metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Benzyl­tri­phenyl­phospho­nium di­chlorido­tri­phenyl­stannate(IV)

aDepartement de Chimie, Faculté des Sciences et Techniques, Université Cheikh, Anta Diop, Dakar, Senegal, and bCNRS, Université de Bordeaux, ICMCB, UPR 9048, 87 avenue du Dr A. Schweitzer, F-33608 Pessac, France
*Correspondence e-mail: dlibasse@gmail.com

(Received 30 September 2012; accepted 3 December 2012; online 12 December 2012)

The crystal structure of the title salt, (C25H22P)[Sn(C6H5)3Cl2] or (PhCH2PPh3)[SnPh3Cl2], consists of [PhCH2PPh3]+ cations and [SnPh3Cl2] anions in which the SnIV atom is linked to two Cl atoms and three phenyl groups in a trigonal–bipyramidal geometry, with the Cl atoms in trans positions. The cation adopts a tetra­hedral geometry. In the crystal, the cations and the anions are connected by C—H⋯Cl hydrogen bonds, leading to an infinite chain propagating along the c direction.

Related literature

For the [SnPh3Cl2] anion, see: Harrison et al. (1978[Harrison, P. G., Molloy, K. C., Phillips, R. C., Smith, P. J. & Crowe, A. J. (1978). J. Organomet. Chem. 160, 421-434.]); Ng (1995[Ng, S. W. (1995). Acta Cryst. C51, 1124-1125.]). For applications of tin based materials, see: Dutrecq et al. (1992[Dutrecq, A., Willem, R., Biesemans, M., Bouâlam, M., Meriem, A. & Gielen, M. (1992). Main Group Met. Chem. 15, 285-291.]).

[Scheme 1]

Experimental

Crystal data
  • (C25H22P)[Sn(C6H5)3Cl2]

  • Mr = 774.29

  • Monoclinic, P 21 /c

  • a = 10.0222 (2) Å

  • b = 17.1480 (3) Å

  • c = 21.2925 (4) Å

  • β = 92.042 (1)°

  • V = 3657.02 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.92 mm−1

  • T = 293 K

  • 0.25 × 0.25 × 0.25 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.803, Tmax = 0.803

  • 29025 measured reflections

  • 9370 independent reflections

  • 6243 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.102

  • S = 1.03

  • 9370 reflections

  • 425 parameters

  • H-atom parameters constrained

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.76 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C35—H35⋯Cl2 0.93 2.94 3.696 (3) 139
C37—H37A⋯Cl1i 0.97 2.84 3.743 (3) 155
C30—H30⋯Cl1i 0.93 2.67 3.596 (3) 171
Symmetry code: (i) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 2003[Nonius (2003). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The structure of [SnPh3Cl2]- stabilized with different counterions have been reported (Harrison et al., 1978; Ng, 1995). In the scope of our research work toward new organotin (IV) compounds, owing to their various applications: agrochemicals, surface disinfectants, wood preservatives, and marine-antifouling paints (Dutrecq et al., 1992), we report here the crystal structure of [PhCH2PPh3][SnPh3Cl2].

In the asymmetric unit of the title compound (Fig. 1), the anion [SnPh3Cl2]- adopts a trigonal bipyramidal geometry, the chloride atoms occupy the apical positions while the phenyl groups are equatorial. The Sn—C bonds are [2.135 (3); 2.142 (3); 2.153 (3) Å] while the Sn—Cl distances [2.5795 (7); 2.6127 (7) Å] are very similar to the unique Sn—Cl distance value [2.598 (1) Å] (Ng, 1995) but respectively longer and shorter than those [2.573 (7); 2.689 (6) Å] reported (Harrison et al., 1978) within the same anion. The sum of the equatorial angles (360°) is consistent with almost perfectly planar SnPh3 residue, while the Cl—Sn—Cl deviates from linearity [175.77 (3)°].

[SnPh3Cl2]- and [PhCH2PPh3]+ are linked through short C—H···Cl contacts (Table1 & Fig.2).

Related literature top

For the [SnPh3Cl2]- anion, see: Harrison et al. (1978); Ng (1995). For applications of tin based materials, see: Dutrecq et al. (1992).

Experimental top

All chemicals were purchased from Aldrich (Germany) and used without any further purification. The studied adduct is obtained following a two stage reaction. Synthesis of (PhCH2PPh3)2PhAsO3: this salt is obtained by neutralization of PhAsO3H2 (9.899 mmol in water) by PhCH2Ph3PCl (19.798 mmol in ethanolic solution) according to the following reaction:

PhAsO3H2 + 2(PhCH2PPh3Cl) [(PhCH2PPh3)2PhAsO3] + 2HCl

Synthesis of [PhCH2PPh3][SnPh3Cl2]: this compound was obtained by mixing ethanolic solutions of (PhCH2PPh3)2PhAsO3 (0.5 mmol) and SnPh3Cl (1.0 mmoL) in a 1/2 ratio. The mixture was stirred for around two hours at room temperature. Suitable crystals for X-ray diffraction were obtained after slow solvent evaporation. (m.p. 393 K). The title compound was isolated according to the following reaction:

[PhCH2PPh3]2[PhAsO3] + 2SnPh3Cl [PhCH2PPh3][SnPh3Cl2] + [PhCH2PPh3.PhAsO3][SnPh3]

Refinement top

All H atoms were placed in geometrically calculated positions (d(C–H)=0.93 Å for phenyl-H and 0.97 Å for methyelene-H) and refined using a riding model with Uiso(H)=1.2Ueq of the respective carrier atom.

Structure description top

The structure of [SnPh3Cl2]- stabilized with different counterions have been reported (Harrison et al., 1978; Ng, 1995). In the scope of our research work toward new organotin (IV) compounds, owing to their various applications: agrochemicals, surface disinfectants, wood preservatives, and marine-antifouling paints (Dutrecq et al., 1992), we report here the crystal structure of [PhCH2PPh3][SnPh3Cl2].

In the asymmetric unit of the title compound (Fig. 1), the anion [SnPh3Cl2]- adopts a trigonal bipyramidal geometry, the chloride atoms occupy the apical positions while the phenyl groups are equatorial. The Sn—C bonds are [2.135 (3); 2.142 (3); 2.153 (3) Å] while the Sn—Cl distances [2.5795 (7); 2.6127 (7) Å] are very similar to the unique Sn—Cl distance value [2.598 (1) Å] (Ng, 1995) but respectively longer and shorter than those [2.573 (7); 2.689 (6) Å] reported (Harrison et al., 1978) within the same anion. The sum of the equatorial angles (360°) is consistent with almost perfectly planar SnPh3 residue, while the Cl—Sn—Cl deviates from linearity [175.77 (3)°].

[SnPh3Cl2]- and [PhCH2PPh3]+ are linked through short C—H···Cl contacts (Table1 & Fig.2).

For the [SnPh3Cl2]- anion, see: Harrison et al. (1978); Ng (1995). For applications of tin based materials, see: Dutrecq et al. (1992).

Computing details top

Data collection: COLLECT (Nonius, 2003); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Hydrogen atoms have been omitted for clarity. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Molecular packing showing hydrogen bonding interactions C—H···Cl (blue lines). H atoms non-participating in hydrogen bonding were omitted for clarity.
Benzyltriphenylphosphonium dichloridotriphenylstannate(IV) top
Crystal data top
(C25H22P)[Sn(C6H5)3Cl2]F(000) = 1576
Mr = 774.29Dx = 1.406 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 57161 reflections
a = 10.0222 (2) Åθ = 1.0–28.7°
b = 17.1480 (3) ŵ = 0.92 mm1
c = 21.2925 (4) ÅT = 293 K
β = 92.042 (1)°Prism, colorless
V = 3657.02 (12) Å30.25 × 0.25 × 0.25 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
9370 independent reflections
Radiation source: fine-focus sealed tube6243 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
φ scans, andω scans with κ offsetθmax = 28.6°, θmin = 1.9°
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
h = 1313
Tmin = 0.803, Tmax = 0.803k = 2323
29025 measured reflectionsl = 2824
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0443P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.003
9370 reflectionsΔρmax = 0.80 e Å3
425 parametersΔρmin = 0.76 e Å3
0 restraintsExtinction correction: SHELXS97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00069 (19)
Crystal data top
(C25H22P)[Sn(C6H5)3Cl2]V = 3657.02 (12) Å3
Mr = 774.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.0222 (2) ŵ = 0.92 mm1
b = 17.1480 (3) ÅT = 293 K
c = 21.2925 (4) Å0.25 × 0.25 × 0.25 mm
β = 92.042 (1)°
Data collection top
Nonius KappaCCD
diffractometer
9370 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
6243 reflections with I > 2σ(I)
Tmin = 0.803, Tmax = 0.803Rint = 0.072
29025 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.03Δρmax = 0.80 e Å3
9370 reflectionsΔρmin = 0.76 e Å3
425 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.056967 (18)0.189828 (11)0.831152 (8)0.03831 (8)
P10.60102 (8)0.16081 (5)0.49141 (3)0.04170 (18)
Cl20.12400 (8)0.07857 (4)0.75709 (4)0.05285 (19)
Cl10.00860 (8)0.29530 (5)0.91305 (4)0.05139 (19)
C10.1426 (3)0.27746 (17)0.77245 (13)0.0422 (6)
C20.0886 (3)0.35192 (18)0.76919 (15)0.0514 (7)
H20.01960.36520.79520.062*
C60.2473 (3)0.2593 (2)0.73420 (15)0.0547 (8)
H60.28510.20980.73560.066*
C50.2958 (4)0.3156 (2)0.69355 (17)0.0676 (10)
H50.36690.30360.66830.081*
C40.2394 (4)0.3881 (2)0.69064 (17)0.0684 (10)
H40.27170.42510.66310.082*
C30.1358 (4)0.4067 (2)0.72789 (16)0.0619 (9)
H30.09720.45590.72540.074*
C380.7056 (3)0.30371 (17)0.53593 (14)0.0496 (7)
C370.6618 (3)0.25886 (18)0.47796 (14)0.0507 (7)
H37A0.73660.25570.45040.061*
H37B0.59170.28820.45600.061*
C430.8381 (4)0.3060 (2)0.55450 (17)0.0669 (10)
H430.89980.27840.53160.080*
C70.1504 (3)0.16911 (17)0.81155 (14)0.0432 (6)
C120.2192 (3)0.1080 (2)0.83806 (17)0.0599 (9)
H120.17440.07410.86560.072*
C80.2210 (4)0.2173 (2)0.77078 (19)0.0694 (10)
H80.17750.25900.75250.083*
C100.4208 (4)0.1446 (2)0.7825 (2)0.0746 (11)
H100.51050.13570.77220.090*
C110.3545 (4)0.0967 (2)0.8240 (2)0.0748 (11)
H110.39980.05620.84300.090*
C130.1596 (3)0.12843 (16)0.90599 (13)0.0434 (6)
C140.0930 (4)0.1035 (2)0.95780 (15)0.0612 (9)
H140.00250.11460.96060.073*
C180.2933 (3)0.1121 (2)0.90324 (16)0.0621 (9)
H180.34020.12760.86850.074*
C390.6143 (4)0.3431 (2)0.57196 (17)0.0664 (9)
H390.52350.34090.56140.080*
C420.8818 (4)0.3480 (3)0.60595 (19)0.0879 (14)
H420.97210.34900.61750.106*
C170.3594 (4)0.0720 (3)0.9525 (2)0.0814 (12)
H170.45060.06230.95100.098*
C150.1576 (4)0.0626 (2)1.00562 (18)0.0780 (11)
H150.11020.04581.03980.094*
C160.2897 (5)0.0469 (2)1.00310 (19)0.0824 (12)
H160.33300.01931.03540.099*
C90.3557 (4)0.2053 (3)0.7564 (2)0.0876 (13)
H90.40130.23880.72880.105*
C400.6596 (5)0.3860 (2)0.62403 (19)0.0838 (13)
H400.59900.41310.64790.101*
C410.7921 (5)0.3884 (3)0.64018 (19)0.0862 (13)
H410.82170.41770.67470.103*
C310.4480 (3)0.16491 (17)0.53283 (13)0.0420 (6)
C320.3462 (3)0.2142 (2)0.51172 (16)0.0571 (8)
H320.35940.24740.47790.068*
C360.4276 (3)0.11637 (18)0.58369 (14)0.0507 (7)
H360.49510.08320.59840.061*
C340.2063 (4)0.1663 (2)0.59126 (18)0.0657 (10)
H340.12510.16700.61110.079*
C330.2255 (3)0.2142 (2)0.54078 (17)0.0659 (9)
H330.15690.24670.52610.079*
C350.3058 (4)0.1177 (2)0.61241 (16)0.0620 (9)
H350.29170.08520.64650.074*
C250.5706 (3)0.11860 (18)0.41469 (13)0.0460 (7)
C260.4456 (3)0.0926 (2)0.39523 (15)0.0566 (8)
H260.37470.09590.42210.068*
C300.6763 (3)0.1134 (2)0.37403 (14)0.0582 (8)
H300.76050.13180.38630.070*
C270.4260 (4)0.0616 (2)0.33573 (17)0.0699 (10)
H270.34160.04470.32230.084*
C280.5301 (4)0.0557 (2)0.29691 (16)0.0731 (11)
H280.51610.03430.25710.088*
C290.6545 (4)0.0806 (2)0.31523 (16)0.0710 (10)
H290.72490.07550.28820.085*
C190.7220 (3)0.10487 (17)0.53669 (14)0.0438 (6)
C200.7749 (3)0.03695 (19)0.51251 (16)0.0532 (8)
H200.74900.02030.47230.064*
C240.7603 (3)0.1281 (2)0.59706 (15)0.0580 (8)
H240.72330.17260.61420.070*
C210.8664 (3)0.0061 (2)0.54841 (19)0.0671 (10)
H210.90120.05210.53250.080*
C230.8526 (4)0.0853 (2)0.63147 (17)0.0710 (10)
H230.87920.10180.67160.085*
C220.9059 (4)0.0190 (3)0.6076 (2)0.0727 (11)
H220.96890.00920.63120.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.03712 (11)0.04086 (12)0.03680 (11)0.00303 (8)0.00100 (7)0.00082 (8)
P10.0413 (4)0.0461 (4)0.0374 (4)0.0044 (3)0.0027 (3)0.0008 (3)
Cl20.0652 (5)0.0463 (4)0.0473 (4)0.0065 (4)0.0060 (3)0.0056 (3)
Cl10.0534 (4)0.0544 (4)0.0463 (4)0.0097 (4)0.0002 (3)0.0090 (3)
C10.0402 (15)0.0449 (15)0.0413 (15)0.0045 (13)0.0026 (12)0.0017 (13)
C20.0552 (18)0.0433 (17)0.0557 (18)0.0043 (15)0.0008 (14)0.0006 (14)
C60.0542 (19)0.0526 (19)0.0577 (19)0.0007 (16)0.0095 (15)0.0025 (15)
C50.066 (2)0.079 (3)0.059 (2)0.021 (2)0.0152 (18)0.0001 (18)
C40.089 (3)0.058 (2)0.058 (2)0.027 (2)0.0060 (19)0.0144 (17)
C30.080 (2)0.0432 (17)0.061 (2)0.0042 (18)0.0120 (18)0.0099 (16)
C380.0605 (19)0.0449 (17)0.0435 (16)0.0105 (15)0.0022 (14)0.0030 (13)
C370.0569 (18)0.0494 (17)0.0461 (17)0.0106 (15)0.0034 (14)0.0005 (14)
C430.056 (2)0.083 (3)0.062 (2)0.0204 (19)0.0075 (16)0.0217 (19)
C70.0382 (14)0.0452 (16)0.0459 (16)0.0028 (13)0.0020 (12)0.0035 (13)
C120.0490 (18)0.0528 (19)0.077 (2)0.0025 (16)0.0096 (16)0.0087 (17)
C80.0503 (19)0.070 (2)0.086 (3)0.0014 (18)0.0163 (18)0.025 (2)
C100.0407 (18)0.081 (3)0.101 (3)0.001 (2)0.0126 (19)0.012 (2)
C110.048 (2)0.067 (2)0.110 (3)0.0116 (19)0.001 (2)0.004 (2)
C130.0453 (16)0.0420 (15)0.0424 (15)0.0074 (13)0.0072 (12)0.0028 (13)
C140.062 (2)0.070 (2)0.0514 (19)0.0067 (18)0.0014 (15)0.0151 (17)
C180.0497 (18)0.077 (2)0.058 (2)0.0162 (18)0.0059 (15)0.0075 (18)
C390.070 (2)0.059 (2)0.070 (2)0.0042 (19)0.0032 (19)0.0080 (18)
C420.077 (3)0.115 (4)0.071 (3)0.035 (3)0.002 (2)0.025 (3)
C170.068 (2)0.095 (3)0.079 (3)0.036 (2)0.025 (2)0.011 (2)
C150.096 (3)0.082 (3)0.056 (2)0.003 (2)0.008 (2)0.021 (2)
C160.106 (3)0.077 (3)0.062 (2)0.029 (3)0.030 (2)0.007 (2)
C90.054 (2)0.094 (3)0.113 (4)0.012 (2)0.028 (2)0.026 (3)
C400.117 (4)0.073 (3)0.063 (2)0.007 (3)0.018 (2)0.019 (2)
C410.116 (4)0.084 (3)0.058 (2)0.032 (3)0.003 (2)0.023 (2)
C310.0397 (15)0.0454 (15)0.0405 (15)0.0030 (13)0.0018 (12)0.0029 (12)
C320.0489 (18)0.067 (2)0.0549 (19)0.0024 (16)0.0030 (14)0.0130 (17)
C360.0597 (19)0.0452 (17)0.0476 (17)0.0024 (15)0.0076 (14)0.0035 (13)
C340.051 (2)0.076 (2)0.071 (2)0.0071 (19)0.0140 (17)0.015 (2)
C330.0440 (18)0.083 (3)0.070 (2)0.0124 (18)0.0071 (16)0.007 (2)
C350.074 (2)0.056 (2)0.057 (2)0.0088 (19)0.0228 (18)0.0001 (16)
C250.0502 (16)0.0496 (17)0.0378 (15)0.0092 (14)0.0041 (12)0.0003 (13)
C260.0509 (18)0.068 (2)0.0503 (18)0.0128 (17)0.0074 (14)0.0029 (16)
C300.0579 (19)0.068 (2)0.0485 (18)0.0169 (18)0.0013 (15)0.0095 (16)
C270.077 (2)0.076 (2)0.055 (2)0.030 (2)0.0251 (18)0.0039 (18)
C280.107 (3)0.070 (2)0.0406 (18)0.024 (2)0.0170 (19)0.0041 (17)
C290.091 (3)0.080 (3)0.0430 (18)0.018 (2)0.0107 (18)0.0062 (18)
C190.0385 (14)0.0457 (16)0.0468 (16)0.0023 (13)0.0028 (12)0.0033 (13)
C200.0506 (18)0.0546 (19)0.0543 (18)0.0031 (16)0.0009 (14)0.0032 (15)
C240.063 (2)0.059 (2)0.0512 (18)0.0004 (17)0.0140 (15)0.0041 (16)
C210.055 (2)0.056 (2)0.091 (3)0.0112 (18)0.0097 (19)0.014 (2)
C230.069 (2)0.083 (3)0.058 (2)0.009 (2)0.0234 (18)0.013 (2)
C220.054 (2)0.081 (3)0.082 (3)0.005 (2)0.0111 (19)0.026 (2)
Geometric parameters (Å, º) top
Sn1—C72.135 (3)C42—C411.366 (6)
Sn1—C132.142 (3)C42—H420.9300
Sn1—C12.153 (3)C17—C161.373 (6)
Sn1—Cl22.5795 (7)C17—H170.9300
Sn1—Cl12.6127 (7)C15—C161.354 (6)
P1—C311.797 (3)C15—H150.9300
P1—C191.799 (3)C16—H160.9300
P1—C251.803 (3)C9—H90.9300
P1—C371.814 (3)C40—C411.360 (6)
C1—C61.386 (4)C40—H400.9300
C1—C21.388 (4)C41—H410.9300
C2—C31.381 (4)C31—C361.387 (4)
C2—H20.9300C31—C321.388 (4)
C6—C51.395 (5)C32—C331.378 (4)
C6—H60.9300C32—H320.9300
C5—C41.368 (5)C36—C351.384 (4)
C5—H50.9300C36—H360.9300
C4—C31.366 (5)C34—C351.364 (5)
C4—H40.9300C34—C331.372 (5)
C3—H30.9300C34—H340.9300
C38—C431.373 (5)C33—H330.9300
C38—C391.390 (5)C35—H350.9300
C38—C371.506 (4)C25—C261.380 (4)
C37—H37A0.9700C25—C301.395 (4)
C37—H37B0.9700C26—C271.381 (5)
C43—C421.370 (5)C26—H260.9300
C43—H430.9300C30—C291.383 (5)
C7—C81.377 (4)C30—H300.9300
C7—C121.386 (4)C27—C281.357 (5)
C12—C111.392 (5)C27—H270.9300
C12—H120.9300C28—C291.362 (5)
C8—C91.389 (5)C28—H280.9300
C8—H80.9300C29—H290.9300
C10—C91.359 (6)C19—C201.386 (4)
C10—C111.361 (6)C19—C241.387 (4)
C10—H100.9300C20—C211.386 (5)
C11—H110.9300C20—H200.9300
C13—C181.372 (4)C24—C231.372 (5)
C13—C141.378 (4)C24—H240.9300
C14—C151.379 (5)C21—C221.376 (5)
C14—H140.9300C21—H210.9300
C18—C171.401 (5)C23—C221.363 (6)
C18—H180.9300C23—H230.9300
C39—C401.393 (5)C22—H220.9300
C39—H390.9300
C7—Sn1—C13120.13 (11)C41—C42—H42120.1
C7—Sn1—C1114.09 (11)C43—C42—H42120.1
C13—Sn1—C1125.74 (11)C16—C17—C18120.0 (4)
C7—Sn1—Cl291.73 (8)C16—C17—H17120.0
C13—Sn1—Cl287.85 (8)C18—C17—H17120.0
C1—Sn1—Cl292.49 (8)C16—C15—C14120.4 (4)
C7—Sn1—Cl188.83 (8)C16—C15—H15119.8
C13—Sn1—Cl188.24 (8)C14—C15—H15119.8
C1—Sn1—Cl191.11 (8)C15—C16—C17119.6 (4)
Cl2—Sn1—Cl1175.77 (3)C15—C16—H16120.2
C31—P1—C19109.17 (13)C17—C16—H16120.2
C31—P1—C25109.91 (14)C10—C9—C8120.0 (4)
C19—P1—C25111.14 (14)C10—C9—H9120.0
C31—P1—C37109.76 (14)C8—C9—H9120.0
C19—P1—C37110.82 (15)C41—C40—C39120.4 (4)
C25—P1—C37106.01 (14)C41—C40—H40119.8
C6—C1—C2118.6 (3)C39—C40—H40119.8
C6—C1—Sn1120.7 (2)C40—C41—C42120.3 (4)
C2—C1—Sn1120.6 (2)C40—C41—H41119.9
C3—C2—C1121.0 (3)C42—C41—H41119.9
C3—C2—H2119.5C36—C31—C32119.4 (3)
C1—C2—H2119.5C36—C31—P1120.8 (2)
C1—C6—C5119.9 (3)C32—C31—P1119.7 (2)
C1—C6—H6120.1C33—C32—C31120.1 (3)
C5—C6—H6120.1C33—C32—H32120.0
C4—C5—C6120.3 (3)C31—C32—H32120.0
C4—C5—H5119.9C35—C36—C31119.5 (3)
C6—C5—H5119.9C35—C36—H36120.3
C3—C4—C5120.5 (3)C31—C36—H36120.3
C3—C4—H4119.8C35—C34—C33120.2 (3)
C5—C4—H4119.8C35—C34—H34119.9
C4—C3—C2119.7 (3)C33—C34—H34119.9
C4—C3—H3120.1C34—C33—C32120.1 (3)
C2—C3—H3120.1C34—C33—H33119.9
C43—C38—C39118.4 (3)C32—C33—H33119.9
C43—C38—C37120.1 (3)C34—C35—C36120.7 (3)
C39—C38—C37121.5 (3)C34—C35—H35119.7
C38—C37—P1115.7 (2)C36—C35—H35119.7
C38—C37—H37A108.4C26—C25—C30119.6 (3)
P1—C37—H37A108.4C26—C25—P1121.6 (2)
C38—C37—H37B108.4C30—C25—P1118.7 (2)
P1—C37—H37B108.4C25—C26—C27119.8 (3)
H37A—C37—H37B107.4C25—C26—H26120.1
C42—C43—C38121.6 (4)C27—C26—H26120.1
C42—C43—H43119.2C29—C30—C25119.3 (3)
C38—C43—H43119.2C29—C30—H30120.3
C8—C7—C12117.3 (3)C25—C30—H30120.3
C8—C7—Sn1119.9 (2)C28—C27—C26120.0 (3)
C12—C7—Sn1122.8 (2)C28—C27—H27120.0
C7—C12—C11120.8 (3)C26—C27—H27120.0
C7—C12—H12119.6C27—C28—C29121.2 (3)
C11—C12—H12119.6C27—C28—H28119.4
C7—C8—C9121.6 (4)C29—C28—H28119.4
C7—C8—H8119.2C28—C29—C30120.0 (3)
C9—C8—H8119.2C28—C29—H29120.0
C9—C10—C11119.9 (4)C30—C29—H29120.0
C9—C10—H10120.1C20—C19—C24119.2 (3)
C11—C10—H10120.1C20—C19—P1120.6 (2)
C10—C11—C12120.3 (4)C24—C19—P1120.2 (2)
C10—C11—H11119.8C21—C20—C19119.8 (3)
C12—C11—H11119.8C21—C20—H20120.1
C18—C13—C14118.2 (3)C19—C20—H20120.1
C18—C13—Sn1120.8 (2)C23—C24—C19120.1 (3)
C14—C13—Sn1120.9 (2)C23—C24—H24120.0
C13—C14—C15121.4 (3)C19—C24—H24120.0
C13—C14—H14119.3C22—C21—C20120.1 (4)
C15—C14—H14119.3C22—C21—H21120.0
C13—C18—C17120.3 (3)C20—C21—H21120.0
C13—C18—H18119.8C22—C23—C24120.8 (4)
C17—C18—H18119.8C22—C23—H23119.6
C38—C39—C40119.6 (4)C24—C23—H23119.6
C38—C39—H39120.2C23—C22—C21120.0 (4)
C40—C39—H39120.2C23—C22—H22120.0
C41—C42—C43119.7 (4)C21—C22—H22120.0
C7—Sn1—C1—C6119.9 (3)C13—C18—C17—C161.8 (6)
C13—Sn1—C1—C662.3 (3)C13—C14—C15—C161.0 (6)
Cl2—Sn1—C1—C626.9 (3)C14—C15—C16—C170.0 (7)
Cl1—Sn1—C1—C6150.9 (2)C18—C17—C16—C151.4 (7)
C7—Sn1—C1—C256.0 (3)C11—C10—C9—C81.5 (7)
C13—Sn1—C1—C2121.8 (2)C7—C8—C9—C100.2 (7)
Cl2—Sn1—C1—C2149.0 (2)C38—C39—C40—C411.0 (6)
Cl1—Sn1—C1—C233.2 (2)C39—C40—C41—C420.9 (7)
C6—C1—C2—C31.4 (5)C43—C42—C41—C401.1 (7)
Sn1—C1—C2—C3174.7 (3)C19—P1—C31—C3612.8 (3)
C2—C1—C6—C50.1 (5)C25—P1—C31—C36109.3 (3)
Sn1—C1—C6—C5175.9 (3)C37—P1—C31—C36134.4 (3)
C1—C6—C5—C40.9 (6)C19—P1—C31—C32170.6 (3)
C6—C5—C4—C30.7 (6)C25—P1—C31—C3267.2 (3)
C5—C4—C3—C20.6 (6)C37—P1—C31—C3249.0 (3)
C1—C2—C3—C41.6 (5)C36—C31—C32—C330.7 (5)
C43—C38—C37—P196.7 (3)P1—C31—C32—C33175.9 (3)
C39—C38—C37—P183.0 (4)C32—C31—C36—C350.2 (5)
C31—P1—C37—C3866.4 (3)P1—C31—C36—C35176.3 (3)
C19—P1—C37—C3854.3 (3)C35—C34—C33—C320.9 (6)
C25—P1—C37—C38174.9 (2)C31—C32—C33—C341.0 (6)
C39—C38—C43—C422.2 (6)C33—C34—C35—C360.5 (6)
C37—C38—C43—C42178.2 (4)C31—C36—C35—C340.1 (5)
C13—Sn1—C7—C8169.3 (3)C31—P1—C25—C261.8 (3)
C1—Sn1—C7—C88.7 (3)C19—P1—C25—C26119.1 (3)
Cl2—Sn1—C7—C8102.2 (3)C37—P1—C25—C26120.4 (3)
Cl1—Sn1—C7—C882.0 (3)C31—P1—C25—C30177.3 (3)
C13—Sn1—C7—C1211.1 (3)C19—P1—C25—C3061.8 (3)
C1—Sn1—C7—C12171.0 (2)C37—P1—C25—C3058.7 (3)
Cl2—Sn1—C7—C1277.5 (3)C30—C25—C26—C270.0 (5)
Cl1—Sn1—C7—C1298.4 (3)P1—C25—C26—C27179.1 (3)
C8—C7—C12—C110.4 (5)C26—C25—C30—C291.4 (5)
Sn1—C7—C12—C11180.0 (3)P1—C25—C30—C29179.5 (3)
C12—C7—C8—C90.3 (6)C25—C26—C27—C281.0 (6)
Sn1—C7—C8—C9179.3 (3)C26—C27—C28—C290.6 (6)
C9—C10—C11—C122.2 (7)C27—C28—C29—C300.8 (6)
C7—C12—C11—C101.7 (6)C25—C30—C29—C281.8 (6)
C7—Sn1—C13—C18150.4 (2)C31—P1—C19—C20118.8 (2)
C1—Sn1—C13—C1831.9 (3)C25—P1—C19—C202.5 (3)
Cl2—Sn1—C13—C1859.6 (3)C37—P1—C19—C20120.1 (2)
Cl1—Sn1—C13—C18122.0 (3)C31—P1—C19—C2459.2 (3)
C7—Sn1—C13—C1428.9 (3)C25—P1—C19—C24179.4 (2)
C1—Sn1—C13—C14148.8 (2)C37—P1—C19—C2461.8 (3)
Cl2—Sn1—C13—C14119.6 (3)C24—C19—C20—C211.0 (5)
Cl1—Sn1—C13—C1458.7 (3)P1—C19—C20—C21179.0 (2)
C18—C13—C14—C150.6 (5)C20—C19—C24—C232.0 (5)
Sn1—C13—C14—C15178.7 (3)P1—C19—C24—C23179.9 (3)
C14—C13—C18—C170.9 (5)C19—C20—C21—C220.8 (5)
Sn1—C13—C18—C17179.9 (3)C19—C24—C23—C221.3 (6)
C43—C38—C39—C402.4 (5)C24—C23—C22—C210.5 (6)
C37—C38—C39—C40177.9 (3)C20—C21—C22—C231.5 (6)
C38—C43—C42—C410.4 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C35—H35···Cl20.932.943.696 (3)139
C37—H37A···Cl1i0.972.843.743 (3)155
C30—H30···Cl1i0.932.673.596 (3)171
Symmetry code: (i) x+1, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula(C25H22P)[Sn(C6H5)3Cl2]
Mr774.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.0222 (2), 17.1480 (3), 21.2925 (4)
β (°) 92.042 (1)
V3)3657.02 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.92
Crystal size (mm)0.25 × 0.25 × 0.25
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.803, 0.803
No. of measured, independent and
observed [I > 2σ(I)] reflections
29025, 9370, 6243
Rint0.072
(sin θ/λ)max1)0.674
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.102, 1.03
No. of reflections9370
No. of parameters425
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.80, 0.76

Computer programs: COLLECT (Nonius, 2003), SCALEPACK (Otwinowski & Minor, 1997), DENZO (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C35—H35···Cl20.932.943.696 (3)138.9
C37—H37A···Cl1i0.972.843.743 (3)155.3
C30—H30···Cl1i0.932.673.596 (3)171.3
Symmetry code: (i) x+1, y+1/2, z1/2.
 

References

First citationDutrecq, A., Willem, R., Biesemans, M., Bouâlam, M., Meriem, A. & Gielen, M. (1992). Main Group Met. Chem. 15, 285–291.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHarrison, P. G., Molloy, K. C., Phillips, R. C., Smith, P. J. & Crowe, A. J. (1978). J. Organomet. Chem. 160, 421–434.  CSD CrossRef CAS Web of Science Google Scholar
First citationNg, S. W. (1995). Acta Cryst. C51, 1124–1125.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationNonius (2003). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds