organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2S,3R,4S,4aR)-2,3,4,7-Tetra­hy­droxy-3,4,4a,5-tetra­hydro­[1,3]dioxolo[4,5-j]phenanthridin-6(2H)-one hemihydrate

aInstitute of Applied Physics of the Academy of Sciences of Moldova, 5 Academy Street, MD-2028, Chisinau, Republic of Moldova, bDepartment of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX 78666, USA, cDipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia 4, Napoli 80126, Italy, and dDepartment of Chemistry & Biology, New Mexico Highlands University, 803 University Avenue, Las Vegas, NM 87701, USA
*Correspondence e-mail: evgheny.jukov@gmail.com

(Received 12 November 2012; accepted 27 November 2012; online 5 December 2012)

The title natural compound, isolated from Narcissus pseudonarcissus var. King Alfred crystallizes as a hemihydrate, C14H13NO7·0.5H2O, with four crystallographically independent dioxolophenanthridinone mol­ecules and two crystallographically independent solvent water mol­ecules in the asymmetric unit. All four crystallographically independent dioxolophenanthridinone mol­ecules are geometrically very similar and differ only in the orientations of the three hy­droxy groups at the terminal cyclo­hexene rings. The five-membered dioxolane ring has a planar conformation (the r.m.s. deviations are 0.010, 0.019, 0.025 and 0.004 Å, for the four crystallographically independent molecules), and the six-membered dihydro­pyridone and cyclo­hexene rings adopt sofa conformations in each mol­ecule. The flattened structure of each dioxolophenanthridinone mol­ecule is supported by a strong intra­molecular O—H⋯O hydrogen bond. The N atom has a slightly pyramidalized configuration. In the crystal, the dioxolophenanthridinone mol­ecules form layers parallel to (101) with O—H⋯O and N—H⋯O hydrogen bonds linking the dioxolophenanthridinone mol­ecules both within and between the layers and the water mol­ecules, forming a three-dimensional framework. The absolute configurations of the chiral centers are 2S, 3R, 4S and 4aR.

Related literature

For general background to narciclasine, see: Ceriotti (1967a[Ceriotti, G. (1967a). Nature, 213, 595-596.],b[Ceriotti, G. (1967b). Tumori, 53, 437-445.]); Ceriotti et al. (1967[Ceriotti, G., Spandrio, L. & Gazzaniga, A. (1967). Tumori, 53, 359-371.]); Kornienko & Evidente (2008[Kornienko, A. & Evidente, A. (2008). Chem. Rev. 108, 1982-2014.]). For the crystal structures of related compounds, see: Savona et al. (1970[Savona, G., Piozzi, F., Marino, M. L., Knight, J. & Mays, M. J. (1970). J. Chem. Soc. Chem. Commun. p. 1006a.]); Immirzi & Fuganti (1972[Immirzi, A. & Fuganti, C. (1972). J. Chem. Soc. Chem. Commun. p. 240a.]); Bi et al. (1998[Bi, Y.-R., Yung, K.-H. & Wong, Y.-S. (1998). Plant. Sci. 135, 103-108.]); McNulty et al. (2011[McNulty, J., Thorat, A., Vurgun, N., Nair, J. J., Makaji, E., Crankshaw, D. J., Holloway, A. C. & Pandey, S. (2011). J. Nat. Prod. 74, 106-108.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13NO7·0.5H2O

  • Mr = 316.26

  • Monoclinic, P 21

  • a = 10.90063 (8) Å

  • b = 20.37357 (17) Å

  • c = 11.88385 (9) Å

  • β = 104.3549 (8)°

  • V = 2556.82 (4) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 1.16 mm−1

  • T = 100 K

  • 0.25 × 0.23 × 0.06 mm

Data collection
  • Agilent SuperNova (Dual, Cu at zero, Atlas CCD) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.738, Tmax = 1.000

  • 57161 measured reflections

  • 10051 independent reflections

  • 9997 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.122

  • S = 1.05

  • 10051 reflections

  • 908 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 4707 Friedel pairs

  • Flack parameter: 0.05 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O4 0.96 (3) 1.57 (4) 2.4842 (19) 158 (3)
O5—H5⋯O7Ai 0.84 (4) 1.88 (4) 2.698 (2) 166 (4)
O6—H6⋯O3Aii 0.85 (3) 1.98 (3) 2.745 (2) 150 (3)
O7—H7⋯O7Ciii 0.89 (3) 1.89 (3) 2.768 (2) 170 (3)
N1—H1⋯O4Bi 0.91 (4) 2.25 (4) 3.105 (2) 157 (3)
O3A—H3A⋯O4A 1.00 (4) 1.55 (4) 2.4656 (19) 151 (4)
O5A—H5A⋯O7 0.87 (3) 2.23 (3) 3.050 (2) 157 (3)
O6A—H6AA⋯O1ii 0.82 (4) 2.15 (4) 2.906 (2) 153 (3)
O7A—H7A⋯O1Aiv 0.83 (4) 2.29 (4) 2.901 (2) 131 (3)
N1A—H1AA⋯O4C 0.89 (3) 1.91 (3) 2.796 (2) 171 (3)
O3B—H3B⋯O4B 1.01 (4) 1.57 (4) 2.537 (2) 159 (4)
O5B—H5B⋯O2Wv 0.94 (4) 1.80 (4) 2.701 (2) 159 (4)
O6B—H6B⋯O6vi 0.89 (4) 2.03 (4) 2.8857 (19) 163 (3)
O7B—H7B⋯O5vii 0.86 (4) 1.86 (4) 2.714 (2) 175 (4)
N1B—H1BA⋯O4v 0.89 (4) 1.99 (4) 2.870 (2) 171 (3)
O3C—H3C⋯O4C 0.95 (5) 1.59 (5) 2.4797 (18) 154 (5)
O5C—H5C⋯O6B 0.82 (3) 2.01 (4) 2.829 (2) 175 (3)
O6C—H6C⋯O6Avi 0.88 (4) 1.93 (3) 2.7893 (19) 165 (3)
O7C—H7C⋯O3Cvii 0.86 (4) 1.93 (4) 2.767 (2) 162 (3)
N1C—H1C⋯O4A 0.91 (4) 2.03 (4) 2.911 (2) 164 (3)
O1W—H1WA⋯O7Bi 0.90 (4) 1.94 (4) 2.835 (2) 173 (4)
O1W—H1WB⋯O5Avii 0.89 (5) 2.22 (5) 3.036 (2) 153 (4)
O2W—H2WA⋯O1W 0.90 (3) 1.94 (3) 2.833 (2) 167 (3)
O2W—H2WB⋯O6C 0.87 (4) 2.00 (4) 2.869 (2) 172 (3)
Symmetry codes: (i) x, y, z-1; (ii) [-x, y-{\script{1\over 2}}, -z+1]; (iii) [-x+1, y-{\script{1\over 2}}, -z+1]; (iv) [-x, y-{\script{1\over 2}}, -z+2]; (v) x, y, z+1; (vi) [-x, y+{\script{1\over 2}}, -z+1]; (vii) [-x+1, y+{\script{1\over 2}}, -z+1].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Since his first isolation from Narcissus bulbs by Ceriotti in 1967 (Ceriotti, 1967a; Ceriotti, 1967b; Ceriotti et al., 1967), narciclasine has been extensively studied from chemical and biological standpoints (Kornienko & Evidente, 2008). It exhibits a broad range of biological activities and thus has various potential practical applications, for example, in the treatment of brain cancers, such as glioblastoma multiforme. The structure and absolute stereochemistry of this isocarbostyril related to the Amaryllidaceae alkaloids was unambiguously elucidated by an X-ray analysis of the corresponding tetraacetate (Savona et al., 1970; Immirzi & Fuganti, 1972). In 1998, narciclasine isolated from the mucilage of Narcissustazetta L. bulbs was studied by an X-ray diffraction analysis, but the crystallographic data and structure refinement details were not presented and deposited (Bi et al., 1998). Furthermore, the X-ray data of cis-dihydronarciclasine were reported very recently (McNulty et al., 2011). Because of its biological importance, narciclasine is studied in complexes with the target proteins. To assist in these investigations we prepared crystalline natural product and performed an X-ray single-crystal analysis.

The title compound, I, crystallizes as hemihydrate, i.e., C14H13NO7.0.5H2O, with the four crystallographically independent molecules of I and the two crystallographically independent water solvate molecules in the unit cell (Fig. 1). All the four crystallographically independent molecules of I are geometrically very similar and differ only by the orientations of the three hydroxy groups at the terminal cyclohexene rings.

The molecule of I comprises a fused tetracyclic system containing one five-membered ring (dioxolane) and three six-membered rings (benzene, dihydropyridone and cyclohexene) (Fig. 1). The five-membered dioxolane ring has the planar conformation, and the six-membered dihydropyridone and cyclohexene rings adopt the sofa conformations. In the case of dihydropyridone ring, the bridged carbon atom adjacent to the nitrogen atom deviates from the plane passed through the other atoms of the ring, and, in the case of cyclohexene ring, the carbon atom bearing the hydroxy group and adjacent to the bridged carbon atom is out of the plane passed through the other atoms of the ring. The flattened structure of molecule of I is supported by the strong intramolecular O–H···O hydrogen bond (Table 1). The nitrogen atom has a slightly pyramidalized configuration.

The different disposition of the hydrogen atoms of the hydroxy groups in the four crystallographically independent molecules of I as well as the observed configurations of the nitrogen atoms is explained by developed hydrogen bonding system in the crystal of I (Table 1). In the crystal, the molecules of I form the layers parallel to (101) (Fig. 2). The intermolecular O–H···O and N–H···O hydrogen bonds link the molecules of I both within and between the layers and water solvate molecules into three-dimensional framework (Fig. 2).

The molecule of I possesses four asymmetric centers at the quaternary carbon atoms of the terminal cyclohexene ring. The absolute structure of I was objectively determined by use of Cu Kα radiation and the refinement of Flack parameter. The absolute configurations of the chiral centers are 2S,3R,4S,4aR.

Related literature top

For general background to narciclasine, see: Ceriotti (1967a,b); Ceriotti et al. (1967); Kornienko & Evidente (2008). For the crystal structures of related compounds, see: Savona et al. (1970); Immirzi & Fuganti (1972); Bi et al. (1998); McNulty et al. (2011).

Experimental top

Narciclasine, I, was isolated from the dried and minced bulbs of Narcissus pseudonarcissus var. King Alfred using an alternative method compared to those reported previously (Kornienko & Evidente, 2008). The methanol organic extract obtained using a Soxhlet was purified with two steps of column flash chromatography and 1 g of I was collected as amorphous solid. White single crystals of I suitable for an X-ray analysis were obtained by a slow dissolution of water in narciclasine-containing DMSO.

Refinement top

The hydrogen atoms of the hydroxy- and amino-groups were localized in the difference Fourier map and refined isotropically. The other hydrogen atoms were placed in calculated positions with C–H = 0.95-1.00Å and refined in the riding model with fixed isotropic displacement parameters with Uiso(H) = 1.2Ueq(C).

The absolute structure of I was objectively determined by the refinement of Flack parameter, which has become equal to 0.05 (8).

Structure description top

Since his first isolation from Narcissus bulbs by Ceriotti in 1967 (Ceriotti, 1967a; Ceriotti, 1967b; Ceriotti et al., 1967), narciclasine has been extensively studied from chemical and biological standpoints (Kornienko & Evidente, 2008). It exhibits a broad range of biological activities and thus has various potential practical applications, for example, in the treatment of brain cancers, such as glioblastoma multiforme. The structure and absolute stereochemistry of this isocarbostyril related to the Amaryllidaceae alkaloids was unambiguously elucidated by an X-ray analysis of the corresponding tetraacetate (Savona et al., 1970; Immirzi & Fuganti, 1972). In 1998, narciclasine isolated from the mucilage of Narcissustazetta L. bulbs was studied by an X-ray diffraction analysis, but the crystallographic data and structure refinement details were not presented and deposited (Bi et al., 1998). Furthermore, the X-ray data of cis-dihydronarciclasine were reported very recently (McNulty et al., 2011). Because of its biological importance, narciclasine is studied in complexes with the target proteins. To assist in these investigations we prepared crystalline natural product and performed an X-ray single-crystal analysis.

The title compound, I, crystallizes as hemihydrate, i.e., C14H13NO7.0.5H2O, with the four crystallographically independent molecules of I and the two crystallographically independent water solvate molecules in the unit cell (Fig. 1). All the four crystallographically independent molecules of I are geometrically very similar and differ only by the orientations of the three hydroxy groups at the terminal cyclohexene rings.

The molecule of I comprises a fused tetracyclic system containing one five-membered ring (dioxolane) and three six-membered rings (benzene, dihydropyridone and cyclohexene) (Fig. 1). The five-membered dioxolane ring has the planar conformation, and the six-membered dihydropyridone and cyclohexene rings adopt the sofa conformations. In the case of dihydropyridone ring, the bridged carbon atom adjacent to the nitrogen atom deviates from the plane passed through the other atoms of the ring, and, in the case of cyclohexene ring, the carbon atom bearing the hydroxy group and adjacent to the bridged carbon atom is out of the plane passed through the other atoms of the ring. The flattened structure of molecule of I is supported by the strong intramolecular O–H···O hydrogen bond (Table 1). The nitrogen atom has a slightly pyramidalized configuration.

The different disposition of the hydrogen atoms of the hydroxy groups in the four crystallographically independent molecules of I as well as the observed configurations of the nitrogen atoms is explained by developed hydrogen bonding system in the crystal of I (Table 1). In the crystal, the molecules of I form the layers parallel to (101) (Fig. 2). The intermolecular O–H···O and N–H···O hydrogen bonds link the molecules of I both within and between the layers and water solvate molecules into three-dimensional framework (Fig. 2).

The molecule of I possesses four asymmetric centers at the quaternary carbon atoms of the terminal cyclohexene ring. The absolute structure of I was objectively determined by use of Cu Kα radiation and the refinement of Flack parameter. The absolute configurations of the chiral centers are 2S,3R,4S,4aR.

For general background to narciclasine, see: Ceriotti (1967a,b); Ceriotti et al. (1967); Kornienko & Evidente (2008). For the crystal structures of related compounds, see: Savona et al. (1970); Immirzi & Fuganti (1972); Bi et al. (1998); McNulty et al. (2011).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure with the atom numbering scheme of I (four crystallographically independent molecules and two water solvate molecules are presented). Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as small spheres of arbitrary radius. Dashed lines indicate the O–H···O and N–H···O hydrogen bonds.
[Figure 2] Fig. 2. Crystal packing of I. Dashed lines indicate the O–H···O and N–H···O hydrogen bonds.
(2S,3R,4S,4aR)-2,3,4,7-Tetrahydroxy-3,4,4a,5- tetrahydro[1,3]dioxolo[4,5-j]phenanthridin-6(2H)-one hemihydrate top
Crystal data top
C14H13NO7·0.5H2OF(000) = 1320
Mr = 316.26Dx = 1.643 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.5418 Å
Hall symbol: P 2ybCell parameters from 36580 reflections
a = 10.90063 (8) Åθ = 3.8–73.8°
b = 20.37357 (17) ŵ = 1.16 mm1
c = 11.88385 (9) ÅT = 100 K
β = 104.3549 (8)°Plate, colourless
V = 2556.82 (4) Å30.25 × 0.23 × 0.06 mm
Z = 8
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas CCD)
diffractometer
10051 independent reflections
Radiation source: SuperNova (Cu) X-ray Source9997 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.028
Detector resolution: 10.3756 pixels mm-1θmax = 74.0°, θmin = 3.8°
ω–scansh = 1313
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 2523
Tmin = 0.738, Tmax = 1.000l = 1414
57161 measured reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.1041P)2 + 0.4322P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.122(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.27 e Å3
10051 reflectionsΔρmin = 0.21 e Å3
908 parametersExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.00102 (16)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 4707 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.05 (8)
Crystal data top
C14H13NO7·0.5H2OV = 2556.82 (4) Å3
Mr = 316.26Z = 8
Monoclinic, P21Cu Kα radiation
a = 10.90063 (8) ŵ = 1.16 mm1
b = 20.37357 (17) ÅT = 100 K
c = 11.88385 (9) Å0.25 × 0.23 × 0.06 mm
β = 104.3549 (8)°
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas CCD)
diffractometer
10051 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
9997 reflections with I > 2σ(I)
Tmin = 0.738, Tmax = 1.000Rint = 0.028
57161 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.122Δρmax = 0.27 e Å3
S = 1.05Δρmin = 0.21 e Å3
10051 reflectionsAbsolute structure: Flack (1983), 4707 Friedel pairs
908 parametersAbsolute structure parameter: 0.05 (8)
1 restraint
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.10128 (16)0.58845 (7)0.40287 (15)0.0248 (3)
O20.16470 (17)0.49383 (8)0.48170 (15)0.0280 (4)
O30.05191 (14)0.58470 (7)0.23220 (13)0.0186 (3)
H30.103 (3)0.5663 (17)0.185 (3)0.033 (8)*
O40.17583 (14)0.51247 (7)0.13295 (12)0.0173 (3)
O50.24849 (13)0.27851 (7)0.07456 (12)0.0153 (3)
H50.203 (4)0.253 (2)0.027 (4)0.056 (11)*
O60.03231 (13)0.21287 (7)0.12059 (12)0.0161 (3)
H60.013 (3)0.1724 (16)0.118 (2)0.022 (7)*
O70.22117 (13)0.21004 (7)0.42339 (12)0.0173 (3)
H70.292 (3)0.2276 (16)0.413 (3)0.032 (8)*
N10.17149 (15)0.40217 (8)0.14336 (14)0.0133 (3)
H10.222 (3)0.3984 (16)0.094 (3)0.032 (8)*
C10.1697 (2)0.56383 (10)0.48424 (18)0.0187 (4)
H1A0.13040.58010.56350.022*
H1B0.25880.57890.46180.022*
C20.05465 (18)0.53344 (10)0.36023 (17)0.0150 (4)
C30.01784 (18)0.52988 (10)0.28006 (17)0.0143 (4)
C40.05381 (17)0.46632 (10)0.25195 (16)0.0123 (4)
C50.01637 (17)0.40965 (10)0.30334 (15)0.0124 (4)
C60.06126 (18)0.41495 (10)0.38108 (17)0.0150 (4)
H6A0.09070.37730.41370.018*
C70.09250 (18)0.47744 (11)0.40765 (17)0.0167 (4)
C80.13693 (17)0.46133 (9)0.17180 (15)0.0123 (4)
C90.11265 (16)0.34097 (9)0.16808 (15)0.0109 (3)
H90.03860.33150.10140.013*
C100.06533 (16)0.34561 (10)0.27760 (15)0.0113 (3)
C110.20704 (16)0.28453 (9)0.17845 (15)0.0115 (3)
H110.28240.29490.24340.014*
C120.14720 (17)0.22178 (9)0.20911 (15)0.0128 (3)
H120.20540.18380.20890.015*
C130.11638 (17)0.22692 (10)0.32783 (15)0.0129 (3)
H130.04700.19480.32800.015*
C140.06725 (16)0.29371 (10)0.34676 (15)0.0128 (3)
H140.03490.29960.41330.015*
O1A0.17618 (14)0.57428 (7)0.96267 (13)0.0192 (3)
O2A0.24300 (15)0.47333 (8)1.01724 (14)0.0212 (3)
O3A0.01378 (14)0.58673 (7)0.80411 (13)0.0173 (3)
H3A0.049 (3)0.5769 (19)0.758 (3)0.048 (10)*
O4A0.11829 (13)0.52761 (7)0.69631 (12)0.0161 (3)
O5A0.24668 (12)0.30645 (7)0.62426 (12)0.0153 (3)
H5A0.217 (3)0.2783 (17)0.569 (3)0.030 (8)*
O6A0.02956 (12)0.22587 (8)0.59640 (11)0.0151 (3)
H6AA0.028 (3)0.1870 (18)0.578 (3)0.037 (9)*
O7A0.13673 (14)0.19497 (8)0.90368 (12)0.0185 (3)
H7A0.100 (4)0.163 (2)0.923 (3)0.051 (10)*
N1A0.12678 (15)0.41726 (8)0.68905 (14)0.0134 (3)
H1AA0.175 (3)0.4229 (17)0.640 (3)0.031 (8)*
C1A0.24805 (18)0.54300 (10)1.03442 (17)0.0157 (4)
H1AB0.21160.55401.11710.019*
H1AC0.33700.55841.01240.019*
C2A0.12403 (18)0.52349 (10)0.91416 (17)0.0143 (4)
C3A0.04642 (17)0.52784 (10)0.83915 (16)0.0128 (4)
C4A0.00376 (17)0.46811 (10)0.80138 (15)0.0117 (4)
C5A0.04178 (17)0.40713 (10)0.83707 (15)0.0115 (4)
C6A0.12623 (18)0.40417 (10)0.90945 (16)0.0134 (4)
H6AB0.15640.36360.93130.016*
C7A0.16278 (17)0.46344 (10)0.94683 (16)0.0145 (4)
C8A0.08361 (17)0.47205 (10)0.72538 (16)0.0124 (4)
C9A0.07358 (17)0.35238 (10)0.69731 (15)0.0120 (3)
H9A0.00840.34360.62330.014*
C10A0.01006 (16)0.34682 (10)0.79716 (15)0.0118 (3)
C11A0.17709 (16)0.30016 (10)0.71063 (15)0.0125 (3)
H11A0.23740.30620.78840.015*
C12A0.11766 (17)0.23275 (9)0.70834 (15)0.0125 (4)
H12A0.18510.19850.71690.015*
C13A0.04951 (17)0.22481 (10)0.80618 (16)0.0140 (4)
H13A0.02420.19460.77880.017*
C14A0.00246 (17)0.28815 (10)0.84499 (15)0.0128 (4)
H14A0.03570.28630.90860.015*
O1B0.60207 (15)0.38711 (8)0.67445 (14)0.0224 (3)
O2B0.66136 (15)0.48840 (8)0.61543 (13)0.0215 (3)
O3B0.45297 (15)0.37256 (7)0.84392 (13)0.0207 (3)
H3B0.405 (4)0.386 (2)0.902 (4)0.055 (11)*
O4B0.34387 (14)0.43363 (7)0.97790 (13)0.0185 (3)
O5B0.19712 (12)0.65451 (7)1.02628 (12)0.0160 (3)
H5B0.212 (4)0.679 (2)1.095 (4)0.058 (11)*
O6B0.20914 (13)0.73271 (7)0.82583 (11)0.0161 (3)
H6B0.137 (3)0.7348 (18)0.847 (3)0.043 (9)*
O7B0.52571 (13)0.76627 (7)0.98119 (12)0.0184 (3)
H7B0.596 (4)0.768 (2)0.962 (3)0.050 (10)*
N1B0.31833 (16)0.54343 (9)0.96672 (14)0.0155 (3)
H1BA0.277 (3)0.5380 (17)1.022 (3)0.037 (8)*
C1B0.67792 (18)0.41867 (10)0.60769 (17)0.0171 (4)
H1BB0.65120.40430.52560.021*
H1BC0.76820.40690.63850.021*
C2B0.55542 (18)0.43707 (10)0.72953 (17)0.0143 (4)
C3B0.48186 (18)0.43187 (10)0.80840 (16)0.0150 (4)
C4B0.44111 (17)0.49147 (10)0.84873 (15)0.0131 (4)
C5B0.47705 (17)0.55285 (10)0.81149 (15)0.0125 (4)
C6B0.55311 (18)0.55598 (10)0.73210 (17)0.0144 (4)
H6BA0.57800.59680.70590.017*
C7B0.58981 (18)0.49713 (11)0.69404 (16)0.0151 (4)
C8B0.36408 (17)0.48781 (10)0.93492 (16)0.0142 (4)
C9B0.31785 (17)0.60607 (10)0.90653 (16)0.0126 (4)
H9B0.24070.60770.84030.015*
C10B0.43332 (17)0.61301 (10)0.85803 (15)0.0125 (4)
C11B0.31061 (17)0.66210 (10)0.98879 (15)0.0131 (4)
H11B0.38490.65971.05770.016*
C12B0.31304 (17)0.72767 (10)0.92712 (16)0.0134 (4)
H12B0.30670.76410.98180.016*
C13B0.43532 (17)0.73580 (9)0.88773 (15)0.0134 (4)
H13B0.41830.76620.81950.016*
C14B0.48536 (17)0.67210 (10)0.85247 (15)0.0134 (4)
H14B0.55950.67400.82410.016*
O1C0.53886 (17)0.38983 (8)0.24948 (15)0.0276 (4)
O2C0.60370 (18)0.48792 (8)0.18242 (15)0.0289 (4)
O3C0.38164 (13)0.38340 (7)0.41199 (12)0.0158 (3)
H3C0.332 (5)0.396 (2)0.464 (4)0.074 (14)*
O4C0.27433 (14)0.44915 (7)0.53502 (12)0.0167 (3)
O5C0.17104 (12)0.67618 (7)0.60239 (12)0.0147 (3)
H5C0.182 (3)0.6905 (17)0.669 (3)0.034 (8)*
O6C0.22150 (12)0.76137 (7)0.42056 (11)0.0149 (3)
H6C0.146 (3)0.7503 (17)0.429 (3)0.038 (8)*
O7C0.54366 (12)0.75389 (7)0.59326 (12)0.0159 (3)
H7C0.553 (3)0.7959 (18)0.598 (2)0.026 (7)*
N1C0.26085 (15)0.55955 (8)0.52635 (14)0.0136 (3)
H1C0.211 (3)0.5576 (18)0.577 (3)0.039 (9)*
C1C0.6107 (2)0.41765 (11)0.17460 (18)0.0188 (4)
H1CA0.70000.40300.19920.023*
H1CB0.57530.40320.09350.023*
C2C0.49214 (19)0.44261 (10)0.29700 (16)0.0149 (4)
C3C0.41672 (17)0.44140 (10)0.37436 (16)0.0127 (4)
C4C0.38239 (17)0.50309 (10)0.41249 (15)0.0116 (4)
C5C0.42654 (17)0.56230 (10)0.37607 (16)0.0128 (4)
C6C0.50168 (18)0.56195 (10)0.29527 (16)0.0147 (4)
H6CA0.53020.60140.26750.018*
C7C0.53138 (19)0.50111 (11)0.25880 (17)0.0169 (4)
C8C0.30235 (17)0.50300 (10)0.49545 (15)0.0126 (4)
C9C0.27952 (17)0.62357 (9)0.47638 (15)0.0122 (3)
H9C0.20440.63310.41070.015*
C10C0.39702 (17)0.62355 (10)0.43001 (16)0.0121 (3)
C11C0.28799 (16)0.67616 (10)0.56871 (15)0.0122 (3)
H11C0.35810.66470.63770.015*
C12C0.31542 (17)0.74292 (9)0.52269 (15)0.0128 (3)
H12C0.31850.77680.58430.015*
C13C0.44355 (16)0.74143 (9)0.49068 (15)0.0127 (3)
H13C0.44440.77700.43280.015*
C14C0.47034 (16)0.67711 (9)0.43991 (15)0.0131 (3)
H14C0.54510.67410.41270.016*
O1W0.53702 (14)0.73287 (8)0.21514 (14)0.0222 (3)
H1WA0.533 (3)0.7470 (19)0.142 (3)0.046 (9)*
H1WB0.578 (4)0.762 (2)0.265 (4)0.070 (13)*
O2W0.27386 (15)0.74364 (9)0.19752 (13)0.0257 (3)
H2WA0.359 (3)0.7453 (15)0.212 (2)0.024 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0383 (9)0.0097 (8)0.0359 (8)0.0010 (6)0.0274 (7)0.0011 (6)
O20.0433 (9)0.0121 (8)0.0414 (9)0.0030 (7)0.0345 (8)0.0008 (7)
O30.0263 (7)0.0084 (7)0.0260 (7)0.0003 (5)0.0156 (6)0.0021 (5)
O40.0246 (7)0.0108 (7)0.0206 (7)0.0009 (5)0.0137 (5)0.0024 (5)
O50.0172 (6)0.0158 (7)0.0158 (6)0.0015 (5)0.0096 (5)0.0016 (5)
O60.0183 (7)0.0112 (7)0.0184 (6)0.0048 (5)0.0041 (5)0.0021 (5)
O70.0161 (6)0.0192 (8)0.0173 (6)0.0032 (5)0.0054 (5)0.0079 (5)
N10.0163 (7)0.0103 (8)0.0157 (7)0.0007 (6)0.0084 (6)0.0002 (6)
C10.0254 (10)0.0116 (10)0.0239 (9)0.0021 (8)0.0149 (8)0.0002 (8)
C20.0186 (9)0.0087 (10)0.0194 (9)0.0014 (7)0.0082 (7)0.0018 (7)
C30.0167 (8)0.0097 (9)0.0166 (8)0.0003 (7)0.0046 (7)0.0000 (7)
C40.0140 (8)0.0099 (9)0.0135 (8)0.0009 (7)0.0047 (6)0.0002 (7)
C50.0134 (8)0.0122 (10)0.0119 (8)0.0004 (7)0.0037 (6)0.0000 (7)
C60.0179 (8)0.0104 (9)0.0198 (9)0.0004 (7)0.0105 (7)0.0009 (7)
C70.0205 (9)0.0154 (10)0.0177 (9)0.0004 (7)0.0114 (7)0.0001 (7)
C80.0146 (8)0.0101 (9)0.0118 (8)0.0006 (7)0.0029 (6)0.0000 (7)
C90.0134 (8)0.0076 (9)0.0129 (8)0.0009 (6)0.0055 (6)0.0005 (6)
C100.0106 (7)0.0106 (9)0.0136 (8)0.0014 (6)0.0047 (6)0.0014 (7)
C110.0117 (8)0.0118 (9)0.0123 (8)0.0005 (6)0.0054 (6)0.0007 (6)
C120.0135 (8)0.0104 (9)0.0155 (8)0.0018 (7)0.0059 (6)0.0017 (7)
C130.0130 (8)0.0123 (9)0.0144 (8)0.0000 (7)0.0055 (6)0.0033 (7)
C140.0137 (8)0.0122 (9)0.0137 (8)0.0007 (7)0.0057 (6)0.0002 (7)
O1A0.0249 (7)0.0109 (7)0.0281 (7)0.0004 (6)0.0182 (6)0.0047 (6)
O2A0.0290 (7)0.0135 (8)0.0289 (8)0.0005 (6)0.0221 (6)0.0028 (6)
O3A0.0228 (7)0.0075 (7)0.0257 (7)0.0006 (5)0.0139 (6)0.0013 (5)
O4A0.0215 (7)0.0085 (7)0.0220 (6)0.0015 (5)0.0127 (5)0.0005 (5)
O5A0.0166 (6)0.0151 (7)0.0177 (6)0.0017 (5)0.0106 (5)0.0017 (5)
O6A0.0177 (6)0.0129 (7)0.0150 (6)0.0016 (5)0.0043 (5)0.0034 (5)
O7A0.0279 (7)0.0112 (7)0.0169 (7)0.0050 (6)0.0066 (5)0.0047 (5)
N1A0.0182 (7)0.0087 (8)0.0171 (7)0.0006 (6)0.0115 (6)0.0002 (6)
C1A0.0192 (9)0.0135 (10)0.0176 (8)0.0011 (7)0.0105 (7)0.0012 (7)
C2A0.0153 (8)0.0116 (10)0.0173 (8)0.0008 (7)0.0063 (7)0.0036 (7)
C3A0.0139 (8)0.0084 (9)0.0161 (8)0.0004 (7)0.0036 (6)0.0011 (7)
C4A0.0125 (8)0.0109 (9)0.0123 (8)0.0000 (7)0.0042 (6)0.0007 (7)
C5A0.0118 (8)0.0109 (10)0.0119 (8)0.0002 (6)0.0031 (6)0.0004 (7)
C6A0.0150 (8)0.0106 (9)0.0161 (8)0.0002 (7)0.0068 (7)0.0014 (7)
C7A0.0140 (8)0.0158 (10)0.0155 (9)0.0004 (7)0.0071 (7)0.0002 (7)
C8A0.0134 (8)0.0105 (9)0.0136 (8)0.0010 (7)0.0038 (6)0.0000 (7)
C9A0.0142 (8)0.0086 (9)0.0139 (8)0.0007 (7)0.0050 (6)0.0006 (7)
C10A0.0111 (8)0.0115 (9)0.0133 (8)0.0014 (6)0.0039 (6)0.0003 (7)
C11A0.0149 (8)0.0105 (9)0.0135 (8)0.0002 (7)0.0064 (6)0.0011 (7)
C12A0.0145 (8)0.0100 (9)0.0140 (8)0.0006 (7)0.0052 (6)0.0012 (6)
C13A0.0173 (8)0.0102 (9)0.0152 (8)0.0000 (7)0.0052 (7)0.0009 (7)
C14A0.0138 (8)0.0120 (9)0.0135 (8)0.0006 (7)0.0051 (6)0.0006 (7)
O1B0.0318 (8)0.0134 (7)0.0282 (8)0.0006 (6)0.0189 (6)0.0040 (6)
O2B0.0281 (7)0.0150 (7)0.0287 (7)0.0007 (6)0.0208 (6)0.0029 (6)
O3B0.0303 (8)0.0104 (7)0.0251 (7)0.0025 (6)0.0141 (6)0.0002 (6)
O4B0.0251 (7)0.0129 (8)0.0212 (7)0.0015 (6)0.0130 (5)0.0017 (5)
O5B0.0155 (6)0.0168 (7)0.0193 (7)0.0002 (5)0.0113 (5)0.0010 (5)
O6B0.0154 (6)0.0186 (7)0.0153 (6)0.0031 (5)0.0055 (5)0.0023 (5)
O7B0.0190 (7)0.0203 (8)0.0191 (7)0.0068 (5)0.0108 (5)0.0068 (5)
N1B0.0187 (8)0.0137 (9)0.0176 (7)0.0009 (6)0.0112 (6)0.0028 (6)
C1B0.0177 (8)0.0162 (10)0.0194 (9)0.0012 (7)0.0082 (7)0.0028 (8)
C2B0.0167 (8)0.0112 (9)0.0158 (8)0.0012 (7)0.0051 (7)0.0032 (7)
C3B0.0178 (8)0.0121 (10)0.0157 (8)0.0024 (7)0.0050 (7)0.0013 (7)
C4B0.0131 (8)0.0145 (10)0.0120 (8)0.0004 (7)0.0039 (6)0.0005 (7)
C5B0.0120 (8)0.0132 (10)0.0125 (8)0.0005 (7)0.0032 (6)0.0007 (7)
C6B0.0160 (8)0.0126 (10)0.0165 (8)0.0013 (7)0.0078 (7)0.0009 (7)
C7B0.0152 (8)0.0174 (10)0.0145 (8)0.0001 (7)0.0070 (7)0.0001 (7)
C8B0.0144 (8)0.0142 (10)0.0147 (8)0.0023 (7)0.0048 (6)0.0014 (7)
C9B0.0141 (8)0.0113 (9)0.0141 (8)0.0002 (6)0.0068 (6)0.0022 (7)
C10B0.0116 (8)0.0159 (10)0.0109 (8)0.0019 (7)0.0046 (6)0.0022 (7)
C11B0.0125 (8)0.0145 (9)0.0148 (8)0.0001 (7)0.0080 (6)0.0011 (7)
C12B0.0145 (8)0.0134 (9)0.0135 (8)0.0011 (7)0.0057 (6)0.0003 (7)
C13B0.0155 (8)0.0125 (9)0.0142 (8)0.0021 (7)0.0075 (6)0.0013 (7)
C14B0.0139 (8)0.0157 (10)0.0121 (8)0.0011 (7)0.0061 (6)0.0005 (7)
O1C0.0464 (10)0.0102 (8)0.0385 (9)0.0022 (7)0.0336 (8)0.0022 (6)
O2C0.0463 (9)0.0135 (8)0.0405 (9)0.0004 (7)0.0364 (8)0.0034 (7)
O3C0.0235 (7)0.0074 (7)0.0200 (7)0.0002 (5)0.0121 (5)0.0015 (5)
O4C0.0234 (7)0.0110 (7)0.0199 (6)0.0007 (5)0.0132 (5)0.0015 (5)
O5C0.0161 (6)0.0156 (7)0.0152 (6)0.0014 (5)0.0089 (5)0.0011 (5)
O6C0.0140 (6)0.0144 (7)0.0169 (6)0.0020 (5)0.0048 (5)0.0038 (5)
O7C0.0153 (6)0.0124 (7)0.0189 (7)0.0009 (5)0.0020 (5)0.0031 (5)
N1C0.0167 (7)0.0108 (8)0.0160 (7)0.0014 (6)0.0093 (6)0.0006 (6)
C1C0.0251 (9)0.0130 (10)0.0233 (9)0.0010 (8)0.0153 (8)0.0015 (8)
C2C0.0193 (8)0.0096 (10)0.0180 (9)0.0022 (7)0.0090 (7)0.0025 (7)
C3C0.0154 (8)0.0104 (9)0.0127 (8)0.0013 (7)0.0043 (7)0.0002 (7)
C4C0.0130 (8)0.0106 (10)0.0116 (8)0.0009 (7)0.0038 (6)0.0005 (7)
C5C0.0133 (8)0.0126 (10)0.0128 (8)0.0002 (7)0.0036 (6)0.0004 (7)
C6C0.0190 (9)0.0104 (10)0.0169 (8)0.0016 (7)0.0090 (7)0.0007 (7)
C7C0.0203 (9)0.0167 (11)0.0175 (9)0.0009 (7)0.0117 (7)0.0020 (7)
C8C0.0131 (8)0.0130 (9)0.0119 (8)0.0015 (7)0.0034 (6)0.0007 (7)
C9C0.0138 (8)0.0108 (9)0.0131 (8)0.0000 (7)0.0053 (6)0.0002 (7)
C10C0.0149 (8)0.0111 (9)0.0113 (8)0.0005 (7)0.0049 (6)0.0009 (7)
C11C0.0118 (8)0.0128 (9)0.0131 (8)0.0012 (6)0.0053 (6)0.0000 (7)
C12C0.0143 (8)0.0118 (9)0.0131 (8)0.0006 (6)0.0048 (6)0.0003 (7)
C13C0.0141 (8)0.0101 (9)0.0142 (8)0.0008 (7)0.0043 (6)0.0002 (7)
C14C0.0137 (8)0.0134 (9)0.0136 (8)0.0006 (7)0.0062 (6)0.0000 (7)
O1W0.0246 (7)0.0219 (8)0.0212 (7)0.0058 (6)0.0078 (6)0.0013 (6)
O2W0.0200 (7)0.0395 (10)0.0184 (7)0.0018 (6)0.0062 (5)0.0084 (6)
Geometric parameters (Å, º) top
O1—C11.450 (2)O2B—C1B1.438 (3)
O1—C21.378 (2)O2B—C7B1.369 (2)
O2—C11.428 (3)O3B—H3B1.01 (4)
O2—C71.360 (2)O3B—C3B1.343 (3)
O3—H30.96 (3)O4B—C8B1.258 (3)
O3—C31.347 (2)O5B—H5B0.94 (4)
O4—C81.255 (2)O5B—C11B1.424 (2)
O5—H50.84 (4)O6B—H6B0.89 (4)
O5—C111.421 (2)O6B—C12B1.437 (2)
O6—H60.85 (3)O7B—H7B0.86 (4)
O6—C121.433 (2)O7B—C13B1.431 (2)
O7—H70.89 (3)N1B—H1BA0.89 (4)
O7—C131.439 (2)N1B—C8B1.330 (3)
N1—H10.91 (4)N1B—C9B1.462 (2)
N1—C81.331 (3)C1B—H1BB0.9900
N1—C91.465 (2)C1B—H1BC0.9900
C1—H1A0.9900C2B—C3B1.380 (3)
C1—H1B0.9900C2B—C7B1.376 (3)
C2—C31.382 (3)C3B—C4B1.417 (3)
C2—C71.380 (3)C4B—C5B1.414 (3)
C3—C41.417 (3)C4B—C8B1.479 (2)
C4—C51.413 (3)C5B—C6B1.403 (3)
C4—C81.472 (2)C5B—C10B1.472 (3)
C5—C61.403 (3)C6B—H6BA0.9500
C5—C101.470 (3)C6B—C7B1.375 (3)
C6—H6A0.9500C9B—H9B1.0000
C6—C71.375 (3)C9B—C10B1.515 (2)
C9—H91.0000C9B—C11B1.518 (3)
C9—C101.517 (2)C10B—C14B1.339 (3)
C9—C111.528 (2)C11B—H11B1.0000
C10—C141.336 (3)C11B—C12B1.527 (3)
C11—H111.0000C12B—H12B1.0000
C11—C121.520 (2)C12B—C13B1.527 (2)
C12—H121.0000C13B—H13B1.0000
C12—C131.533 (2)C13B—C14B1.507 (3)
C13—H131.0000C14B—H14B0.9500
C13—C141.500 (3)O1C—C1C1.439 (2)
C14—H140.9500O1C—C2C1.370 (2)
O1A—C1A1.441 (2)O2C—C1C1.438 (3)
O1A—C2A1.374 (2)O2C—C7C1.368 (2)
O2A—C1A1.437 (3)O3C—H3C0.95 (5)
O2A—C7A1.367 (2)O3C—C3C1.352 (2)
O3A—H3A1.00 (4)O4C—C8C1.261 (2)
O3A—C3A1.346 (2)O5C—H5C0.82 (3)
O4A—C8A1.268 (2)O5C—C11C1.428 (2)
O5A—H5A0.87 (3)O6C—H6C0.88 (4)
O5A—C11A1.425 (2)O6C—C12C1.430 (2)
O6A—H6AA0.82 (4)O7C—H7C0.86 (4)
O6A—C12A1.442 (2)O7C—C13C1.443 (2)
O7A—H7A0.83 (4)N1C—H1C0.91 (4)
O7A—C13A1.439 (2)N1C—C8C1.323 (3)
N1A—H1AA0.89 (3)N1C—C9C1.468 (2)
N1A—C8A1.325 (3)C1C—H1CA0.9900
N1A—C9A1.456 (2)C1C—H1CB0.9900
C1A—H1AB0.9900C2C—C3C1.377 (3)
C1A—H1AC0.9900C2C—C7C1.380 (3)
C2A—C3A1.376 (3)C3C—C4C1.417 (3)
C2A—C7A1.381 (3)C4C—C5C1.406 (3)
C3A—C4A1.415 (3)C4C—C8C1.470 (2)
C4A—C5A1.408 (3)C5C—C6C1.408 (3)
C4A—C8A1.468 (2)C5C—C10C1.475 (3)
C5A—C6A1.408 (3)C6C—H6CA0.9500
C5A—C10A1.479 (3)C6C—C7C1.378 (3)
C6A—H6AB0.9500C9C—H9C1.0000
C6A—C7A1.379 (3)C9C—C10C1.515 (2)
C9A—H9A1.0000C9C—C11C1.520 (3)
C9A—C10A1.519 (2)C10C—C14C1.340 (3)
C9A—C11A1.530 (3)C11C—H11C1.0000
C10A—C14A1.335 (3)C11C—C12C1.523 (3)
C11A—H11A1.0000C12C—H12C1.0000
C11A—C12A1.516 (3)C12C—C13C1.536 (2)
C12A—H12A1.0000C13C—H13C1.0000
C12A—C13A1.536 (2)C13C—C14C1.501 (3)
C13A—H13A1.0000C14C—H14C0.9500
C13A—C14A1.503 (3)O1W—H1WA0.90 (4)
C14A—H14A0.9500O1W—H1WB0.89 (5)
O1B—C1B1.432 (2)O2W—H2WA0.90 (3)
O1B—C2B1.374 (2)O2W—H2WB0.87 (4)
C2—O1—C1105.17 (15)C7B—O2B—C1B105.90 (15)
C7—O2—C1106.90 (16)C3B—O3B—H3B100 (2)
C3—O3—H3101 (2)C11B—O5B—H5B104 (3)
C11—O5—H5113 (3)C12B—O6B—H6B109 (2)
C12—O6—H6108.5 (18)C13B—O7B—H7B108 (3)
C13—O7—H7110 (2)C8B—N1B—H1BA113 (2)
C8—N1—H1120 (2)C8B—N1B—C9B124.11 (16)
C8—N1—C9123.65 (15)C9B—N1B—H1BA122 (2)
C9—N1—H1115 (2)O1B—C1B—O2B108.01 (15)
O1—C1—H1A110.2O1B—C1B—H1BB110.1
O1—C1—H1B110.2O1B—C1B—H1BC110.1
O2—C1—O1107.61 (16)O2B—C1B—H1BB110.1
O2—C1—H1A110.2O2B—C1B—H1BC110.1
O2—C1—H1B110.2H1BB—C1B—H1BC108.4
H1A—C1—H1B108.5O1B—C2B—C3B127.77 (19)
O1—C2—C3128.47 (19)O1B—C2B—C7B110.58 (17)
O1—C2—C7110.32 (17)C7B—C2B—C3B121.64 (19)
C7—C2—C3121.20 (19)O3B—C3B—C2B120.24 (19)
O3—C3—C2120.81 (18)O3B—C3B—C4B123.17 (17)
O3—C3—C4122.49 (17)C2B—C3B—C4B116.59 (19)
C2—C3—C4116.70 (18)C3B—C4B—C8B118.08 (18)
C3—C4—C8117.80 (17)C5B—C4B—C3B121.18 (16)
C5—C4—C3121.24 (17)C5B—C4B—C8B120.70 (18)
C5—C4—C8120.89 (17)C4B—C5B—C10B118.57 (16)
C4—C5—C10118.47 (16)C6B—C5B—C4B120.42 (18)
C6—C5—C4120.51 (18)C6B—C5B—C10B121.00 (18)
C6—C5—C10120.97 (17)C5B—C6B—H6BA121.6
C5—C6—H6A121.7C7B—C6B—C5B116.74 (18)
C7—C6—C5116.53 (18)C7B—C6B—H6BA121.6
C7—C6—H6A121.7O2B—C7B—C2B109.76 (18)
O2—C7—C2109.92 (18)O2B—C7B—C6B126.81 (19)
O2—C7—C6126.32 (18)C6B—C7B—C2B123.42 (17)
C6—C7—C2123.75 (18)O4B—C8B—N1B121.09 (16)
O4—C8—N1121.03 (17)O4B—C8B—C4B120.80 (18)
O4—C8—C4119.94 (17)N1B—C8B—C4B118.10 (18)
N1—C8—C4119.02 (17)N1B—C9B—H9B108.3
N1—C9—H9108.2N1B—C9B—C10B111.40 (16)
N1—C9—C10112.21 (15)N1B—C9B—C11B109.63 (15)
N1—C9—C11109.71 (14)C10B—C9B—H9B108.3
C10—C9—H9108.2C10B—C9B—C11B110.82 (16)
C10—C9—C11110.07 (15)C11B—C9B—H9B108.3
C11—C9—H9108.2C5B—C10B—C9B116.24 (17)
C5—C10—C9116.86 (16)C14B—C10B—C5B123.32 (17)
C14—C10—C5121.70 (16)C14B—C10B—C9B120.31 (17)
C14—C10—C9121.44 (18)O5B—C11B—C9B107.93 (15)
O5—C11—C9110.35 (14)O5B—C11B—H11B109.2
O5—C11—H11108.1O5B—C11B—C12B111.42 (15)
O5—C11—C12112.55 (15)C9B—C11B—H11B109.2
C9—C11—H11108.1C9B—C11B—C12B109.82 (15)
C12—C11—C9109.39 (14)C12B—C11B—H11B109.2
C12—C11—H11108.1O6B—C12B—C11B111.14 (15)
O6—C12—C11106.22 (14)O6B—C12B—H12B108.9
O6—C12—H12109.8O6B—C12B—C13B107.57 (14)
O6—C12—C13109.46 (14)C11B—C12B—H12B108.9
C11—C12—H12109.8C11B—C12B—C13B111.24 (15)
C11—C12—C13111.60 (15)C13B—C12B—H12B108.9
C13—C12—H12109.8O7B—C13B—C12B107.13 (14)
O7—C13—C12113.45 (14)O7B—C13B—H13B108.3
O7—C13—H13107.2O7B—C13B—C14B111.25 (15)
O7—C13—C14109.98 (15)C12B—C13B—H13B108.3
C12—C13—H13107.2C14B—C13B—C12B113.29 (16)
C14—C13—C12111.60 (15)C14B—C13B—H13B108.3
C14—C13—H13107.2C10B—C14B—C13B124.99 (16)
C10—C14—C13125.27 (16)C10B—C14B—H14B117.5
C10—C14—H14117.4C13B—C14B—H14B117.5
C13—C14—H14117.4C2C—O1C—C1C105.10 (16)
C2A—O1A—C1A104.91 (15)C7C—O2C—C1C106.67 (16)
C7A—O2A—C1A106.58 (15)C3C—O3C—H3C103 (3)
C3A—O3A—H3A105 (2)C11C—O5C—H5C110 (2)
C11A—O5A—H5A109 (2)C12C—O6C—H6C109 (2)
C12A—O6A—H6AA108 (2)C13C—O7C—H7C106.1 (19)
C13A—O7A—H7A107 (3)C8C—N1C—H1C117 (2)
C8A—N1A—H1AA115 (2)C8C—N1C—C9C124.78 (15)
C8A—N1A—C9A124.28 (15)C9C—N1C—H1C118 (2)
C9A—N1A—H1AA118 (2)O1C—C1C—H1CA110.1
O1A—C1A—H1AB110.1O1C—C1C—H1CB110.1
O1A—C1A—H1AC110.1O2C—C1C—O1C107.84 (16)
O2A—C1A—O1A107.88 (15)O2C—C1C—H1CA110.1
O2A—C1A—H1AB110.1O2C—C1C—H1CB110.1
O2A—C1A—H1AC110.1H1CA—C1C—H1CB108.5
H1AB—C1A—H1AC108.4O1C—C2C—C3C127.27 (19)
O1A—C2A—C3A127.45 (19)O1C—C2C—C7C111.40 (17)
O1A—C2A—C7A111.22 (16)C3C—C2C—C7C121.32 (18)
C3A—C2A—C7A121.30 (18)O3C—C3C—C2C120.07 (18)
O3A—C3A—C2A120.67 (18)O3C—C3C—C4C123.41 (16)
O3A—C3A—C4A122.38 (16)C2C—C3C—C4C116.50 (18)
C2A—C3A—C4A116.96 (18)C3C—C4C—C8C117.46 (17)
C3A—C4A—C8A117.54 (17)C5C—C4C—C3C121.64 (16)
C5A—C4A—C3A121.26 (17)C5C—C4C—C8C120.86 (18)
C5A—C4A—C8A121.18 (17)C4C—C5C—C6C120.46 (18)
C4A—C5A—C6A120.50 (18)C4C—C5C—C10C117.64 (16)
C4A—C5A—C10A118.17 (16)C6C—C5C—C10C121.82 (18)
C6A—C5A—C10A121.32 (18)C5C—C6C—H6CA121.9
C5A—C6A—H6AB121.8C7C—C6C—C5C116.15 (18)
C7A—C6A—C5A116.35 (18)C7C—C6C—H6CA121.9
C7A—C6A—H6AB121.8O2C—C7C—C2C108.97 (18)
O2A—C7A—C2A109.16 (17)O2C—C7C—C6C127.17 (19)
O2A—C7A—C6A127.30 (18)C6C—C7C—C2C123.85 (17)
C6A—C7A—C2A123.52 (17)O4C—C8C—N1C121.55 (17)
O4A—C8A—N1A120.63 (17)O4C—C8C—C4C119.37 (18)
O4A—C8A—C4A119.93 (17)N1C—C8C—C4C119.08 (17)
N1A—C8A—C4A119.44 (17)N1C—C9C—H9C108.6
N1A—C9A—H9A108.1N1C—C9C—C10C111.19 (15)
N1A—C9A—C10A112.74 (15)N1C—C9C—C11C108.90 (15)
N1A—C9A—C11A110.01 (15)C10C—C9C—H9C108.6
C10A—C9A—H9A108.1C10C—C9C—C11C110.94 (15)
C10A—C9A—C11A109.54 (15)C11C—C9C—H9C108.6
C11A—C9A—H9A108.1C5C—C10C—C9C116.99 (16)
C5A—C10A—C9A118.22 (16)C14C—C10C—C5C122.51 (17)
C14A—C10A—C5A122.58 (16)C14C—C10C—C9C120.49 (17)
C14A—C10A—C9A119.20 (17)O5C—C11C—C9C107.69 (14)
O5A—C11A—C9A111.93 (15)O5C—C11C—H11C108.9
O5A—C11A—H11A108.0O5C—C11C—C12C111.65 (15)
O5A—C11A—C12A111.71 (15)C9C—C11C—H11C108.9
C9A—C11A—H11A108.0C9C—C11C—C12C110.64 (14)
C12A—C11A—C9A109.10 (14)C12C—C11C—H11C108.9
C12A—C11A—H11A108.0O6C—C12C—C11C112.11 (14)
O6A—C12A—C11A106.78 (15)O6C—C12C—H12C109.1
O6A—C12A—H12A109.3O6C—C12C—C13C107.37 (14)
O6A—C12A—C13A110.60 (14)C11C—C12C—H12C109.1
C11A—C12A—H12A109.3C11C—C12C—C13C110.04 (15)
C11A—C12A—C13A111.51 (15)C13C—C12C—H12C109.1
C13A—C12A—H12A109.3O7C—C13C—C12C109.32 (14)
O7A—C13A—C12A107.89 (15)O7C—C13C—H13C108.6
O7A—C13A—H13A108.6O7C—C13C—C14C108.14 (14)
O7A—C13A—C14A108.86 (15)C12C—C13C—H13C108.6
C12A—C13A—H13A108.6C14C—C13C—C12C113.34 (15)
C14A—C13A—C12A114.07 (16)C14C—C13C—H13C108.6
C14A—C13A—H13A108.6C10C—C14C—C13C125.07 (16)
C10A—C14A—C13A125.19 (16)C10C—C14C—H14C117.5
C10A—C14A—H14A117.4C13C—C14C—H14C117.5
C13A—C14A—H14A117.4H1WA—O1W—H1WB109 (4)
C2B—O1B—C1B105.30 (16)H2WA—O2W—H2WB107 (3)
O1—C2—C3—O30.2 (3)O1B—C2B—C3B—O3B3.3 (3)
O1—C2—C3—C4179.64 (18)O1B—C2B—C3B—C4B177.19 (17)
O1—C2—C7—O20.2 (2)O1B—C2B—C7B—O2B0.7 (2)
O1—C2—C7—C6179.57 (19)O1B—C2B—C7B—C6B177.95 (18)
O3—C3—C4—C5179.83 (17)O3B—C3B—C4B—C5B178.08 (17)
O3—C3—C4—C83.2 (3)O3B—C3B—C4B—C8B0.6 (3)
O5—C11—C12—O666.93 (18)O5B—C11B—C12B—O6B60.52 (19)
O5—C11—C12—C13173.83 (14)O5B—C11B—C12B—C13B179.64 (14)
O6—C12—C13—O7156.75 (15)O6B—C12B—C13B—O7B148.66 (15)
O6—C12—C13—C1478.34 (18)O6B—C12B—C13B—C14B88.28 (18)
O7—C13—C14—C10118.47 (19)O7B—C13B—C14B—C10B118.34 (19)
N1—C9—C10—C534.0 (2)N1B—C9B—C10B—C5B37.0 (2)
N1—C9—C10—C14146.53 (17)N1B—C9B—C10B—C14B147.00 (17)
N1—C9—C11—O558.02 (19)N1B—C9B—C11B—O5B59.61 (19)
N1—C9—C11—C12177.64 (14)N1B—C9B—C11B—C12B178.75 (15)
C1—O1—C2—C3179.75 (19)C1B—O1B—C2B—C3B176.65 (19)
C1—O1—C2—C71.5 (2)C1B—O1B—C2B—C7B4.6 (2)
C1—O2—C7—C21.9 (2)C1B—O2B—C7B—C2B3.5 (2)
C1—O2—C7—C6178.8 (2)C1B—O2B—C7B—C6B177.91 (19)
C2—O1—C1—O22.6 (2)C2B—O1B—C1B—O2B6.6 (2)
C2—C3—C4—C50.3 (3)C2B—C3B—C4B—C5B1.4 (3)
C2—C3—C4—C8176.66 (16)C2B—C3B—C4B—C8B178.91 (16)
C3—C2—C7—O2178.66 (17)C3B—C2B—C7B—O2B179.54 (17)
C3—C2—C7—C60.7 (3)C3B—C2B—C7B—C6B0.9 (3)
C3—C4—C5—C62.1 (3)C3B—C4B—C5B—C6B0.8 (3)
C3—C4—C5—C10175.14 (16)C3B—C4B—C5B—C10B179.02 (16)
C3—C4—C8—O41.6 (3)C3B—C4B—C8B—O4B5.5 (3)
C3—C4—C8—N1179.57 (16)C3B—C4B—C8B—N1B175.36 (16)
C4—C5—C6—C73.0 (3)C4B—C5B—C6B—C7B0.2 (3)
C4—C5—C10—C921.2 (2)C4B—C5B—C10B—C9B21.3 (2)
C4—C5—C10—C14159.35 (18)C4B—C5B—C10B—C14B162.86 (18)
C5—C4—C8—O4175.36 (16)C5B—C4B—C8B—O4B172.00 (16)
C5—C4—C8—N13.4 (3)C5B—C4B—C8B—N1B7.1 (3)
C5—C6—C7—O2179.04 (19)C5B—C6B—C7B—O2B178.59 (18)
C5—C6—C7—C21.7 (3)C5B—C6B—C7B—C2B0.2 (3)
C5—C10—C14—C13179.43 (16)C5B—C10B—C14B—C13B173.39 (16)
C6—C5—C10—C9161.62 (17)C6B—C5B—C10B—C9B158.87 (17)
C6—C5—C10—C1417.9 (3)C6B—C5B—C10B—C14B17.0 (3)
C7—O2—C1—O12.7 (2)C7B—O2B—C1B—O1B6.3 (2)
C7—C2—C3—O3178.45 (17)C7B—C2B—C3B—O3B178.04 (17)
C7—C2—C3—C41.7 (3)C7B—C2B—C3B—C4B1.5 (3)
C8—N1—C9—C1030.9 (2)C8B—N1B—C9B—C10B34.1 (3)
C8—N1—C9—C11153.55 (16)C8B—N1B—C9B—C11B157.12 (17)
C8—C4—C5—C6178.98 (16)C8B—C4B—C5B—C6B178.22 (16)
C8—C4—C5—C101.8 (3)C8B—C4B—C5B—C10B1.6 (3)
C9—N1—C8—O4168.63 (16)C9B—N1B—C8B—O4B168.45 (17)
C9—N1—C8—C412.6 (3)C9B—N1B—C8B—C4B12.4 (3)
C9—C10—C14—C131.1 (3)C9B—C10B—C14B—C13B2.3 (3)
C9—C11—C12—O656.11 (18)C9B—C11B—C12B—O6B59.00 (19)
C9—C11—C12—C1363.13 (18)C9B—C11B—C12B—C13B60.84 (19)
C10—C5—C6—C7174.14 (16)C10B—C5B—C6B—C7B179.65 (16)
C10—C9—C11—O5178.03 (14)C10B—C9B—C11B—O5B177.02 (14)
C10—C9—C11—C1253.69 (19)C10B—C9B—C11B—C12B55.38 (19)
C11—C9—C10—C5156.46 (15)C11B—C9B—C10B—C5B159.39 (15)
C11—C9—C10—C1424.0 (2)C11B—C9B—C10B—C14B24.7 (2)
C11—C12—C13—O785.96 (19)C11B—C12B—C13B—O7B89.41 (18)
C11—C12—C13—C1438.95 (19)C11B—C12B—C13B—C14B33.7 (2)
C12—C13—C14—C108.4 (2)C12B—C13B—C14B—C10B2.4 (2)
O1A—C2A—C3A—O3A0.5 (3)O1C—C2C—C3C—O3C0.4 (3)
O1A—C2A—C3A—C4A179.59 (17)O1C—C2C—C3C—C4C178.95 (18)
O1A—C2A—C7A—O2A0.6 (2)O1C—C2C—C7C—O2C1.2 (2)
O1A—C2A—C7A—C6A179.06 (17)O1C—C2C—C7C—C6C177.97 (19)
O3A—C3A—C4A—C5A178.42 (16)O3C—C3C—C4C—C5C176.47 (16)
O3A—C3A—C4A—C8A2.7 (3)O3C—C3C—C4C—C8C1.3 (3)
O5A—C11A—C12A—O6A62.49 (18)O5C—C11C—C12C—O6C62.17 (19)
O5A—C11A—C12A—C13A176.59 (14)O5C—C11C—C12C—C13C178.41 (14)
O6A—C12A—C13A—O7A147.36 (15)O6C—C12C—C13C—O7C153.23 (15)
O6A—C12A—C13A—C14A91.56 (19)O6C—C12C—C13C—C14C86.06 (18)
O7A—C13A—C14A—C10A124.37 (19)O7C—C13C—C14C—C10C116.59 (19)
N1A—C9A—C10A—C5A26.8 (2)N1C—C9C—C10C—C5C35.9 (2)
N1A—C9A—C10A—C14A153.50 (17)N1C—C9C—C10C—C14C143.25 (17)
N1A—C9A—C11A—O5A50.89 (19)N1C—C9C—C11C—O5C61.17 (18)
N1A—C9A—C11A—C12A175.04 (14)N1C—C9C—C11C—C12C176.56 (14)
C1A—O1A—C2A—C3A179.61 (19)C1C—O1C—C2C—C3C179.72 (19)
C1A—O1A—C2A—C7A2.5 (2)C1C—O1C—C2C—C7C1.0 (2)
C1A—O2A—C7A—C2A3.5 (2)C1C—O2C—C7C—C2C0.8 (2)
C1A—O2A—C7A—C6A178.11 (18)C1C—O2C—C7C—C6C178.3 (2)
C2A—O1A—C1A—O2A4.62 (19)C2C—O1C—C1C—O2C0.5 (2)
C2A—C3A—C4A—C5A1.5 (3)C2C—C3C—C4C—C5C2.0 (3)
C2A—C3A—C4A—C8A177.38 (16)C2C—C3C—C4C—C8C179.76 (16)
C3A—C2A—C7A—O2A177.39 (17)C3C—C2C—C7C—O2C179.49 (18)
C3A—C2A—C7A—C6A1.1 (3)C3C—C2C—C7C—C6C1.3 (3)
C3A—C4A—C5A—C6A1.6 (3)C3C—C4C—C5C—C6C3.2 (3)
C3A—C4A—C5A—C10A178.01 (16)C3C—C4C—C5C—C10C173.58 (16)
C3A—C4A—C8A—O4A0.2 (3)C3C—C4C—C8C—O4C4.6 (3)
C3A—C4A—C8A—N1A179.32 (16)C3C—C4C—C8C—N1C175.10 (15)
C4A—C5A—C6A—C7A3.2 (3)C4C—C5C—C6C—C7C2.1 (3)
C4A—C5A—C10A—C9A15.2 (2)C4C—C5C—C10C—C9C26.4 (2)
C4A—C5A—C10A—C14A165.18 (17)C4C—C5C—C10C—C14C152.74 (18)
C5A—C4A—C8A—O4A178.64 (16)C5C—C4C—C8C—O4C173.22 (16)
C5A—C4A—C8A—N1A0.5 (3)C5C—C4C—C8C—N1C7.1 (3)
C5A—C6A—C7A—O2A179.85 (18)C5C—C6C—C7C—O2C179.17 (19)
C5A—C6A—C7A—C2A2.0 (3)C5C—C6C—C7C—C2C0.1 (3)
C5A—C10A—C14A—C13A178.01 (16)C5C—C10C—C14C—C13C178.13 (17)
C6A—C5A—C10A—C9A165.26 (16)C6C—C5C—C10C—C9C156.83 (17)
C6A—C5A—C10A—C14A14.4 (3)C6C—C5C—C10C—C14C24.0 (3)
C7A—O2A—C1A—O1A5.1 (2)C7C—O2C—C1C—O1C0.2 (2)
C7A—C2A—C3A—O3A177.13 (16)C7C—C2C—C3C—O3C178.76 (16)
C7A—C2A—C3A—C4A2.8 (3)C7C—C2C—C3C—C4C0.2 (3)
C8A—N1A—C9A—C10A27.3 (2)C8C—N1C—C9C—C10C26.4 (2)
C8A—N1A—C9A—C11A149.93 (17)C8C—N1C—C9C—C11C148.98 (17)
C8A—C4A—C5A—C6A179.63 (16)C8C—C4C—C5C—C6C179.08 (16)
C8A—C4A—C5A—C10A0.8 (3)C8C—C4C—C5C—C10C4.1 (2)
C9A—N1A—C8A—O4A166.72 (17)C9C—N1C—C8C—O4C174.15 (17)
C9A—N1A—C8A—C4A14.2 (3)C9C—N1C—C8C—C4C5.5 (3)
C9A—C10A—C14A—C13A1.6 (3)C9C—C10C—C14C—C13C2.8 (3)
C9A—C11A—C12A—O6A61.79 (17)C9C—C11C—C12C—O6C57.75 (19)
C9A—C11A—C12A—C13A59.13 (19)C9C—C11C—C12C—C13C61.66 (18)
C10A—C5A—C6A—C7A176.34 (16)C10C—C5C—C6C—C7C174.59 (16)
C10A—C9A—C11A—O5A175.35 (15)C10C—C9C—C11C—O5C176.14 (14)
C10A—C9A—C11A—C12A60.50 (19)C10C—C9C—C11C—C12C53.87 (19)
C11A—C9A—C10A—C5A149.70 (16)C11C—C9C—C10C—C5C157.25 (15)
C11A—C9A—C10A—C14A30.6 (2)C11C—C9C—C10C—C14C21.9 (2)
C11A—C12A—C13A—O7A93.98 (18)C11C—C12C—C13C—O7C84.50 (18)
C11A—C12A—C13A—C14A27.1 (2)C11C—C12C—C13C—C14C36.21 (19)
C12A—C13A—C14A—C10A3.8 (3)C12C—C13C—C14C—C10C4.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O40.96 (3)1.57 (4)2.4842 (19)158 (3)
O5—H5···O7Ai0.84 (4)1.88 (4)2.698 (2)166 (4)
O6—H6···O3Aii0.85 (3)1.98 (3)2.745 (2)150 (3)
O7—H7···O7Ciii0.89 (3)1.89 (3)2.768 (2)170 (3)
N1—H1···O4Bi0.91 (4)2.25 (4)3.105 (2)157 (3)
O3A—H3A···O4A1.00 (4)1.55 (4)2.4656 (19)151 (4)
O5A—H5A···O70.87 (3)2.23 (3)3.050 (2)157 (3)
O6A—H6AA···O1ii0.82 (4)2.15 (4)2.906 (2)153 (3)
O7A—H7A···O1Aiv0.83 (4)2.29 (4)2.901 (2)131 (3)
N1A—H1AA···O4C0.89 (3)1.91 (3)2.796 (2)171 (3)
O3B—H3B···O4B1.01 (4)1.57 (4)2.537 (2)159 (4)
O5B—H5B···O2Wv0.94 (4)1.80 (4)2.701 (2)159 (4)
O6B—H6B···O6vi0.89 (4)2.03 (4)2.8857 (19)163 (3)
O7B—H7B···O5vii0.86 (4)1.86 (4)2.714 (2)175 (4)
N1B—H1BA···O4v0.89 (4)1.99 (4)2.870 (2)171 (3)
O3C—H3C···O4C0.95 (5)1.59 (5)2.4797 (18)154 (5)
O5C—H5C···O6B0.82 (3)2.01 (4)2.829 (2)175 (3)
O6C—H6C···O6Avi0.88 (4)1.93 (3)2.7893 (19)165 (3)
O7C—H7C···O3Cvii0.86 (4)1.93 (4)2.767 (2)162 (3)
N1C—H1C···O4A0.91 (4)2.03 (4)2.911 (2)164 (3)
O1W—H1WA···O7Bi0.90 (4)1.94 (4)2.835 (2)173 (4)
O1W—H1WB···O5Avii0.89 (5)2.22 (5)3.036 (2)153 (4)
O2W—H2WA···O1W0.90 (3)1.94 (3)2.833 (2)167 (3)
O2W—H2WB···O6C0.87 (4)2.00 (4)2.869 (2)172 (3)
Symmetry codes: (i) x, y, z1; (ii) x, y1/2, z+1; (iii) x+1, y1/2, z+1; (iv) x, y1/2, z+2; (v) x, y, z+1; (vi) x, y+1/2, z+1; (vii) x+1, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC14H13NO7·0.5H2O
Mr316.26
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)10.90063 (8), 20.37357 (17), 11.88385 (9)
β (°) 104.3549 (8)
V3)2556.82 (4)
Z8
Radiation typeCu Kα
µ (mm1)1.16
Crystal size (mm)0.25 × 0.23 × 0.06
Data collection
DiffractometerAgilent SuperNova (Dual, Cu at zero, Atlas CCD)
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.738, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
57161, 10051, 9997
Rint0.028
(sin θ/λ)max1)0.623
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.122, 1.05
No. of reflections10051
No. of parameters908
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.21
Absolute structureFlack (1983), 4707 Friedel pairs
Absolute structure parameter0.05 (8)

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O40.96 (3)1.57 (4)2.4842 (19)158 (3)
O5—H5···O7Ai0.84 (4)1.88 (4)2.698 (2)166 (4)
O6—H6···O3Aii0.85 (3)1.98 (3)2.745 (2)150 (3)
O7—H7···O7Ciii0.89 (3)1.89 (3)2.768 (2)170 (3)
N1—H1···O4Bi0.91 (4)2.25 (4)3.105 (2)157 (3)
O3A—H3A···O4A1.00 (4)1.55 (4)2.4656 (19)151 (4)
O5A—H5A···O70.87 (3)2.23 (3)3.050 (2)157 (3)
O6A—H6AA···O1ii0.82 (4)2.15 (4)2.906 (2)153 (3)
O7A—H7A···O1Aiv0.83 (4)2.29 (4)2.901 (2)131 (3)
N1A—H1AA···O4C0.89 (3)1.91 (3)2.796 (2)171 (3)
O3B—H3B···O4B1.01 (4)1.57 (4)2.537 (2)159 (4)
O5B—H5B···O2Wv0.94 (4)1.80 (4)2.701 (2)159 (4)
O6B—H6B···O6vi0.89 (4)2.03 (4)2.8857 (19)163 (3)
O7B—H7B···O5vii0.86 (4)1.86 (4)2.714 (2)175 (4)
N1B—H1BA···O4v0.89 (4)1.99 (4)2.870 (2)171 (3)
O3C—H3C···O4C0.95 (5)1.59 (5)2.4797 (18)154 (5)
O5C—H5C···O6B0.82 (3)2.01 (4)2.829 (2)175 (3)
O6C—H6C···O6Avi0.88 (4)1.93 (3)2.7893 (19)165 (3)
O7C—H7C···O3Cvii0.86 (4)1.93 (4)2.767 (2)162 (3)
N1C—H1C···O4A0.91 (4)2.03 (4)2.911 (2)164 (3)
O1W—H1WA···O7Bi0.90 (4)1.94 (4)2.835 (2)173 (4)
O1W—H1WB···O5Avii0.89 (5)2.22 (5)3.036 (2)153 (4)
O2W—H2WA···O1W0.90 (3)1.94 (3)2.833 (2)167 (3)
O2W—H2WB···O6C0.87 (4)2.00 (4)2.869 (2)172 (3)
Symmetry codes: (i) x, y, z1; (ii) x, y1/2, z+1; (iii) x+1, y1/2, z+1; (iv) x, y1/2, z+2; (v) x, y, z+1; (vi) x, y+1/2, z+1; (vii) x+1, y+1/2, z+1.
 

Acknowledgements

The authors are grateful to Dr Sergey Lindeman for help with this work and to the NSF for support via DMR grant 0934212 (PREM) and CHE 0832622.

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBi, Y.-R., Yung, K.-H. & Wong, Y.-S. (1998). Plant. Sci. 135, 103–108.  Web of Science CrossRef CAS Google Scholar
First citationCeriotti, G. (1967a). Nature, 213, 595–596.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCeriotti, G. (1967b). Tumori, 53, 437–445.  CAS PubMed Web of Science Google Scholar
First citationCeriotti, G., Spandrio, L. & Gazzaniga, A. (1967). Tumori, 53, 359–371.  CAS PubMed Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationImmirzi, A. & Fuganti, C. (1972). J. Chem. Soc. Chem. Commun. p. 240a.  CrossRef Google Scholar
First citationKornienko, A. & Evidente, A. (2008). Chem. Rev. 108, 1982–2014.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMcNulty, J., Thorat, A., Vurgun, N., Nair, J. J., Makaji, E., Crankshaw, D. J., Holloway, A. C. & Pandey, S. (2011). J. Nat. Prod. 74, 106–108.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSavona, G., Piozzi, F., Marino, M. L., Knight, J. & Mays, M. J. (1970). J. Chem. Soc. Chem. Commun. p. 1006a.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds