organic compounds
2-[1-(2-Hydroxy-6-methoxyphenyl)ethylidene]-N-methylhydrazinecarbothioamide acetonitrile monosolvate
aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435–2001, USA
*Correspondence e-mail: jjasinski@keene.edu
In the title compound, C11H15N3O2S·C2H3N, the dihedral angle between the benzene ring and the mean plane of the hydrazinecarbothioamide group is 75.1 (2)°. In the crystal, the main molecule is linked to the solvent molecule by a weak N—H⋯N hydrogen bond while O—H⋯S hydrogen bonds link the molecules into columns along [100].
Related literature
For thiosemicarbazone structures and their biological activity, see: Lobana et al. (2009). For thiosemicarbazone as ligands for hydrogenations or metal-catalysed reactions, see: Pelagatti et al. (1998); Xie et al. (2010). For a related structure, see: Anderson et al. (2012). For standard bond lengths, see: Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Agilent, 2012); cell CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536812048799/rk2388sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812048799/rk2388Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536812048799/rk2388Isup3.cml
A 50 mL round bottom flask was charged with 0.208 g (1.2 mmol) of 2'-hydroxy-6'-methoxyacetophenone and 0.126 g (1.2 mmol) of 4-methyl-3-thiosemicarbazide followed by 20 mL of methanol, resulting in a clear yellow solution. The solution was refluxed for 48 hours, and then the solvent was removed by rotary evaporation. The product was dissolved into acetonitrile at 313 K and slowly allowed to cool to 273 K. Translucent crystals were observed after 48 hours. M.p.: 415–420 K.
All of the H atoms were placed in their calculated positions and then refined using the riding model with C—H lengths of 0.95Å (CH), 0.96Å (CH3), 0.88Å (NH) or 0.84Å (OH). The isotropic displacement parameters for these atoms were set to 1.18 to 1.20 (CH), 1.20 (NH, OH) or 1.50 (CH3) times Ueq of the parent atom.
Thiosemicarbazones are an important class of ligands and their metal complexes and biological activity have been investigated (Lobana, et al., 2009). More recently, thiosemicarbazones have been studied as ligands for metal catalyzed reactions such as Mizoroki–Heck couplings (Xie et al., 2010) and hydrogenations (Pelagatti et al., 1998). A similar and related structure has been reported (Anderson, et al., 2012). The
of a novel thiosemicarbazone molecule, C13H18N4O2S, I, is reported here.In I the dihedral angle between least squares planes of the benzene ring (C4–C9) and hydrazinecarbothioamide (N1/C2/S1/N2/N3) group is 75.1 (2)° (Fig. 1). Bond lengths are in normal ranges (Allen et al., 1987). Weak H—H···N intramolecular interactions and O—H···S intermolecular interactions (Table 1) link the molecules into columns along [1 0 0] (Fig. 2).
For thiosemicarbazone structures and their biological activity, see: Lobana et al. (2009). For thiosemicarbazone as ligands for hydrogenations or metal-catalysed reactions, see: Pelagatti et al. (1998); Xie et al. (2010). For a related structure, see: Anderson et al. (2012). For standard bond lengths, see: Allen et al. (1987).
Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C11H15N3O2S·C2H3N | Z = 2 |
Mr = 294.38 | F(000) = 312 |
Triclinic, P1 | Dx = 1.269 Mg m−3 |
Hall symbol: -P 1 | Melting point = 415–420 K |
a = 7.6232 (10) Å | Cu Kα radiation, λ = 1.54184 Å |
b = 9.4004 (9) Å | Cell parameters from 2112 reflections |
c = 11.8031 (12) Å | θ = 4.0–72.3° |
α = 80.121 (8)° | µ = 1.93 mm−1 |
β = 71.555 (10)° | T = 173 K |
γ = 74.732 (10)° | Chunk, colourless |
V = 770.44 (16) Å3 | 0.44 × 0.28 × 0.12 mm |
Agilent Xcalibur (Eos, Gemini CCD) diffractometer | 2968 independent reflections |
Radiation source: Enhance (Cu) X–ray Source | 2622 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.020 |
Detector resolution: 16.0416 pixels mm-1 | θmax = 72.4°, θmin = 4.0° |
ω scans | h = −9→9 |
Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) | k = −7→11 |
Tmin = 0.575, Tmax = 1.000 | l = −12→14 |
4716 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.063 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.170 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.115P)2 + 0.1027P] where P = (Fo2 + 2Fc2)/3 |
2968 reflections | (Δ/σ)max < 0.001 |
186 parameters | Δρmax = 1.13 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
C11H15N3O2S·C2H3N | γ = 74.732 (10)° |
Mr = 294.38 | V = 770.44 (16) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.6232 (10) Å | Cu Kα radiation |
b = 9.4004 (9) Å | µ = 1.93 mm−1 |
c = 11.8031 (12) Å | T = 173 K |
α = 80.121 (8)° | 0.44 × 0.28 × 0.12 mm |
β = 71.555 (10)° |
Agilent Xcalibur (Eos, Gemini CCD) diffractometer | 2968 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) | 2622 reflections with I > 2σ(I) |
Tmin = 0.575, Tmax = 1.000 | Rint = 0.020 |
4716 measured reflections |
R[F2 > 2σ(F2)] = 0.063 | 0 restraints |
wR(F2) = 0.170 | H-atom parameters constrained |
S = 1.06 | Δρmax = 1.13 e Å−3 |
2968 reflections | Δρmin = −0.26 e Å−3 |
186 parameters |
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.25112 (8) | 1.21212 (6) | 0.65436 (4) | 0.0389 (2) | |
O1 | 0.6434 (2) | 0.76106 (19) | 0.83823 (13) | 0.0433 (4) | |
O2 | 0.0253 (2) | 0.7583 (2) | 1.08053 (14) | 0.0453 (4) | |
H2 | −0.0446 | 0.7645 | 1.1514 | 0.068* | |
N1 | 0.2464 (3) | 0.9666 (2) | 0.57065 (15) | 0.0378 (4) | |
H1 | 0.2499 | 0.8710 | 0.5813 | 0.045* | |
N2 | 0.2694 (3) | 0.94030 (19) | 0.76141 (15) | 0.0362 (4) | |
H2A | 0.2792 | 0.9762 | 0.8227 | 0.043* | |
N3 | 0.2683 (2) | 0.79307 (19) | 0.76798 (15) | 0.0345 (4) | |
C1 | 0.2309 (3) | 1.0463 (3) | 0.45605 (19) | 0.0430 (5) | |
H1A | 0.2248 | 0.9777 | 0.4042 | 0.064* | |
H1B | 0.3419 | 1.0893 | 0.4176 | 0.064* | |
H1C | 0.1155 | 1.1255 | 0.4691 | 0.064* | |
C2 | 0.2555 (3) | 1.0302 (2) | 0.66005 (18) | 0.0330 (4) | |
C3 | 0.2951 (3) | 0.7115 (2) | 0.86217 (18) | 0.0342 (5) | |
C4 | 0.3366 (3) | 0.7630 (2) | 0.96197 (17) | 0.0334 (5) | |
C5 | 0.1988 (3) | 0.7793 (2) | 1.07313 (18) | 0.0360 (5) | |
C6 | 0.2433 (3) | 0.8147 (2) | 1.16953 (19) | 0.0403 (5) | |
H6 | 0.1500 | 0.8267 | 1.2449 | 0.048* | |
C7 | 0.4234 (3) | 0.8320 (2) | 1.15433 (19) | 0.0404 (5) | |
H7 | 0.4531 | 0.8546 | 1.2206 | 0.049* | |
C8 | 0.5626 (3) | 0.8174 (2) | 1.0454 (2) | 0.0378 (5) | |
H8 | 0.6857 | 0.8310 | 1.0363 | 0.045* | |
C9 | 0.5175 (3) | 0.7824 (2) | 0.94952 (18) | 0.0348 (5) | |
C10 | 0.2904 (4) | 0.5518 (2) | 0.8712 (2) | 0.0459 (6) | |
H10A | 0.2653 | 0.5322 | 0.7996 | 0.069* | |
H10B | 0.1898 | 0.5289 | 0.9426 | 0.069* | |
H10C | 0.4129 | 0.4896 | 0.8774 | 0.069* | |
C11 | 0.8359 (3) | 0.7636 (3) | 0.8237 (2) | 0.0465 (6) | |
H11A | 0.9138 | 0.7373 | 0.7433 | 0.070* | |
H11B | 0.8831 | 0.6921 | 0.8841 | 0.070* | |
H11C | 0.8428 | 0.8632 | 0.8337 | 0.070* | |
N1A | 0.2277 (5) | 0.6691 (3) | 0.5126 (3) | 0.0736 (8) | |
C1A | 0.2497 (4) | 0.5798 (3) | 0.4541 (2) | 0.0530 (6) | |
C2A | 0.2725 (7) | 0.4659 (4) | 0.3788 (3) | 0.0844 (12) | |
H2AA | 0.2316 | 0.5115 | 0.3076 | 0.127* | |
H2AB | 0.1952 | 0.3951 | 0.4238 | 0.127* | |
H2AC | 0.4062 | 0.4141 | 0.3541 | 0.127* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0540 (4) | 0.0364 (3) | 0.0265 (3) | −0.0125 (2) | −0.0111 (2) | −0.0006 (2) |
O1 | 0.0434 (8) | 0.0578 (10) | 0.0286 (8) | −0.0144 (7) | −0.0074 (6) | −0.0046 (7) |
O2 | 0.0443 (9) | 0.0651 (11) | 0.0280 (8) | −0.0151 (7) | −0.0071 (6) | −0.0096 (7) |
N1 | 0.0521 (11) | 0.0381 (9) | 0.0228 (8) | −0.0071 (8) | −0.0123 (7) | −0.0041 (7) |
N2 | 0.0521 (10) | 0.0347 (9) | 0.0246 (8) | −0.0098 (7) | −0.0147 (7) | −0.0029 (7) |
N3 | 0.0423 (9) | 0.0350 (9) | 0.0264 (8) | −0.0076 (7) | −0.0101 (7) | −0.0049 (7) |
C1 | 0.0565 (13) | 0.0500 (13) | 0.0232 (10) | −0.0094 (10) | −0.0137 (9) | −0.0049 (9) |
C2 | 0.0343 (10) | 0.0386 (10) | 0.0235 (9) | −0.0062 (8) | −0.0066 (7) | −0.0026 (8) |
C3 | 0.0382 (10) | 0.0375 (11) | 0.0265 (10) | −0.0088 (8) | −0.0083 (8) | −0.0035 (8) |
C4 | 0.0463 (11) | 0.0300 (10) | 0.0238 (9) | −0.0075 (8) | −0.0123 (8) | 0.0004 (7) |
C5 | 0.0443 (11) | 0.0373 (11) | 0.0259 (9) | −0.0072 (8) | −0.0118 (8) | −0.0010 (8) |
C6 | 0.0496 (12) | 0.0445 (12) | 0.0248 (10) | −0.0054 (9) | −0.0104 (9) | −0.0064 (8) |
C7 | 0.0549 (13) | 0.0399 (11) | 0.0302 (10) | −0.0077 (9) | −0.0183 (9) | −0.0058 (8) |
C8 | 0.0456 (11) | 0.0358 (11) | 0.0351 (11) | −0.0093 (9) | −0.0166 (9) | −0.0011 (8) |
C9 | 0.0444 (11) | 0.0320 (10) | 0.0264 (9) | −0.0075 (8) | −0.0105 (8) | 0.0006 (7) |
C10 | 0.0625 (14) | 0.0360 (12) | 0.0407 (12) | −0.0123 (10) | −0.0160 (11) | −0.0031 (9) |
C11 | 0.0419 (12) | 0.0558 (14) | 0.0383 (12) | −0.0108 (10) | −0.0086 (10) | −0.0008 (10) |
N1A | 0.098 (2) | 0.0602 (15) | 0.0683 (17) | −0.0126 (14) | −0.0275 (15) | −0.0228 (14) |
C1A | 0.0675 (16) | 0.0453 (13) | 0.0412 (13) | −0.0115 (11) | −0.0082 (11) | −0.0068 (11) |
C2A | 0.152 (4) | 0.0515 (16) | 0.0383 (14) | −0.0300 (19) | −0.0020 (18) | −0.0111 (12) |
S1—C2 | 1.692 (2) | C5—C6 | 1.398 (3) |
O1—C9 | 1.371 (3) | C6—C7 | 1.377 (3) |
O1—C11 | 1.429 (3) | C6—H6 | 0.9500 |
O2—C5 | 1.361 (3) | C7—C8 | 1.385 (3) |
O2—H2 | 0.8400 | C7—H7 | 0.9500 |
N1—C2 | 1.327 (3) | C8—C9 | 1.393 (3) |
N1—C1 | 1.453 (3) | C8—H8 | 0.9500 |
N1—H1 | 0.8800 | C10—H10A | 0.9800 |
N2—C2 | 1.357 (3) | C10—H10B | 0.9800 |
N2—N3 | 1.375 (2) | C10—H10C | 0.9800 |
N2—H2A | 0.8800 | C11—H11A | 0.9800 |
N3—C3 | 1.278 (3) | C11—H11B | 0.9800 |
C1—H1A | 0.9800 | C11—H11C | 0.9800 |
C1—H1B | 0.9800 | N1A—C1A | 1.123 (3) |
C1—H1C | 0.9800 | C1A—C2A | 1.448 (4) |
C3—C4 | 1.495 (3) | C2A—H2AA | 0.9800 |
C3—C10 | 1.496 (3) | C2A—H2AB | 0.9800 |
C4—C9 | 1.397 (3) | C2A—H2AC | 0.9800 |
C4—C5 | 1.400 (3) | ||
C9—O1—C11 | 117.25 (18) | C5—C6—H6 | 120.3 |
C5—O2—H2 | 109.5 | C6—C7—C8 | 122.0 (2) |
C2—N1—C1 | 123.52 (19) | C6—C7—H7 | 119.0 |
C2—N1—H1 | 118.2 | C8—C7—H7 | 119.0 |
C1—N1—H1 | 118.2 | C7—C8—C9 | 118.3 (2) |
C2—N2—N3 | 119.82 (17) | C7—C8—H8 | 120.9 |
C2—N2—H2A | 120.1 | C9—C8—H8 | 120.9 |
N3—N2—H2A | 120.1 | O1—C9—C8 | 124.1 (2) |
C3—N3—N2 | 117.10 (17) | O1—C9—C4 | 114.70 (18) |
N1—C1—H1A | 109.5 | C8—C9—C4 | 121.23 (19) |
N1—C1—H1B | 109.5 | C3—C10—H10A | 109.5 |
H1A—C1—H1B | 109.5 | C3—C10—H10B | 109.5 |
N1—C1—H1C | 109.5 | H10A—C10—H10B | 109.5 |
H1A—C1—H1C | 109.5 | C3—C10—H10C | 109.5 |
H1B—C1—H1C | 109.5 | H10A—C10—H10C | 109.5 |
N1—C2—N2 | 116.28 (19) | H10B—C10—H10C | 109.5 |
N1—C2—S1 | 124.32 (16) | O1—C11—H11A | 109.5 |
N2—C2—S1 | 119.40 (16) | O1—C11—H11B | 109.5 |
N3—C3—C4 | 124.78 (19) | H11A—C11—H11B | 109.5 |
N3—C3—C10 | 117.49 (19) | O1—C11—H11C | 109.5 |
C4—C3—C10 | 117.71 (18) | H11A—C11—H11C | 109.5 |
C9—C4—C5 | 119.05 (19) | H11B—C11—H11C | 109.5 |
C9—C4—C3 | 120.69 (18) | N1A—C1A—C2A | 178.4 (4) |
C5—C4—C3 | 119.99 (19) | C1A—C2A—H2AA | 109.5 |
O2—C5—C6 | 123.43 (19) | C1A—C2A—H2AB | 109.5 |
O2—C5—C4 | 116.64 (18) | H2AA—C2A—H2AB | 109.5 |
C6—C5—C4 | 119.9 (2) | C1A—C2A—H2AC | 109.5 |
C7—C6—C5 | 119.5 (2) | H2AA—C2A—H2AC | 109.5 |
C7—C6—H6 | 120.3 | H2AB—C2A—H2AC | 109.5 |
C2—N2—N3—C3 | 175.26 (18) | C3—C4—C5—C6 | 174.31 (19) |
C1—N1—C2—N2 | 179.94 (19) | O2—C5—C6—C7 | 179.1 (2) |
C1—N1—C2—S1 | −0.2 (3) | C4—C5—C6—C7 | −0.5 (3) |
N3—N2—C2—N1 | −1.7 (3) | C5—C6—C7—C8 | 0.9 (3) |
N3—N2—C2—S1 | 178.38 (14) | C6—C7—C8—C9 | −0.8 (3) |
N2—N3—C3—C4 | −3.1 (3) | C11—O1—C9—C8 | 5.1 (3) |
N2—N3—C3—C10 | 178.83 (18) | C11—O1—C9—C4 | −173.45 (18) |
N3—C3—C4—C9 | −77.2 (3) | C7—C8—C9—O1 | −178.17 (19) |
C10—C3—C4—C9 | 100.9 (2) | C7—C8—C9—C4 | 0.3 (3) |
N3—C3—C4—C5 | 108.7 (2) | C5—C4—C9—O1 | 178.65 (18) |
C10—C3—C4—C5 | −73.2 (3) | C3—C4—C9—O1 | 4.5 (3) |
C9—C4—C5—O2 | −179.60 (18) | C5—C4—C9—C8 | 0.0 (3) |
C3—C4—C5—O2 | −5.4 (3) | C3—C4—C9—C8 | −174.16 (19) |
C9—C4—C5—C6 | 0.1 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···S1i | 0.84 | 2.34 | 3.1823 (17) | 177 |
N1—H1···N1A | 0.88 | 2.25 | 3.039 (3) | 149 |
Symmetry code: (i) −x, −y+2, −z+2. |
Experimental details
Crystal data | |
Chemical formula | C11H15N3O2S·C2H3N |
Mr | 294.38 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 173 |
a, b, c (Å) | 7.6232 (10), 9.4004 (9), 11.8031 (12) |
α, β, γ (°) | 80.121 (8), 71.555 (10), 74.732 (10) |
V (Å3) | 770.44 (16) |
Z | 2 |
Radiation type | Cu Kα |
µ (mm−1) | 1.93 |
Crystal size (mm) | 0.44 × 0.28 × 0.12 |
Data collection | |
Diffractometer | Agilent Xcalibur (Eos, Gemini CCD) |
Absorption correction | Multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012) |
Tmin, Tmax | 0.575, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4716, 2968, 2622 |
Rint | 0.020 |
(sin θ/λ)max (Å−1) | 0.618 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.063, 0.170, 1.06 |
No. of reflections | 2968 |
No. of parameters | 186 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.13, −0.26 |
Computer programs: CrysAlis PRO (Agilent, 2012), CrysAlis RED (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···S1i | 0.84 | 2.34 | 3.1823 (17) | 177.4 |
N1—H1···N1A | 0.88 | 2.25 | 3.039 (3) | 148.8 |
Symmetry code: (i) −x, −y+2, −z+2. |
Acknowledgements
JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.
References
Agilent (2012). CrysAlis PRO and CrysAlis RED Agilent Technologies, Yarnton, England. Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Anderson, B. J., Kennedy, C. J. & Jasinski, J. P. (2012). Acta Cryst. E68, o2982. CSD CrossRef IUCr Journals Google Scholar
Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977–1055. Web of Science CrossRef CAS Google Scholar
Pelagatti, P., Venturini, A., Carcelli, M., Costa, M., Bacchi, A., Pelizzi, G. & Pelizza, C. (1998). J. Chem. Soc. Dalton Trans. pp. 2715–2721. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xie, G., Chellan, P., Mao, J., Chibale, K. & Smith, G. S. (2010). Adv. Synth. Catal. 352, 1641–1647. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Thiosemicarbazones are an important class of ligands and their metal complexes and biological activity have been investigated (Lobana, et al., 2009). More recently, thiosemicarbazones have been studied as ligands for metal catalyzed reactions such as Mizoroki–Heck couplings (Xie et al., 2010) and hydrogenations (Pelagatti et al., 1998). A similar and related structure has been reported (Anderson, et al., 2012). The crystal structure of a novel thiosemicarbazone molecule, C13H18N4O2S, I, is reported here.
In I the dihedral angle between least squares planes of the benzene ring (C4–C9) and hydrazinecarbothioamide (N1/C2/S1/N2/N3) group is 75.1 (2)° (Fig. 1). Bond lengths are in normal ranges (Allen et al., 1987). Weak H—H···N intramolecular interactions and O—H···S intermolecular interactions (Table 1) link the molecules into columns along [1 0 0] (Fig. 2).