—C14—H14B109.1
S3—Cu2—S2113.28 (3)N6—C15—C14102.9 (3)
S1—Cu2—S2113.61 (3)N6—C15—H15A111.2
N7—Cu3—S1i134.18 (9)C14—C15—H15A111.2
N7—Cu3—S2119.29 (9)N6—C15—H15B111.2
S1i—Cu3—S291.71 (3)C14—C15—H15B111.2
N7—Cu3—S386.41 (9)H15A—C15—H15B109.1
S1i—Cu3—S3113.47 (3)N6—C16—H16A109.5
S2—Cu3—S3112.56 (3)N6—C16—H16B109.5
C11—S1—Cu3i116.61 (11)H16A—C16—H16B109.5
C11—S1—Cu2112.10 (11)N6—C16—H16C109.5
Cu3i—S1—Cu2110.12 (4)H16A—C16—H16C109.5
C11—S1—Cu192.50 (12)H16B—C16—H16C109.5
Cu3i—S1—Cu165.70 (3)N4—C17—C18123.0 (3)
Cu2—S1—Cu165.26 (3)N4—C17—C22119.5 (3)
C22—S2—Cu1115.66 (11)C18—C17—C22117.4 (3)
C22—S2—Cu3115.33 (11)C19—C18—C17121.7 (3)
Cu1—S2—Cu3109.54 (4)C19—C18—H18A119.2
C22—S2—Cu293.03 (12)C17—C18—H18A119.2
Cu1—S2—Cu265.89 (3)C18—C19—C20120.3 (4)
Cu3—S2—Cu266.17 (3)C18—C19—H19A119.9
C33—S3—Cu1i113.41 (11)C20—C19—H19A119.9
C33—S3—Cu2118.10 (12)C21—C20—C19119.4 (4)
Cu1i—S3—Cu2108.65 (3)C21—C20—H20A120.3
C33—S3—Cu392.50 (12)C19—C20—H20A120.3
Cu1i—S3—Cu365.86 (3)C20—C21—C22121.1 (3)
Cu2—S3—Cu366.04 (3)C20—C21—H21A119.5
C1—N1—C6120.3 (3)C22—C21—H21A119.5
C1—N1—Cu1117.8 (2)C21—C22—C17120.2 (3)
C6—N1—Cu1117.9 (2)C21—C22—S2117.8 (3)
C1—N2—C2124.9 (3)C17—C22—S2122.0 (3)
C1—N2—C3111.6 (3)N7—C23—N8122.1 (3)
C2—N2—C3121.4 (3)N7—C23—N9127.5 (3)
C1—N3—C5124.3 (3)N8—C23—N9110.4 (3)
C1—N3—C4110.7 (3)N8—C24—H24A109.5
C5—N3—C4119.4 (3)N8—C24—H24B109.5
C12—N4—C17120.5 (3)H24A—C24—H24B109.5
C12—N4—Cu2118.8 (2)N8—C24—H24C109.5
C17—N4—Cu2117.5 (2)H24A—C24—H24C109.5
C12—N5—C13126.2 (3)H24B—C24—H24C109.5
C12—N5—C14111.9 (3)N8—C25—C26102.7 (3)
C13—N5—C14121.7 (3)N8—C25—H25A111.2
C12—N6—C16126.7 (3)C26—C25—H25A111.2
C12—N6—C15111.3 (3)N8—C25—H25B111.2
C16—N6—C15121.0 (3)C26—C25—H25B111.2
C23—N7—C28120.0 (3)H25A—C25—H25B109.1
C23—N7—Cu3117.7 (2)N9—C26—C25102.3 (3)
C28—N7—Cu3117.1 (2)N9—C26—H26A111.3
C23—N8—C24123.9 (3)C25—C26—H26A111.3
C23—N8—C25110.6 (3)N9—C26—H26B111.3
C24—N8—C25120.5 (3)C25—C26—H26B111.3
C23—N9—C27122.2 (3)H26A—C26—H26B109.2
C23—N9—C26109.0 (3)N9—C27—H27A109.5
C27—N9—C26116.2 (3)N9—C27—H27B109.5
N1—C1—N2123.1 (3)H27A—C27—H27B109.5
N1—C1—N3126.5 (3)N9—C27—H27C109.5
N2—C1—N3110.3 (3)H27A—C27—H27C109.5
N2—C2—H2A109.5H27B—C27—H27C109.5
N2—C2—H2B109.5N7—C28—C33120.4 (3)
H2A—C2—H2B109.5N7—C28—C29122.7 (3)
N2—C2—H2C109.5C33—C28—C29116.7 (3)
H2A—C2—H2C109.5C30—C29—C28121.8 (4)
H2B—C2—H2C109.5C30—C29—H29A119.1
N2—C3—C4103.3 (3)C28—C29—H29A119.1
N2—C3—H3A111.1C29—C30—C31120.8 (3)
C4—C3—H3A111.1C29—C30—H30A119.6
N2—C3—H3B111.1C31—C30—H30A119.6
C4—C3—H3B111.1C30—C31—C32119.7 (4)
H3A—C3—H3B109.1C30—C31—H31A120.1
N3—C4—C3103.9 (3)C32—C31—H31A120.1
N3—C4—H4A111.0C31—C32—C33120.4 (3)
C3—C4—H4A111.0C31—C32—H32A119.8
N3—C4—H4B111.0C33—C32—H32A119.8
C3—C4—H4B111.0C32—C33—C28120.6 (3)
H4A—C4—H4B109.0C32—C33—S3117.7 (3)
N3—C5—H5A109.5C28—C33—S3121.7 (3)
N3—C5—H5B109.5F2—P1—F392.8 (3)
H5A—C5—H5B109.5F2—P1—F490.9 (2)
N3—C5—H5C109.5F3—P1—F493.1 (2)
H5A—C5—H5C109.5F2—P1—F1176.4 (3)
H5B—C5—H5C109.5F3—P1—F190.5 (3)
N1—C6—C11120.4 (3)F4—P1—F190.6 (2)
N1—C6—C7122.7 (3)F2—P1—F690.8 (2)
C11—C6—C7116.7 (3)F3—P1—F689.5 (2)
C8—C7—C6121.5 (4)F4—P1—F6176.8 (2)
C8—C7—H7A119.3F1—P1—F687.5 (2)
C6—C7—H7A119.3F2—P1—F588.3 (2)
C7—C8—C9120.9 (3)F3—P1—F5178.7 (2)
C7—C8—H8A119.6F4—P1—F587.59 (19)
C9—C8—H8A119.6F1—P1—F588.4 (2)
C8—C9—C10119.3 (4)F6—P1—F589.74 (19)
C8—C9—H9A120.3Cl1—C100—Cl2116.3 (3)
C10—C9—H9A120.3Cl1—C100—H10B108.2
C9—C10—C11120.2 (3)Cl2—C100—H10B108.2
C9—C10—H10A119.9Cl1—C100—H10C108.2
C11—C10—H10A119.9Cl2—C100—H10C108.2
C10—C11—C6121.3 (3)H10B—C100—H10C107.4
C10—C11—S1117.0 (3)N100—C101—C102176.3 (7)
C6—C11—S1121.6 (3)C101—C102—H10D109.5
N4—C12—N6128.3 (3)C101—C102—H10E109.5
N4—C12—N5122.1 (3)H10D—C102—H10E109.5
N6—C12—N5109.6 (3)C101—C102—H10F109.5
N5—C13—H13A109.5H10D—C102—H10F109.5
N5—C13—H13B109.5H10E—C102—H10F109.5
N4—Cu2—S1—C115.52 (16)C1—N1—C6—C11146.9 (3)
S3—Cu2—S1—C11150.02 (13)Cu1—N1—C6—C1110.2 (4)
S2—Cu2—S1—C1193.33 (13)C1—N1—C6—C736.9 (5)
N4—Cu2—S1—Cu3i137.09 (9)Cu1—N1—C6—C7166.0 (3)
S3—Cu2—S1—Cu3i78.41 (4)N1—C6—C7—C8178.4 (3)
S2—Cu2—S1—Cu3i38.24 (5)C11—C6—C7—C82.1 (5)
N4—Cu2—S1—Cu187.73 (9)C6—C7—C8—C90.1 (6)
S3—Cu2—S1—Cu1127.77 (3)C7—C8—C9—C100.9 (6)
S2—Cu2—S1—Cu111.11 (3)C8—C9—C10—C110.2 (5)
N1—Cu1—S1—C119.32 (13)C9—C10—C11—C62.4 (5)
S2—Cu1—S1—C11124.97 (11)C9—C10—C11—S1177.8 (3)
S3i—Cu1—S1—C11130.02 (11)N1—C6—C11—C10179.7 (3)
N1—Cu1—S1—Cu3i108.86 (9)C7—C6—C11—C103.3 (5)
S2—Cu1—S1—Cu3i116.85 (3)N1—C6—C11—S10.5 (4)
S3i—Cu1—S1—Cu3i11.84 (3)C7—C6—C11—S1176.9 (3)
N1—Cu1—S1—Cu2122.56 (9)Cu3i—S1—C11—C10123.8 (2)
S2—Cu1—S1—Cu211.73 (3)Cu2—S1—C11—C10108.0 (3)
S3i—Cu1—S1—Cu2116.74 (3)Cu1—S1—C11—C10172.2 (2)
N1—Cu1—S2—C2213.93 (18)Cu3i—S1—C11—C656.0 (3)
S3i—Cu1—S2—C22150.72 (13)Cu2—S1—C11—C672.2 (3)
S1—Cu1—S2—C2292.41 (13)Cu1—S1—C11—C67.9 (3)
N1—Cu1—S2—Cu3146.33 (12)C17—N4—C12—N636.2 (5)
S3i—Cu1—S2—Cu376.88 (4)Cu2—N4—C12—N6123.1 (3)
S1—Cu1—S2—Cu339.98 (5)C17—N4—C12—N5146.0 (3)
N1—Cu1—S2—Cu295.26 (12)Cu2—N4—C12—N554.7 (4)
S3i—Cu1—S2—Cu2127.95 (3)C16—N6—C12—N411.8 (6)
S1—Cu1—S2—Cu211.08 (3)C15—N6—C12—N4179.4 (3)
N7—Cu3—S2—C226.66 (16)C16—N6—C12—N5166.2 (3)
S1i—Cu3—S2—C22151.36 (13)C15—N6—C12—N52.5 (4)
S3—Cu3—S2—C2292.29 (13)C13—N5—C12—N42.4 (6)
N7—Cu3—S2—Cu1139.22 (10)C14—N5—C12—N4172.1 (3)
S1i—Cu3—S2—Cu176.07 (4)C13—N5—C12—N6179.4 (3)
S3—Cu3—S2—Cu140.28 (4)C14—N5—C12—N66.1 (4)
N7—Cu3—S2—Cu288.31 (10)C12—N5—C14—C1511.4 (4)
S1i—Cu3—S2—Cu2126.98 (3)C13—N5—C14—C15173.8 (3)
S3—Cu3—S2—Cu210.63 (3)C12—N6—C15—C149.3 (4)
N4—Cu2—S2—C229.82 (13)C16—N6—C15—C14160.2 (3)
S3—Cu2—S2—C22127.79 (11)N5—C14—C15—N611.8 (4)
S1—Cu2—S2—C22128.67 (11)C12—N4—C17—C1831.7 (5)
N4—Cu2—S2—Cu1107.01 (8)Cu2—N4—C17—C18168.8 (3)
S3—Cu2—S2—Cu1115.38 (3)C12—N4—C17—C22153.1 (3)
S1—Cu2—S2—Cu111.83 (3)Cu2—N4—C17—C226.5 (4)
N4—Cu2—S2—Cu3126.24 (8)N4—C17—C18—C19175.3 (3)
S3—Cu2—S2—Cu311.36 (3)C22—C17—C18—C190.0 (5)
S1—Cu2—S2—Cu3114.91 (3)C17—C18—C19—C200.3 (6)
N4—Cu2—S3—C3319.03 (17)C18—C19—C20—C210.0 (6)
S1—Cu2—S3—C33152.89 (13)C19—C20—C21—C220.7 (6)
S2—Cu2—S3—C3390.17 (13)C20—C21—C22—C171.0 (6)
N4—Cu2—S3—Cu1i149.98 (11)C20—C21—C22—S2179.4 (3)
S1—Cu2—S3—Cu1i76.16 (4)N4—C17—C22—C21174.8 (3)
S2—Cu2—S3—Cu1i40.78 (4)C18—C17—C22—C210.7 (5)
N4—Cu2—S3—Cu398.47 (11)N4—C17—C22—S24.8 (4)
S1—Cu2—S3—Cu3127.67 (3)C18—C17—C22—S2179.7 (3)
S2—Cu2—S3—Cu310.73 (3)Cu1—S2—C22—C21126.2 (3)
N7—Cu3—S3—C3310.70 (14)Cu3—S2—C22—C21104.1 (3)
S1i—Cu3—S3—C33126.53 (11)Cu2—S2—C22—C21169.1 (3)
S2—Cu3—S3—C33131.02 (11)Cu1—S2—C22—C1754.1 (3)
N7—Cu3—S3—Cu1i125.29 (9)Cu3—S2—C22—C1775.5 (3)
S1i—Cu3—S3—Cu1i11.94 (3)Cu2—S2—C22—C1710.5 (3)
S2—Cu3—S3—Cu1i114.39 (3)C28—N7—C23—N8153.4 (3)
N7—Cu3—S3—Cu2109.07 (9)Cu3—N7—C23—N852.6 (4)
S1i—Cu3—S3—Cu2113.70 (3)C28—N7—C23—N928.1 (5)
S2—Cu3—S3—Cu211.25 (3)Cu3—N7—C23—N9125.9 (3)
S2—Cu1—N1—C196.4 (3)C24—N8—C23—N720.5 (5)
S3i—Cu1—N1—C131.7 (3)C25—N8—C23—N7175.5 (3)
S1—Cu1—N1—C1145.8 (3)C24—N8—C23—N9160.8 (3)
S2—Cu1—N1—C6105.9 (2)C25—N8—C23—N95.8 (4)
S3i—Cu1—N1—C6126.0 (2)C27—N9—C23—N729.0 (6)
S1—Cu1—N1—C611.9 (2)C26—N9—C23—N7169.2 (3)
S3—Cu2—N4—C1290.9 (3)C27—N9—C23—N8149.6 (3)
S1—Cu2—N4—C1234.6 (3)C26—N9—C23—N89.4 (4)
S2—Cu2—N4—C12149.5 (2)C23—N8—C25—C2617.7 (4)
S3—Cu2—N4—C17109.2 (2)C24—N8—C25—C26173.6 (4)
S1—Cu2—N4—C17125.3 (2)C23—N9—C26—C2519.5 (4)
S2—Cu2—N4—C1710.4 (2)C27—N9—C26—C25162.4 (3)
S1i—Cu3—N7—C2397.8 (3)N8—C25—C26—N921.5 (4)
S2—Cu3—N7—C2328.6 (3)C23—N7—C28—C33145.3 (3)
S3—Cu3—N7—C23142.5 (3)Cu3—N7—C28—C338.9 (4)
S1i—Cu3—N7—C28107.5 (2)C23—N7—C28—C2940.3 (5)
S2—Cu3—N7—C28126.2 (2)Cu3—N7—C28—C29165.5 (3)
S3—Cu3—N7—C2812.2 (2)N7—C28—C29—C30175.1 (3)
C6—N1—C1—N2152.7 (3)C33—C28—C29—C300.6 (5)
Cu1—N1—C1—N250.2 (4)C28—C29—C30—C310.0 (6)
C6—N1—C1—N331.1 (5)C29—C30—C31—C320.3 (6)
Cu1—N1—C1—N3126.0 (3)C30—C31—C32—C330.1 (6)
C2—N2—C1—N116.7 (6)C31—C32—C33—C280.7 (5)
C3—N2—C1—N1179.7 (3)C31—C32—C33—S3178.3 (3)
C2—N2—C1—N3166.5 (4)N7—C28—C33—C32175.6 (3)
C3—N2—C1—N32.9 (4)C29—C28—C33—C320.9 (5)
C5—N3—C1—N123.3 (6)N7—C28—C33—S33.3 (4)
C4—N3—C1—N1176.4 (3)C29—C28—C33—S3178.0 (3)
C5—N3—C1—N2153.3 (4)Cu1i—S3—C33—C32103.8 (3)
C4—N3—C1—N20.2 (4)Cu2—S3—C33—C32127.5 (2)
C1—N2—C3—C44.6 (4)Cu3—S3—C33—C32168.5 (3)
C2—N2—C3—C4168.8 (4)Cu1i—S3—C33—C2875.2 (3)
C1—N3—C4—C33.0 (4)Cu2—S3—C33—C2853.6 (3)
C5—N3—C4—C3157.6 (3)Cu3—S3—C33—C2810.5 (3)
N2—C3—C4—N34.4 (4)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C31—H31A···F6i0.952.493.290 (5)141
C102—H10F···F4ii0.982.433.173 (6)133
C102—H10E···F1iii0.982.443.187 (7)133
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1; (iii) x1, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu6(C11H14N3S)6](PF6)2·2C2H3N·2CH2Cl2
Mr2245.01
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)13.019 (2), 13.687 (3), 13.875 (3)
α, β, γ (°)108.371 (4), 94.768 (4), 102.691 (4)
V3)2257.8 (7)
Z1
Radiation typeMo Kα
µ (mm1)1.76
Crystal size (mm)0.44 × 0.38 × 0.25
Data collection
DiffractometerBruker SMART APEX
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.512, 0.668
No. of measured, independent and
observed [I > 2σ(I)] reflections
18315, 10640, 8260
Rint0.031
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.138, 1.03
No. of reflections10640
No. of parameters557
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.97, 0.90

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C31—H31A···F6i0.952.493.290 (5)141.1
C102—H10F···F4ii0.982.433.173 (6)132.7
C102—H10E···F1iii0.982.443.187 (7)133.2
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z+1; (iii) x1, y+1, z.
 

Acknowledgements

We thank the German Research Council (DFG) and the Federal Ministry of Education and Research (BMBF) for continuous support of our work.

References

First citationBienemann, O., Hoffmann, A. & Herres-Pawlis, S. (2011). Rev. Inorg. Chem. 31, 83–108.  Web of Science CrossRef CAS Google Scholar
First citationBörner, J., Flörke, U., Huber, K., Döring, A., Kuckling, D. & Herres-Pawlis, S. (2009). Chem. Eur. J. 15, 2362–2376.  Web of Science PubMed Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHerres-Pawlis, S., Neuba, A., Seewald, O., Seshadri, T., Egold, H., Flörke, U. & Henkel, G. (2005). Eur. J. Org. Chem. pp. 4879–4890.  Web of Science CSD CrossRef Google Scholar
First citationHerres-Pawlis, S., Verma, P., Haase, R., Kang, P., Lyons, C. T., Wasinger, E. C., Flörke, U., Henkel, G. & Stack, T. D. P. (2009). J. Am. Chem. Soc. 131, 1154–1169.  Web of Science PubMed CAS Google Scholar
First citationNeuba, A., Flörke, U., Meyer-Klaucke, W., Salomone-Stagni, M., Bill, E., Bothe, E., Höfer, P. & Henkel, G. (2011). Angew. Chem. 123, 4596–4600.  CrossRef Google Scholar
First citationNeuba, A., Haase, R., Bernard, M., Flörke, U. & Herres-Pawlis, S. (2008). Z. Anorg. Allg. Chem. 634, 2511–2517.  Web of Science CSD CrossRef CAS Google Scholar
First citationNeuba, A., Haase, R. U., Meyer-Klaucke, W., Flörke, U. & Henkel, G. (2012). Angew. Chem. 124, 1746–1750.  CrossRef Google Scholar
First citationNeuba, A., Herres-Pawlis, S., Seewald, O., Börner, J., Heuwing, J., Flörke, U. & Henkel, G. (2010). Z. Anorg. Allg. Chem. 636, 2641–2649.  Web of Science CSD CrossRef CAS Google Scholar
First citationPohl, S., Harmjanz, M., Schneider, J., Saak, W. & Henkel, G. (2000). J. Chem. Soc. Dalton Trans. pp. 3473–3479.  Web of Science CrossRef Google Scholar
First citationRaab, V., Harms, K., Sundermeyer, J., Kovacevic, B. & Maksic, Z. B. (2003). J. Org. Chem. 68, 8790–8797.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWittmann, H., Raab, V., Schorm, A., Plackmeyer, J. & Sundermeyer, J. (2001). Eur. J. Inorg. Chem. pp. 1937–1948.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds