organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 8,13-dioxa-21-aza­penta­cyclo­[18.5.1.02,7.014,19.021,25]hexa­cosa-2(7),3,5,14,16,18-hexa­ene-26-carboxyl­ate

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: shirai2011@gmail.com

(Received 16 November 2012; accepted 29 November 2012; online 5 December 2012)

In the title compound, C26H31NO4, the five-membered rings of the central pyrrolizine system adopt N-envelope conformations. The ethyl acetate group adopts an extended conformation. The dihedral angle between the benzene rings is 36.6 (1)°. In the crystal, C—H⋯O hydrogen bonds form a zigzag chain running along the b-axis directions. The crystal structure is futher consolidated by C—H⋯π inter­actions.

Related literature

For the biological activity of pyrrolidine derivatives, see: Pinna et al. (2002[Pinna, G. A., Pirisi, M. A., Chelucci, G., Mussinu, J. M., Murineddu, G., Loriga, G., DAquila, P. S. & Serra, G. (2002). Bioorg. Med. Chem. 10, 2485-2496.]); Araki et al. (2002[Araki, K., Suenaga, K., Sengoka, T. & Uemura, D. (2002). Tetrahedron, 58, 1983-1996.]). For a related structure, see: Nirmala et al. (2008[Nirmala, S., Murugan, R., Kamala, E. T. S., Sudha, L. & Sriman Narayanan, S. (2008). Acta Cryst. E64, o1774-o1775.]).

[Scheme 1]

Experimental

Crystal data
  • C26H31NO4

  • Mr = 421.52

  • Monoclinic, P 21 /c

  • a = 10.4784 (5) Å

  • b = 10.2624 (4) Å

  • c = 21.0937 (10) Å

  • β = 95.350 (3)°

  • V = 2258.40 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.19 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.984

  • 20978 measured reflections

  • 5598 independent reflections

  • 3092 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.180

  • S = 1.02

  • 5598 reflections

  • 281 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 and Cg4 are the centroids of the C8–C13 and C18–C23 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O4i 0.93 2.60 3.419 (3) 148
C17—H17BCg4ii 0.97 2.97 3.817 (3) 146
C22—H22⋯Cg3iii 0.93 2.94 3.770 (3) 150
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyrrolidine derivatives are widely used as organic catalysts and serve as important structural units in biologically active molecules (Pinna et al., 2002). The spiro-pyrrolidine ring system is also associated with antitumour activity (Araki et al., 2002). In continuation of our work on the crystal structure analysis of spiro-pyrrolidine derivatives, the crystal structure of the title compound has been carried out and the results are presented here.

In the title compound (Fig. 1) the bond lengths and angles are comparable to the corresponding values as observed in a related structure (Nirmala et al., 2008). The pyrrolizine ring system is folded about the bridging N1—C4 bond, as observed in related structure (Nirmala et al., 2008). The two benzene rings (C8—C13 and C18—C23) make dihedral angles of 71.7 (1)° and 55.3 (1)°, respectively, with respect to the pyrrolizine ring system; the dihedral angle between the two benzene rings is 36.6 (1)°. The dimethoxybutane group connects these two benzene rings at meta positions (at atom C13 and C18). The ethyl acetate group adopts an extended conformation as can be seen from the torsion angle [C6—C24—O2—C25 = -175.1 (2)°]. The atom O3 lies in the plane of the benzene ring (C18–C23) (deviation -0.008 (1) Å) while O4 deviates by 0.130 (1) Å from the least squares plane of the benzene ring (C8–C13). In the pyrrolizine ring system, both of the rings (N1/C1—C4) and (N1/C4—C7) adopt N1-envelope conformations, with N1 0.505 (3) and 0.566 (3) Å from the least-squres planes of the remaining rings atoms, respevtively. The crystal structure is stabilized by C—H···π interactions (Fig. 2). In the crystal structure, the intermolecular C11—H11···O4 hydrogen bonds form a zigzag chain running along the b-axis (Fig. 3).

Related literature top

For the biological activity of pyrrolidine derivatives, see: Pinna et al. (2002); Araki et al. (2002). For a related structure, see: Nirmala et al. (2008).

Experimental top

A solution of (E)-ethyl 3-(2-(4-(2-formylphenoxy)butoxy)phenyl)acrylate (200 mg, 0.54 mmol) and L-proline (75 mg, 0.65 mmol) was refluxed in dry toluene under N2 atmosphere for 12 h under Dean-Stark apparatus. After the completion of reaction as indicated by TLC, toluene was evaporated under reduced pressure. The crude product was washed with water and extracted with dichloromethane (4x20 mL). The combined organic layers were dried (MgSO4) and filtered, concentrated in vacuum. The crude product was purified by column chromatography using hexane: EtOAc (8:2) as an eluent. The product was dissolved in ethylacetate and heated for two minutes. The resulting solution was subjected to crystallization by slow evaporation of the solvent resulting in single crystals suitable for XRD studies.

Refinement top

All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.97 Å with Uiso(H) = 1.5Ueq(methyl C) or 1.2Ueq(non-methyl C) atoms.

Structure description top

Pyrrolidine derivatives are widely used as organic catalysts and serve as important structural units in biologically active molecules (Pinna et al., 2002). The spiro-pyrrolidine ring system is also associated with antitumour activity (Araki et al., 2002). In continuation of our work on the crystal structure analysis of spiro-pyrrolidine derivatives, the crystal structure of the title compound has been carried out and the results are presented here.

In the title compound (Fig. 1) the bond lengths and angles are comparable to the corresponding values as observed in a related structure (Nirmala et al., 2008). The pyrrolizine ring system is folded about the bridging N1—C4 bond, as observed in related structure (Nirmala et al., 2008). The two benzene rings (C8—C13 and C18—C23) make dihedral angles of 71.7 (1)° and 55.3 (1)°, respectively, with respect to the pyrrolizine ring system; the dihedral angle between the two benzene rings is 36.6 (1)°. The dimethoxybutane group connects these two benzene rings at meta positions (at atom C13 and C18). The ethyl acetate group adopts an extended conformation as can be seen from the torsion angle [C6—C24—O2—C25 = -175.1 (2)°]. The atom O3 lies in the plane of the benzene ring (C18–C23) (deviation -0.008 (1) Å) while O4 deviates by 0.130 (1) Å from the least squares plane of the benzene ring (C8–C13). In the pyrrolizine ring system, both of the rings (N1/C1—C4) and (N1/C4—C7) adopt N1-envelope conformations, with N1 0.505 (3) and 0.566 (3) Å from the least-squres planes of the remaining rings atoms, respevtively. The crystal structure is stabilized by C—H···π interactions (Fig. 2). In the crystal structure, the intermolecular C11—H11···O4 hydrogen bonds form a zigzag chain running along the b-axis (Fig. 3).

For the biological activity of pyrrolidine derivatives, see: Pinna et al. (2002); Araki et al. (2002). For a related structure, see: Nirmala et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The crystal structure showing the C—H···π interactions. The ethyl acetate group is omitted for clarity.
[Figure 3] Fig. 3. Molecular packing of the title compound, in which hydrogen bonds forms a zigzag chain running along b axis. For the sake of clarity, the H atoms not involved in hydrogen bonds have been omitted.
Ethyl 8,13-dioxa-21-azapentacyclo[18.5.1.02,7.014,19.021,25]hexacosa- 2(7),3,5,14,16,18-hexaene-26-carboxylate top
Crystal data top
C26H31NO4F(000) = 904
Mr = 421.52Dx = 1.240 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5598 reflections
a = 10.4784 (5) Åθ = 1.9–28.3°
b = 10.2624 (4) ŵ = 0.08 mm1
c = 21.0937 (10) ÅT = 293 K
β = 95.350 (3)°Block, colorless
V = 2258.40 (18) Å30.25 × 0.22 × 0.19 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5598 independent reflections
Radiation source: fine-focus sealed tube3092 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω and φ scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1311
Tmin = 0.979, Tmax = 0.984k = 1313
20978 measured reflectionsl = 2528
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0815P)2 + 0.4765P]
where P = (Fo2 + 2Fc2)/3
5598 reflections(Δ/σ)max < 0.001
281 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C26H31NO4V = 2258.40 (18) Å3
Mr = 421.52Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.4784 (5) ŵ = 0.08 mm1
b = 10.2624 (4) ÅT = 293 K
c = 21.0937 (10) Å0.25 × 0.22 × 0.19 mm
β = 95.350 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5598 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3092 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.984Rint = 0.031
20978 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.180H-atom parameters constrained
S = 1.02Δρmax = 0.35 e Å3
5598 reflectionsΔρmin = 0.23 e Å3
281 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8192 (2)0.3134 (2)0.22908 (12)0.0675 (6)
H1A0.89050.26790.21290.081*
H1B0.81120.28560.27250.081*
C20.8361 (3)0.4599 (3)0.22534 (16)0.0992 (10)
H2A0.80500.50130.26230.119*
H2B0.92610.48120.22450.119*
C30.7632 (3)0.5066 (2)0.16699 (14)0.0835 (8)
H3A0.81990.54600.13860.100*
H3B0.69990.57050.17690.100*
C40.6989 (2)0.38673 (18)0.13682 (10)0.0549 (5)
H40.61040.40700.12070.066*
C50.7702 (2)0.32113 (19)0.08370 (10)0.0530 (5)
H50.86090.34460.09140.064*
C60.75954 (17)0.17292 (18)0.09547 (9)0.0456 (4)
H60.70770.13450.05910.055*
C70.67976 (17)0.16759 (17)0.15509 (9)0.0448 (4)
H70.59060.17270.13660.054*
C80.68313 (18)0.04520 (18)0.19466 (9)0.0485 (5)
C90.7948 (2)0.0100 (2)0.22369 (11)0.0618 (6)
H90.87240.03290.22130.074*
C100.7937 (2)0.1271 (2)0.25608 (11)0.0709 (6)
H100.86980.16220.27490.085*
C110.6808 (3)0.1907 (2)0.26029 (11)0.0721 (7)
H110.68030.27050.28110.087*
C120.5678 (2)0.1378 (2)0.23405 (11)0.0669 (6)
H120.49080.18080.23800.080*
C130.56846 (19)0.02010 (19)0.20165 (10)0.0520 (5)
C140.3735 (3)0.0270 (3)0.13226 (14)0.0883 (8)
H14A0.28490.01790.14140.106*
H14B0.39440.11910.13270.106*
C150.3897 (3)0.0281 (3)0.06888 (13)0.0850 (8)
H15A0.34450.02670.03670.102*
H15B0.48000.02590.06210.102*
C160.3404 (2)0.1700 (3)0.05960 (13)0.0819 (8)
H16A0.24780.16840.05160.098*
H16B0.36180.21810.09870.098*
C170.3953 (2)0.2410 (3)0.00565 (12)0.0754 (7)
H17A0.38450.18950.03300.090*
H17B0.35240.32400.00210.090*
C180.6024 (2)0.3342 (2)0.01145 (10)0.0632 (6)
C190.7248 (2)0.3648 (2)0.01703 (10)0.0590 (5)
C200.8025 (3)0.4390 (2)0.01830 (13)0.0795 (7)
H200.88370.46180.00020.095*
C210.7642 (4)0.4804 (3)0.07941 (16)0.1016 (11)
H210.81900.53000.10200.122*
C220.6452 (4)0.4479 (3)0.10624 (14)0.1009 (11)
H220.61910.47500.14750.121*
C230.5625 (3)0.3748 (3)0.07280 (12)0.0836 (8)
H230.48130.35330.09130.100*
C240.8885 (2)0.1065 (2)0.10175 (10)0.0535 (5)
C250.9933 (3)0.0951 (3)0.08828 (19)0.1080 (11)
H25A1.04910.07260.05580.130*
H25B1.03900.07770.12950.130*
C260.9634 (5)0.2220 (4)0.0838 (3)0.211 (3)
H26A0.90640.24370.11530.316*
H26B1.04010.27310.09080.316*
H26C0.92220.24010.04220.316*
N10.70022 (15)0.29156 (15)0.18853 (8)0.0499 (4)
O10.98902 (15)0.15226 (17)0.12248 (9)0.0811 (5)
O20.87743 (14)0.01498 (15)0.08036 (8)0.0720 (5)
O30.52806 (14)0.26037 (15)0.02487 (7)0.0661 (4)
O40.45450 (13)0.03858 (14)0.17936 (7)0.0621 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0656 (14)0.0668 (14)0.0663 (14)0.0016 (11)0.0136 (11)0.0109 (12)
C20.097 (2)0.0708 (17)0.121 (2)0.0092 (15)0.0377 (18)0.0207 (17)
C30.109 (2)0.0525 (13)0.0868 (18)0.0092 (13)0.0011 (16)0.0116 (13)
C40.0623 (12)0.0417 (10)0.0593 (12)0.0048 (9)0.0021 (10)0.0014 (9)
C50.0510 (11)0.0489 (11)0.0587 (12)0.0030 (9)0.0023 (9)0.0060 (9)
C60.0431 (10)0.0465 (10)0.0460 (10)0.0047 (8)0.0023 (8)0.0008 (8)
C70.0373 (9)0.0449 (10)0.0514 (11)0.0019 (7)0.0004 (8)0.0001 (8)
C80.0492 (11)0.0465 (10)0.0503 (11)0.0015 (8)0.0078 (8)0.0012 (8)
C90.0551 (12)0.0651 (13)0.0656 (13)0.0085 (10)0.0073 (10)0.0154 (11)
C100.0783 (16)0.0695 (15)0.0662 (14)0.0199 (13)0.0133 (12)0.0177 (12)
C110.107 (2)0.0504 (12)0.0629 (14)0.0079 (13)0.0286 (14)0.0091 (11)
C120.0791 (16)0.0552 (13)0.0706 (15)0.0138 (12)0.0285 (12)0.0063 (11)
C130.0549 (12)0.0489 (11)0.0537 (12)0.0024 (9)0.0131 (9)0.0100 (9)
C140.0753 (17)0.0911 (19)0.097 (2)0.0247 (14)0.0025 (15)0.0211 (16)
C150.0890 (19)0.0872 (19)0.0787 (18)0.0212 (15)0.0070 (14)0.0342 (15)
C160.0521 (13)0.119 (2)0.0720 (16)0.0111 (14)0.0090 (11)0.0198 (16)
C170.0604 (14)0.0939 (18)0.0671 (15)0.0243 (13)0.0197 (12)0.0130 (14)
C180.0819 (16)0.0564 (13)0.0509 (12)0.0268 (11)0.0040 (11)0.0060 (10)
C190.0708 (14)0.0510 (11)0.0561 (12)0.0179 (10)0.0105 (10)0.0085 (10)
C200.0900 (18)0.0721 (16)0.0801 (17)0.0206 (13)0.0275 (14)0.0236 (13)
C210.127 (3)0.098 (2)0.087 (2)0.045 (2)0.045 (2)0.0428 (17)
C220.145 (3)0.099 (2)0.0618 (17)0.060 (2)0.0245 (19)0.0282 (16)
C230.109 (2)0.0799 (17)0.0597 (15)0.0417 (16)0.0056 (14)0.0068 (13)
C240.0504 (12)0.0560 (12)0.0544 (12)0.0093 (10)0.0058 (9)0.0045 (10)
C250.0796 (19)0.082 (2)0.160 (3)0.0404 (15)0.0002 (19)0.009 (2)
C260.146 (4)0.091 (3)0.388 (10)0.064 (3)0.015 (5)0.020 (4)
N10.0486 (9)0.0483 (9)0.0519 (9)0.0028 (7)0.0004 (7)0.0038 (7)
O10.0442 (9)0.0862 (12)0.1114 (14)0.0063 (8)0.0005 (9)0.0067 (10)
O20.0611 (10)0.0598 (9)0.0935 (12)0.0227 (7)0.0021 (8)0.0092 (8)
O30.0603 (9)0.0730 (10)0.0612 (9)0.0098 (7)0.0146 (7)0.0074 (8)
O40.0460 (8)0.0626 (9)0.0775 (10)0.0076 (7)0.0047 (7)0.0152 (7)
Geometric parameters (Å, º) top
C1—N11.462 (3)C14—O41.415 (3)
C1—C21.516 (4)C14—C151.476 (4)
C1—H1A0.9700C14—H14A0.9700
C1—H1B0.9700C14—H14B0.9700
C2—C31.467 (4)C15—C161.552 (4)
C2—H2A0.9700C15—H15A0.9700
C2—H2B0.9700C15—H15B0.9700
C3—C41.514 (3)C16—C171.509 (4)
C3—H3A0.9700C16—H16A0.9700
C3—H3B0.9700C16—H16B0.9700
C4—N11.463 (3)C17—O31.427 (3)
C4—C51.556 (3)C17—H17A0.9700
C4—H40.9800C17—H17B0.9700
C5—C191.510 (3)C18—O31.371 (3)
C5—C61.547 (3)C18—C231.386 (3)
C5—H50.9800C18—C191.400 (3)
C6—C241.508 (3)C19—C201.382 (3)
C6—C71.575 (3)C20—C211.381 (4)
C6—H60.9800C20—H200.9300
C7—N11.461 (2)C21—C221.362 (5)
C7—C81.507 (3)C21—H210.9300
C7—H70.9800C22—C231.387 (4)
C8—C91.390 (3)C22—H220.9300
C8—C131.396 (3)C23—H230.9300
C9—C101.382 (3)C24—O11.198 (2)
C9—H90.9300C24—O21.328 (3)
C10—C111.361 (4)C25—C261.341 (6)
C10—H100.9300C25—O21.463 (3)
C11—C121.371 (4)C25—H25A0.9700
C11—H110.9300C25—H25B0.9700
C12—C131.388 (3)C26—H26A0.9600
C12—H120.9300C26—H26B0.9600
C13—O41.380 (2)C26—H26C0.9600
N1—C1—C2102.65 (19)C15—C14—H14A109.7
N1—C1—H1A111.2O4—C14—H14B109.7
C2—C1—H1A111.2C15—C14—H14B109.7
N1—C1—H1B111.2H14A—C14—H14B108.2
C2—C1—H1B111.2C14—C15—C16114.1 (2)
H1A—C1—H1B109.2C14—C15—H15A108.7
C3—C2—C1108.3 (2)C16—C15—H15A108.7
C3—C2—H2A110.0C14—C15—H15B108.7
C1—C2—H2A110.0C16—C15—H15B108.7
C3—C2—H2B110.0H15A—C15—H15B107.6
C1—C2—H2B110.0C17—C16—C15113.7 (2)
H2A—C2—H2B108.4C17—C16—H16A108.8
C2—C3—C4105.3 (2)C15—C16—H16A108.8
C2—C3—H3A110.7C17—C16—H16B108.8
C4—C3—H3A110.7C15—C16—H16B108.8
C2—C3—H3B110.7H16A—C16—H16B107.7
C4—C3—H3B110.7O3—C17—C16106.44 (18)
H3A—C3—H3B108.8O3—C17—H17A110.4
N1—C4—C3104.83 (18)C16—C17—H17A110.4
N1—C4—C5106.03 (15)O3—C17—H17B110.4
C3—C4—C5115.4 (2)C16—C17—H17B110.4
N1—C4—H4110.1H17A—C17—H17B108.6
C3—C4—H4110.1O3—C18—C23123.4 (2)
C5—C4—H4110.1O3—C18—C19115.44 (18)
C19—C5—C6114.87 (17)C23—C18—C19121.2 (3)
C19—C5—C4114.30 (16)C20—C19—C18117.0 (2)
C6—C5—C4105.27 (16)C20—C19—C5121.0 (2)
C19—C5—H5107.3C18—C19—C5122.0 (2)
C6—C5—H5107.3C21—C20—C19122.6 (3)
C4—C5—H5107.3C21—C20—H20118.7
C24—C6—C5112.41 (16)C19—C20—H20118.7
C24—C6—C7116.88 (15)C22—C21—C20119.2 (3)
C5—C6—C7102.34 (14)C22—C21—H21120.4
C24—C6—H6108.3C20—C21—H21120.4
C5—C6—H6108.3C21—C22—C23120.8 (3)
C7—C6—H6108.3C21—C22—H22119.6
N1—C7—C8117.63 (15)C23—C22—H22119.6
N1—C7—C6106.88 (14)C18—C23—C22119.3 (3)
C8—C7—C6118.99 (15)C18—C23—H23120.4
N1—C7—H7103.7C22—C23—H23120.4
C8—C7—H7103.7O1—C24—O2122.53 (19)
C6—C7—H7103.7O1—C24—C6127.2 (2)
C9—C8—C13117.10 (19)O2—C24—C6110.22 (17)
C9—C8—C7124.01 (17)C26—C25—O2110.6 (3)
C13—C8—C7118.87 (17)C26—C25—H25A109.5
C10—C9—C8121.8 (2)O2—C25—H25A109.5
C10—C9—H9119.1C26—C25—H25B109.5
C8—C9—H9119.1O2—C25—H25B109.5
C11—C10—C9119.8 (2)H25A—C25—H25B108.1
C11—C10—H10120.1C25—C26—H26A109.5
C9—C10—H10120.1C25—C26—H26B109.5
C10—C11—C12120.5 (2)H26A—C26—H26B109.5
C10—C11—H11119.8C25—C26—H26C109.5
C12—C11—H11119.8H26A—C26—H26C109.5
C11—C12—C13119.9 (2)H26B—C26—H26C109.5
C11—C12—H12120.0C7—N1—C1119.67 (15)
C13—C12—H12120.0C7—N1—C4103.34 (14)
O4—C13—C12120.23 (19)C1—N1—C4106.37 (16)
O4—C13—C8118.72 (18)C24—O2—C25116.4 (2)
C12—C13—C8120.9 (2)C18—O3—C17120.56 (17)
O4—C14—C15110.0 (2)C13—O4—C14118.34 (18)
O4—C14—H14A109.7
N1—C1—C2—C322.2 (3)O3—C18—C19—C51.1 (3)
C1—C2—C3—C41.8 (4)C23—C18—C19—C5179.8 (2)
C2—C3—C4—N119.5 (3)C6—C5—C19—C20126.8 (2)
C2—C3—C4—C596.7 (3)C4—C5—C19—C20111.3 (2)
N1—C4—C5—C19150.07 (17)C6—C5—C19—C1854.1 (3)
C3—C4—C5—C1994.4 (2)C4—C5—C19—C1867.7 (3)
N1—C4—C5—C623.1 (2)C18—C19—C20—C211.0 (4)
C3—C4—C5—C6138.66 (19)C5—C19—C20—C21179.9 (2)
C19—C5—C6—C24107.9 (2)C19—C20—C21—C220.2 (4)
C4—C5—C6—C24125.50 (17)C20—C21—C22—C230.4 (5)
C19—C5—C6—C7125.90 (18)O3—C18—C23—C22179.1 (2)
C4—C5—C6—C70.73 (18)C19—C18—C23—C220.5 (4)
C24—C6—C7—N198.75 (19)C21—C22—C23—C180.3 (4)
C5—C6—C7—N124.51 (18)C5—C6—C24—O130.9 (3)
C24—C6—C7—C837.5 (2)C7—C6—C24—O187.0 (3)
C5—C6—C7—C8160.75 (16)C5—C6—C24—O2148.88 (17)
N1—C7—C8—C974.5 (2)C7—C6—C24—O293.2 (2)
C6—C7—C8—C957.2 (3)C8—C7—N1—C158.7 (2)
N1—C7—C8—C13107.4 (2)C6—C7—N1—C178.3 (2)
C6—C7—C8—C13120.91 (19)C8—C7—N1—C4176.60 (16)
C13—C8—C9—C102.4 (3)C6—C7—N1—C439.67 (17)
C7—C8—C9—C10175.7 (2)C2—C1—N1—C7151.1 (2)
C8—C9—C10—C110.3 (4)C2—C1—N1—C434.8 (3)
C9—C10—C11—C121.7 (4)C3—C4—N1—C7161.31 (18)
C10—C11—C12—C131.5 (3)C5—C4—N1—C738.75 (18)
C11—C12—C13—O4175.03 (19)C3—C4—N1—C134.5 (2)
C11—C12—C13—C80.7 (3)C5—C4—N1—C188.11 (18)
C9—C8—C13—O4173.20 (17)O1—C24—O2—C255.0 (3)
C7—C8—C13—O48.6 (3)C6—C24—O2—C25175.1 (2)
C9—C8—C13—C122.6 (3)C26—C25—O2—C24160.8 (4)
C7—C8—C13—C12175.65 (18)C23—C18—O3—C1711.7 (3)
O4—C14—C15—C1667.6 (3)C19—C18—O3—C17169.63 (19)
C14—C15—C16—C17160.5 (2)C16—C17—O3—C18173.41 (19)
C15—C16—C17—O368.4 (3)C12—C13—O4—C1463.7 (3)
O3—C18—C19—C20179.87 (19)C8—C13—O4—C14120.5 (2)
C23—C18—C19—C201.1 (3)C15—C14—O4—C13100.1 (3)
Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 are the centroids of the C8–C13 and C18–C23 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C11—H11···O4i0.932.603.419 (3)148
C17—H17B···Cg4ii0.972.973.817 (3)146
C22—H22···Cg3iii0.932.943.770 (3)150
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1, z; (iii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC26H31NO4
Mr421.52
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)10.4784 (5), 10.2624 (4), 21.0937 (10)
β (°) 95.350 (3)
V3)2258.40 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.25 × 0.22 × 0.19
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.979, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
20978, 5598, 3092
Rint0.031
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.180, 1.02
No. of reflections5598
No. of parameters281
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.23

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 are the centroids of the C8–C13 and C18–C23 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C11—H11···O4i0.932.603.419 (3)147.5
C17—H17B···Cg4ii0.972.973.817 (3)146
C22—H22···Cg3iii0.932.943.770 (3)150
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1, z; (iii) x, y+1/2, z1/2.
 

Acknowledgements

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection. SN thanks the University Grants Commission (UGC), Government of India, New Delhi, for a Meritorious Fellowship under the SAP programme.

References

First citationAraki, K., Suenaga, K., Sengoka, T. & Uemura, D. (2002). Tetrahedron, 58, 1983–1996.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNirmala, S., Murugan, R., Kamala, E. T. S., Sudha, L. & Sriman Narayanan, S. (2008). Acta Cryst. E64, o1774–o1775.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPinna, G. A., Pirisi, M. A., Chelucci, G., Mussinu, J. M., Murineddu, G., Loriga, G., DAquila, P. S. & Serra, G. (2002). Bioorg. Med. Chem. 10, 2485–2496.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds