organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tri­ethyl­ammonium 4-(3,5-di­nitro­benzamido)-N-(3,5-di­nitro­benzo­yl)benzene­sulfonamidate

aDepartment of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan, bUniversität Paderborn, Warburgerstrasse 100, D-33098 Paderborn, Germany, and cNESCOM, PO Box 2216, Islamabad, Pakistan
*Correspondence e-mail: humaira_siddiqi@yahoo.com

(Received 12 November 2012; accepted 8 December 2012; online 15 December 2012)

The mol­ecular structure of the title salt, C6H16N+·C20H11N6O12S, shows a planar geometry of the benzamido–phen­yl–sulfonyl moiety, with a dihedral angle of 1.59 (9)° between the aromatic ring planes. The central ring and the aromatic ring of the other dinitro­benzamide group are nearly perpendicular, making a dihedral angle of 89.55 (9)°. All nitro groups lie almost in plane with the associated aromatic rings, the O—N—C—C torsion angles ranging from 9.2 (2) to 24.3 (2)°. In the crystal, strong anion–anion N—H⋯O and anion–cation hydrogen bonds form inversion dimers stacked along the a axis. Less prominent anion–anion C—H⋯O inter­actions lead to the formation of a three-dimensional network including anion–anion dimers as well as anion–anion chains along [100?].

Related literature

For background to polyamide-imide and other high-temperature resistant polymeric materials, see: Kawakami et al. (2003[Kawakami, H., Nakajima, K., Shimizu, H. & Nagaoka, S. (2003). J. Membr. Sci. 212, 195-203.]). For the structure of phthalylsulfacetamide, see: Shin et al. (1984[Shin, W., Kim, Y. C. & Koo, C. H. (1984). Bull. Korean Chem. Soc. 5, 23-26.]).

[Scheme 1]

Experimental

Crystal data
  • C6H16N+·C20H11N6O12S

  • Mr = 661.61

  • Triclinic, [P \overline 1]

  • a = 9.1046 (12) Å

  • b = 13.2050 (18) Å

  • c = 13.3427 (18) Å

  • α = 98.854 (3)°

  • β = 105.147 (3)°

  • γ = 105.494 (3)°

  • V = 1448.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 130 K

  • 0.38 × 0.37 × 0.19 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.931, Tmax = 0.965

  • 13859 measured reflections

  • 6875 independent reflections

  • 4652 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.084

  • S = 0.89

  • 6875 reflections

  • 415 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O8i 0.88 2.00 2.8611 (17) 165
N100—H10P⋯O2ii 0.93 1.86 2.747 (2) 158
C13—H13A⋯O8i 0.95 2.22 3.136 (2) 162
C3—H3A⋯O8i 0.95 2.45 3.221 (2) 139
C6—H6A⋯O11iii 0.95 2.38 3.215 (2) 147
C9—H9A⋯O10iv 0.95 2.48 3.384 (2) 159
C20—H20A⋯O3v 0.95 2.31 3.225 (2) 163
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z; (iii) -x+2, -y, -z+1; (iv) -x+1, -y, -z+1; (v) x+1, y, z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

In the past decade, the demand for polyamide-imide (PAI) and other high-temperature resistant polymeric materials has grown progressively because of their outstanding mechanical properties, excellent thermal stability (Kawakami et al., 2003), etc. The title compound is a starting material for such types of materials.

Related literature top

For background to polyamide-imide and other high-temperature resistant polymeric materials, see: Kawakami et al. (2003). For the structure of phthalylsulfacetamide, see: Shin et al. (1984).

Experimental top

In this preparation reagent grade quality chemicals were used without their further purification. In a 100 ml, three necked, round bottomed flask, equipped with a condenser, a nitrogen gas inlet tube, a thermometer and a magnetic stirrer, of sulfanilamide (1.39 g, 0.0086 mole) in dry dichloromethane (20 ml) and a few drops of N,N-dimethylformamide(DMF) stirred at 273–278 K for 30 minutes and 3,5- dinitrobenzoylchloride (3.72 g, 0.0161 mol) in dichloromethane (30 ml) was added dropwise by dropping funnel and stirring was continued for further 1 h under the same conditions. The reaction mixture was then refluxed for 45 min. The flask content was cooled to room temperature, poured into water and let it stand for 24 h. The resulting dark brown precipitates were filtered, washed with hot water and 5% NaOH solution. Finally, the product was washed with hot water and dried under vacuum at 350 K. The crude product was recrystallized from N,N-dimethylformamide(DMF). Yield: 87%; m.p 460–462 K.

Refinement top

Hydrogen atoms were clearly identified in difference syntheses, refined at idealized positions riding on the carbon or nitrogen atoms with C—H 0.95–0.98 Å, N—H 0.88 and 0.93 Å and with isotropic displacement parameters Uiso(H) = 1.2Ueq(C/N) or 1.5Ueq(methyl C). All methyl hydrogen atoms were allowed to rotate but not to tip.

Structure description top

In the past decade, the demand for polyamide-imide (PAI) and other high-temperature resistant polymeric materials has grown progressively because of their outstanding mechanical properties, excellent thermal stability (Kawakami et al., 2003), etc. The title compound is a starting material for such types of materials.

For background to polyamide-imide and other high-temperature resistant polymeric materials, see: Kawakami et al. (2003). For the structure of phthalylsulfacetamide, see: Shin et al. (1984).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with anisotropic displacement parameters drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram viewed along the a-axis showing N–H···O hydrogen bonding pattern as dashed lines. H-atoms not involved are omitted.
Triethylammonium 4-(3,5-dinitrobenzamido)-N-(3,5-dinitrobenzoyl)benzenesulfonamidate top
Crystal data top
C6H16N+·C20H11N6O12SZ = 2
Mr = 661.61F(000) = 688
Triclinic, P1Dx = 1.517 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.1046 (12) ÅCell parameters from 2907 reflections
b = 13.2050 (18) Åθ = 2.4–26.9°
c = 13.3427 (18) ŵ = 0.19 mm1
α = 98.854 (3)°T = 130 K
β = 105.147 (3)°Prism, colourless
γ = 105.494 (3)°0.38 × 0.37 × 0.19 mm
V = 1448.3 (3) Å3
Data collection top
Bruker SMART APEX
diffractometer
6875 independent reflections
Radiation source: sealed tube4652 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
φ and ω scansθmax = 27.9°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1110
Tmin = 0.931, Tmax = 0.965k = 1717
13859 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: difference Fourier map
wR(F2) = 0.084H-atom parameters constrained
S = 0.89 w = 1/[σ2(Fo2) + (0.029P)2]
where P = (Fo2 + 2Fc2)/3
6875 reflections(Δ/σ)max = 0.001
415 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C6H16N+·C20H11N6O12Sγ = 105.494 (3)°
Mr = 661.61V = 1448.3 (3) Å3
Triclinic, P1Z = 2
a = 9.1046 (12) ÅMo Kα radiation
b = 13.2050 (18) ŵ = 0.19 mm1
c = 13.3427 (18) ÅT = 130 K
α = 98.854 (3)°0.38 × 0.37 × 0.19 mm
β = 105.147 (3)°
Data collection top
Bruker SMART APEX
diffractometer
6875 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
4652 reflections with I > 2σ(I)
Tmin = 0.931, Tmax = 0.965Rint = 0.032
13859 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 0.89Δρmax = 0.36 e Å3
6875 reflectionsΔρmin = 0.36 e Å3
415 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.90395 (6)0.28292 (3)0.21593 (4)0.01914 (11)
O11.03295 (15)0.36565 (9)0.20308 (10)0.0246 (3)
O20.76199 (15)0.23599 (9)0.12131 (9)0.0245 (3)
O30.52517 (16)0.33418 (9)0.59254 (11)0.0317 (3)
O40.32249 (17)0.35984 (10)0.89035 (11)0.0385 (4)
O50.29330 (18)0.51042 (11)0.95560 (12)0.0435 (4)
O60.62662 (18)0.84333 (10)0.90660 (12)0.0426 (4)
O70.67579 (18)0.83485 (10)0.75614 (12)0.0404 (4)
O81.15593 (14)0.29259 (9)0.40479 (9)0.0214 (3)
O90.90468 (16)0.26946 (9)0.35110 (11)0.0317 (3)
O100.73408 (15)0.18561 (9)0.29762 (10)0.0275 (3)
O111.40360 (16)0.02522 (10)0.63169 (10)0.0315 (3)
O121.53041 (14)0.11153 (9)0.58183 (10)0.0248 (3)
N10.69344 (17)0.47991 (11)0.56319 (11)0.0187 (3)
H1A0.73600.55080.58460.022*
N20.34552 (19)0.45696 (13)0.89879 (12)0.0266 (4)
N30.62909 (19)0.79268 (12)0.82266 (14)0.0279 (4)
N40.95176 (17)0.18180 (11)0.25028 (11)0.0191 (3)
N50.87053 (19)0.18774 (11)0.33830 (12)0.0214 (4)
N61.40938 (18)0.03787 (11)0.57313 (12)0.0208 (3)
C10.8402 (2)0.34117 (13)0.31860 (13)0.0169 (4)
C20.8728 (2)0.45227 (13)0.34808 (13)0.0188 (4)
H2A0.93080.49830.31360.023*
C30.8206 (2)0.49557 (13)0.42770 (14)0.0185 (4)
H3A0.84210.57160.44740.022*
C40.7365 (2)0.42858 (13)0.47979 (14)0.0173 (4)
C50.7027 (2)0.31665 (13)0.44911 (14)0.0201 (4)
H5A0.64520.27020.48360.024*
C60.7535 (2)0.27417 (13)0.36838 (14)0.0201 (4)
H6A0.72890.19800.34650.024*
C70.5933 (2)0.43160 (13)0.61400 (14)0.0189 (4)
C80.5640 (2)0.50400 (13)0.70085 (14)0.0176 (4)
C90.4789 (2)0.45188 (14)0.76106 (14)0.0193 (4)
H9A0.44610.37520.74880.023*
C100.4427 (2)0.51314 (14)0.83887 (14)0.0199 (4)
C110.4892 (2)0.62476 (14)0.86136 (14)0.0220 (4)
H11A0.46370.66570.91550.026*
C120.5748 (2)0.67311 (13)0.80072 (15)0.0209 (4)
C130.6110 (2)0.61631 (13)0.72018 (14)0.0198 (4)
H13A0.66700.65310.67860.024*
C141.0699 (2)0.20335 (13)0.34280 (14)0.0176 (4)
C151.0969 (2)0.10340 (13)0.37607 (13)0.0166 (4)
C160.9761 (2)0.00384 (13)0.33703 (14)0.0174 (4)
H16A0.87730.00440.28480.021*
C171.0032 (2)0.08325 (13)0.37609 (14)0.0168 (4)
C181.1434 (2)0.07612 (13)0.45135 (14)0.0186 (4)
H18A1.15930.13700.47680.022*
C191.2601 (2)0.02450 (13)0.48797 (13)0.0170 (4)
C201.2409 (2)0.11451 (13)0.45224 (13)0.0170 (4)
H20A1.32430.18230.47920.020*
N1000.22811 (19)0.79060 (12)0.08484 (12)0.0261 (4)
H10P0.21550.79350.01400.031*
C1010.1711 (3)0.87782 (16)0.13073 (18)0.0390 (6)
H10A0.24430.94910.13260.047*
H10B0.17620.87530.20530.047*
C1020.0024 (3)0.8674 (2)0.0680 (2)0.0595 (7)
H10C0.02890.92610.10140.089*
H10D0.07110.79760.06700.089*
H10E0.00290.87170.00550.089*
C1030.1294 (3)0.67768 (15)0.08118 (17)0.0356 (5)
H10F0.01700.66400.03700.043*
H10G0.17080.62530.04550.043*
C1040.1301 (3)0.65733 (18)0.18919 (19)0.0483 (6)
H10H0.06350.58270.18040.072*
H10I0.08670.70760.22460.072*
H10J0.24040.66850.23290.072*
C1050.4047 (2)0.81232 (17)0.13686 (16)0.0355 (5)
H10K0.43340.74800.11170.043*
H10L0.42800.82430.21530.043*
C1060.5073 (3)0.91023 (18)0.11218 (17)0.0456 (6)
H10M0.62120.92130.14760.068*
H10N0.48090.97440.13830.068*
H10O0.48630.89820.03470.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0226 (3)0.0190 (2)0.0165 (2)0.00746 (18)0.0059 (2)0.00580 (18)
O10.0280 (8)0.0239 (7)0.0267 (8)0.0091 (6)0.0123 (6)0.0122 (6)
O20.0251 (8)0.0297 (7)0.0161 (7)0.0102 (6)0.0017 (6)0.0040 (5)
O30.0382 (9)0.0167 (7)0.0389 (9)0.0000 (6)0.0229 (7)0.0002 (6)
O40.0561 (10)0.0260 (8)0.0365 (9)0.0065 (7)0.0256 (8)0.0098 (6)
O50.0544 (11)0.0416 (9)0.0526 (10)0.0203 (8)0.0401 (9)0.0142 (8)
O60.0566 (11)0.0248 (8)0.0472 (10)0.0089 (7)0.0299 (8)0.0048 (7)
O70.0565 (10)0.0213 (7)0.0529 (10)0.0103 (7)0.0336 (9)0.0116 (7)
O80.0245 (7)0.0144 (6)0.0221 (7)0.0037 (5)0.0052 (6)0.0039 (5)
O90.0339 (8)0.0145 (7)0.0436 (9)0.0064 (6)0.0071 (7)0.0098 (6)
O100.0194 (8)0.0227 (7)0.0343 (8)0.0022 (6)0.0048 (6)0.0043 (6)
O110.0352 (8)0.0266 (7)0.0286 (8)0.0061 (6)0.0020 (7)0.0155 (6)
O120.0196 (7)0.0195 (7)0.0305 (8)0.0026 (5)0.0051 (6)0.0044 (6)
N10.0228 (9)0.0109 (7)0.0210 (8)0.0035 (6)0.0074 (7)0.0021 (6)
N20.0263 (10)0.0307 (9)0.0228 (9)0.0073 (7)0.0088 (8)0.0081 (7)
N30.0250 (10)0.0209 (8)0.0377 (11)0.0072 (7)0.0131 (8)0.0020 (8)
N40.0223 (9)0.0173 (7)0.0180 (8)0.0080 (6)0.0051 (7)0.0045 (6)
N50.0262 (10)0.0159 (8)0.0207 (9)0.0032 (7)0.0096 (7)0.0034 (6)
N60.0239 (9)0.0171 (8)0.0210 (9)0.0072 (6)0.0064 (7)0.0037 (6)
C10.0172 (10)0.0182 (9)0.0136 (9)0.0068 (7)0.0010 (8)0.0036 (7)
C20.0200 (10)0.0185 (9)0.0169 (10)0.0047 (7)0.0041 (8)0.0069 (7)
C30.0197 (10)0.0128 (8)0.0204 (10)0.0038 (7)0.0030 (8)0.0048 (7)
C40.0150 (9)0.0178 (9)0.0168 (10)0.0054 (7)0.0018 (8)0.0037 (7)
C50.0209 (10)0.0171 (9)0.0232 (10)0.0051 (7)0.0083 (8)0.0068 (8)
C60.0232 (10)0.0143 (9)0.0222 (10)0.0063 (7)0.0057 (8)0.0049 (7)
C70.0167 (10)0.0169 (9)0.0208 (10)0.0042 (7)0.0039 (8)0.0039 (7)
C80.0147 (9)0.0175 (9)0.0180 (10)0.0049 (7)0.0022 (8)0.0029 (7)
C90.0168 (10)0.0178 (9)0.0205 (10)0.0042 (7)0.0024 (8)0.0045 (7)
C100.0156 (10)0.0251 (10)0.0179 (10)0.0050 (7)0.0045 (8)0.0067 (8)
C110.0201 (10)0.0239 (10)0.0213 (10)0.0084 (8)0.0058 (8)0.0027 (8)
C120.0181 (10)0.0170 (9)0.0260 (11)0.0064 (7)0.0048 (8)0.0032 (8)
C130.0176 (10)0.0184 (9)0.0232 (10)0.0047 (7)0.0073 (8)0.0052 (8)
C140.0178 (10)0.0161 (9)0.0220 (10)0.0051 (7)0.0108 (8)0.0056 (7)
C150.0205 (10)0.0163 (9)0.0151 (9)0.0058 (7)0.0091 (8)0.0041 (7)
C160.0186 (10)0.0182 (9)0.0171 (9)0.0070 (7)0.0078 (8)0.0035 (7)
C170.0200 (10)0.0134 (8)0.0165 (10)0.0031 (7)0.0089 (8)0.0009 (7)
C180.0254 (11)0.0153 (9)0.0193 (10)0.0081 (7)0.0114 (8)0.0059 (7)
C190.0171 (10)0.0199 (9)0.0149 (9)0.0067 (7)0.0055 (8)0.0045 (7)
C200.0206 (10)0.0153 (8)0.0164 (10)0.0046 (7)0.0096 (8)0.0030 (7)
N1000.0316 (10)0.0294 (9)0.0178 (9)0.0109 (7)0.0082 (8)0.0051 (7)
C1010.0514 (15)0.0340 (12)0.0410 (14)0.0219 (11)0.0225 (12)0.0080 (10)
C1020.0512 (18)0.0747 (19)0.076 (2)0.0408 (15)0.0293 (15)0.0307 (15)
C1030.0432 (14)0.0290 (11)0.0350 (13)0.0087 (10)0.0163 (11)0.0073 (9)
C1040.0536 (16)0.0516 (15)0.0494 (16)0.0169 (12)0.0232 (13)0.0281 (12)
C1050.0306 (13)0.0507 (14)0.0224 (12)0.0139 (10)0.0034 (10)0.0080 (10)
C1060.0334 (14)0.0634 (16)0.0289 (13)0.0030 (11)0.0069 (11)0.0072 (11)
Geometric parameters (Å, º) top
S1—O11.4421 (12)C10—C111.381 (2)
S1—O21.4584 (12)C11—C121.376 (2)
S1—N41.6053 (14)C11—H11A0.9500
S1—C11.7708 (18)C12—C131.377 (2)
O3—C71.2203 (19)C13—H13A0.9500
O4—N21.2251 (18)C14—C151.515 (2)
O5—N21.2255 (19)C15—C161.388 (2)
O6—N31.2218 (19)C15—C201.389 (2)
O7—N31.2253 (19)C16—C171.387 (2)
O8—C141.2468 (19)C16—H16A0.9500
O9—N51.2242 (18)C17—C181.373 (2)
O10—N51.2288 (18)C18—C191.381 (2)
O11—N61.2272 (17)C18—H18A0.9500
O12—N61.2245 (17)C19—C201.383 (2)
N1—C71.358 (2)C20—H20A0.9500
N1—C41.410 (2)N100—C1011.496 (2)
N1—H1A0.8800N100—C1051.502 (2)
N2—C101.474 (2)N100—C1031.507 (2)
N3—C121.479 (2)N100—H10P0.9300
N4—C141.340 (2)C101—C1021.503 (3)
N5—C171.481 (2)C101—H10A0.9900
N6—C191.474 (2)C101—H10B0.9900
C1—C21.387 (2)C102—H10C0.9800
C1—C61.388 (2)C102—H10D0.9800
C2—C31.379 (2)C102—H10E0.9800
C2—H2A0.9500C103—C1041.505 (3)
C3—C41.399 (2)C103—H10F0.9900
C3—H3A0.9500C103—H10G0.9900
C4—C51.397 (2)C104—H10H0.9800
C5—C61.379 (2)C104—H10I0.9800
C5—H5A0.9500C104—H10J0.9800
C6—H6A0.9500C105—C1061.517 (3)
C7—C81.511 (2)C105—H10K0.9900
C8—C91.389 (2)C105—H10L0.9900
C8—C131.391 (2)C106—H10M0.9800
C9—C101.380 (2)C106—H10N0.9800
C9—H9A0.9500C106—H10O0.9800
O1—S1—O2114.78 (8)O8—C14—C15116.86 (16)
O1—S1—N4114.71 (8)N4—C14—C15113.96 (14)
O2—S1—N4105.36 (7)C16—C15—C20120.30 (15)
O1—S1—C1108.37 (8)C16—C15—C14120.81 (16)
O2—S1—C1106.53 (8)C20—C15—C14118.73 (15)
N4—S1—C1106.51 (8)C17—C16—C15118.37 (17)
C7—N1—C4126.94 (14)C17—C16—H16A120.8
C7—N1—H1A116.5C15—C16—H16A120.8
C4—N1—H1A116.5C18—C17—C16123.38 (16)
O4—N2—O5123.33 (16)C18—C17—N5118.55 (15)
O4—N2—C10118.61 (15)C16—C17—N5118.00 (16)
O5—N2—C10118.05 (15)C17—C18—C19116.22 (16)
O6—N3—O7124.04 (16)C17—C18—H18A121.9
O6—N3—C12118.00 (16)C19—C18—H18A121.9
O7—N3—C12117.95 (15)C18—C19—C20123.31 (17)
C14—N4—S1116.77 (12)C18—C19—N6118.34 (15)
O9—N5—O10124.93 (14)C20—C19—N6118.28 (15)
O9—N5—C17117.63 (16)C19—C20—C15118.41 (15)
O10—N5—C17117.43 (14)C19—C20—H20A120.8
O12—N6—O11124.18 (16)C15—C20—H20A120.8
O12—N6—C19118.27 (14)C101—N100—C105112.12 (15)
O11—N6—C19117.55 (14)C101—N100—C103114.20 (16)
C2—C1—C6119.86 (16)C105—N100—C103112.11 (15)
C2—C1—S1120.83 (13)C101—N100—H10P105.9
C6—C1—S1119.30 (13)C105—N100—H10P105.9
C3—C2—C1119.70 (16)C103—N100—H10P105.9
C3—C2—H2A120.2N100—C101—C102112.84 (18)
C1—C2—H2A120.2N100—C101—H10A109.0
C2—C3—C4120.64 (16)C102—C101—H10A109.0
C2—C3—H3A119.7N100—C101—H10B109.0
C4—C3—H3A119.7C102—C101—H10B109.0
C5—C4—C3119.39 (16)H10A—C101—H10B107.8
C5—C4—N1123.68 (15)C101—C102—H10C109.5
C3—C4—N1116.91 (15)C101—C102—H10D109.5
C6—C5—C4119.44 (16)H10C—C102—H10D109.5
C6—C5—H5A120.3C101—C102—H10E109.5
C4—C5—H5A120.3H10C—C102—H10E109.5
C5—C6—C1120.93 (16)H10D—C102—H10E109.5
C5—C6—H6A119.5C104—C103—N100114.20 (17)
C1—C6—H6A119.5C104—C103—H10F108.7
O3—C7—N1123.77 (16)N100—C103—H10F108.7
O3—C7—C8118.86 (16)C104—C103—H10G108.7
N1—C7—C8117.37 (14)N100—C103—H10G108.7
C9—C8—C13119.55 (16)H10F—C103—H10G107.6
C9—C8—C7116.10 (15)C103—C104—H10H109.5
C13—C8—C7124.31 (16)C103—C104—H10I109.5
C10—C9—C8119.00 (16)H10H—C104—H10I109.5
C10—C9—H9A120.5C103—C104—H10J109.5
C8—C9—H9A120.5H10H—C104—H10J109.5
C9—C10—C11123.09 (16)H10I—C104—H10J109.5
C9—C10—N2118.65 (15)N100—C105—C106112.26 (17)
C11—C10—N2118.23 (16)N100—C105—H10K109.2
C12—C11—C10115.99 (16)C106—C105—H10K109.2
C12—C11—H11A122.0N100—C105—H10L109.2
C10—C11—H11A122.0C106—C105—H10L109.2
C11—C12—C13123.60 (16)H10K—C105—H10L107.9
C11—C12—N3118.04 (16)C105—C106—H10M109.5
C13—C12—N3118.36 (16)C105—C106—H10N109.5
C12—C13—C8118.73 (16)H10M—C106—H10N109.5
C12—C13—H13A120.6C105—C106—H10O109.5
C8—C13—H13A120.6H10M—C106—H10O109.5
O8—C14—N4129.16 (16)H10N—C106—H10O109.5
O1—S1—N4—C1459.63 (15)O7—N3—C12—C11165.52 (17)
O2—S1—N4—C14173.15 (13)O6—N3—C12—C13165.24 (17)
C1—S1—N4—C1460.25 (14)O7—N3—C12—C1313.8 (2)
O1—S1—C1—C220.61 (16)C11—C12—C13—C82.4 (3)
O2—S1—C1—C2103.39 (14)N3—C12—C13—C8178.36 (15)
N4—S1—C1—C2144.52 (14)C9—C8—C13—C121.5 (3)
O1—S1—C1—C6160.73 (13)C7—C8—C13—C12178.89 (16)
O2—S1—C1—C675.26 (15)S1—N4—C14—O84.3 (3)
N4—S1—C1—C636.83 (16)S1—N4—C14—C15173.89 (11)
C6—C1—C2—C30.8 (2)O8—C14—C15—C16156.24 (16)
S1—C1—C2—C3179.47 (14)N4—C14—C15—C1622.2 (2)
C1—C2—C3—C40.6 (3)O8—C14—C15—C2019.3 (2)
C2—C3—C4—C51.2 (3)N4—C14—C15—C20162.27 (15)
C2—C3—C4—N1177.44 (16)C20—C15—C16—C170.1 (2)
C7—N1—C4—C511.5 (3)C14—C15—C16—C17175.36 (15)
C7—N1—C4—C3169.93 (16)C15—C16—C17—C180.1 (3)
C3—C4—C5—C60.3 (3)C15—C16—C17—N5176.81 (14)
N1—C4—C5—C6178.26 (16)O9—N5—C17—C1820.4 (2)
C4—C5—C6—C11.2 (3)O10—N5—C17—C18158.70 (16)
C2—C1—C6—C51.7 (3)O9—N5—C17—C16162.53 (15)
S1—C1—C6—C5179.59 (14)O10—N5—C17—C1618.3 (2)
C4—N1—C7—O30.3 (3)C16—C17—C18—C190.2 (3)
C4—N1—C7—C8179.45 (15)N5—C17—C18—C19176.71 (15)
O3—C7—C8—C99.1 (2)C17—C18—C19—C200.3 (3)
N1—C7—C8—C9171.69 (15)C17—C18—C19—N6176.70 (15)
O3—C7—C8—C13168.29 (17)O12—N6—C19—C18156.51 (16)
N1—C7—C8—C1310.9 (3)O11—N6—C19—C1824.3 (2)
C13—C8—C9—C100.1 (3)O12—N6—C19—C2026.3 (2)
C7—C8—C9—C10177.50 (16)O11—N6—C19—C20152.85 (16)
C8—C9—C10—C111.0 (3)C18—C19—C20—C150.3 (3)
C8—C9—C10—N2177.07 (15)N6—C19—C20—C15176.66 (15)
O4—N2—C10—C911.8 (2)C16—C15—C20—C190.2 (2)
O5—N2—C10—C9169.00 (17)C14—C15—C20—C19175.33 (15)
O4—N2—C10—C11170.03 (16)C105—N100—C101—C102170.41 (18)
O5—N2—C10—C119.2 (2)C103—N100—C101—C10260.7 (2)
C9—C10—C11—C120.3 (3)C101—N100—C103—C10462.2 (2)
N2—C10—C11—C12177.79 (16)C105—N100—C103—C10466.7 (2)
C10—C11—C12—C131.4 (3)C101—N100—C105—C10667.0 (2)
C10—C11—C12—N3179.29 (15)C103—N100—C105—C106163.00 (17)
O6—N3—C12—C1115.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O8i0.882.002.8611 (17)165
N100—H10P···O2ii0.931.862.747 (2)158
C13—H13A···O8i0.952.223.136 (2)162
C3—H3A···O8i0.952.453.221 (2)139
C6—H6A···O11iii0.952.383.215 (2)147
C9—H9A···O10iv0.952.483.384 (2)159
C20—H20A···O3v0.952.313.225 (2)163
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z; (iii) x+2, y, z+1; (iv) x+1, y, z+1; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC6H16N+·C20H11N6O12S
Mr661.61
Crystal system, space groupTriclinic, P1
Temperature (K)130
a, b, c (Å)9.1046 (12), 13.2050 (18), 13.3427 (18)
α, β, γ (°)98.854 (3), 105.147 (3), 105.494 (3)
V3)1448.3 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.38 × 0.37 × 0.19
Data collection
DiffractometerBruker SMART APEX
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.931, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
13859, 6875, 4652
Rint0.032
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.084, 0.89
No. of reflections6875
No. of parameters415
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.36

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O8i0.882.002.8611 (17)164.5
N100—H10P···O2ii0.931.862.747 (2)157.8
C13—H13A···O8i0.952.223.136 (2)162.4
C3—H3A···O8i0.952.453.221 (2)138.7
C6—H6A···O11iii0.952.383.215 (2)146.6
C9—H9A···O10iv0.952.483.384 (2)159.4
C20—H20A···O3v0.952.313.225 (2)162.8
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z; (iii) x+2, y, z+1; (iv) x+1, y, z+1; (v) x+1, y, z.
 

Acknowledgements

The authors acknowledge the Higher Education Commission of Pakistan for providing financial assistance for this project through the Inter­national Research Support Initiative Programe (IRSIP) and the Department of Chemistry, Quaid-i-Azam University Islamabad for providing research facilities.

References

First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKawakami, H., Nakajima, K., Shimizu, H. & Nagaoka, S. (2003). J. Membr. Sci. 212, 195–203.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShin, W., Kim, Y. C. & Koo, C. H. (1984). Bull. Korean Chem. Soc. 5, 23–26.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds