organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[1-(2-Hy­dr­oxy-6-meth­­oxy­phen­yl)ethyl­­idene]-N-methyl­hydrazinecarbo­thio­amide aceto­nitrile monosolvate

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435–2001, USA
*Correspondence e-mail: jjasinski@keene.edu

(Received 20 November 2012; accepted 27 November 2012; online 5 December 2012)

In the title compound, C11H15N3O2S·C2H3N, the dihedral angle between the benzene ring and the mean plane of the hydrazinecarbothio­amide group is 75.1 (2)°. In the crystal, the main mol­ecule is linked to the solvent mol­ecule by a weak N—H⋯N hydrogen bond while O—H⋯S hydrogen bonds link the mol­ecules into columns along [100].

Related literature

For thio­semicarbazone structures and their biological activity, see: Lobana et al. (2009[Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977-1055.]). For thio­semicarbazone as ligands for hydrogenations or metal-catalysed reactions, see: Pelagatti et al. (1998[Pelagatti, P., Venturini, A., Carcelli, M., Costa, M., Bacchi, A., Pelizzi, G. & Pelizza, C. (1998). J. Chem. Soc. Dalton Trans. pp. 2715-2721.]); Xie et al. (2010[Xie, G., Chellan, P., Mao, J., Chibale, K. & Smith, G. S. (2010). Adv. Synth. Catal. 352, 1641-1647.]). For a related structure, see: Anderson et al. (2012[Anderson, B. J., Kennedy, C. J. & Jasinski, J. P. (2012). Acta Cryst. E68, o2982.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C11H15N3O2S·C2H3N

  • Mr = 294.38

  • Triclinic, [P \overline 1]

  • a = 7.6232 (10) Å

  • b = 9.4004 (9) Å

  • c = 11.8031 (12) Å

  • α = 80.121 (8)°

  • β = 71.555 (10)°

  • γ = 74.732 (10)°

  • V = 770.44 (16) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 1.93 mm−1

  • T = 173 K

  • 0.44 × 0.28 × 0.12 mm

Data collection
  • Agilent Xcalibur (Eos, Gemini CCD) diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED Agilent Technologies, Yarnton, England.]) Tmin = 0.575, Tmax = 1.000

  • 4716 measured reflections

  • 2968 independent reflections

  • 2622 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.170

  • S = 1.06

  • 2968 reflections

  • 186 parameters

  • H-atom parameters constrained

  • Δρmax = 1.13 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯S1i 0.84 2.34 3.1823 (17) 177
N1—H1⋯N1A 0.88 2.25 3.039 (3) 149
Symmetry code: (i) -x, -y+2, -z+2.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thiosemicarbazones are an important class of ligands and their metal complexes and biological activity have been investigated (Lobana, et al., 2009). More recently, thiosemicarbazones have been studied as ligands for metal catalyzed reactions such as Mizoroki–Heck couplings (Xie et al., 2010) and hydrogenations (Pelagatti et al., 1998). A similar and related structure has been reported (Anderson, et al., 2012). The crystal structure of a novel thiosemicarbazone molecule, C13H18N4O2S, I, is reported here.

In I the dihedral angle between least squares planes of the benzene ring (C4–C9) and hydrazinecarbothioamide (N1/C2/S1/N2/N3) group is 75.1 (2)° (Fig. 1). Bond lengths are in normal ranges (Allen et al., 1987). Weak H—H···N intramolecular interactions and O—H···S intermolecular interactions (Table 1) link the molecules into columns along [1 0 0] (Fig. 2).

Related literature top

For thiosemicarbazone structures and their biological activity, see: Lobana et al. (2009). For thiosemicarbazone as ligands for hydrogenations or metal-catalysed reactions, see: Pelagatti et al. (1998); Xie et al. (2010). For a related structure, see: Anderson et al. (2012). For standard bond lengths, see: Allen et al. (1987).

Experimental top

A 50 mL round bottom flask was charged with 0.208 g (1.2 mmol) of 2'-hydroxy-6'-methoxyacetophenone and 0.126 g (1.2 mmol) of 4-methyl-3-thiosemicarbazide followed by 20 mL of methanol, resulting in a clear yellow solution. The solution was refluxed for 48 hours, and then the solvent was removed by rotary evaporation. The product was dissolved into acetonitrile at 313 K and slowly allowed to cool to 273 K. Translucent crystals were observed after 48 hours. M.p.: 415–420 K.

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with C—H lengths of 0.95Å (CH), 0.96Å (CH3), 0.88Å (NH) or 0.84Å (OH). The isotropic displacement parameters for these atoms were set to 1.18 to 1.20 (CH), 1.20 (NH, OH) or 1.50 (CH3) times Ueq of the parent atom.

Structure description top

Thiosemicarbazones are an important class of ligands and their metal complexes and biological activity have been investigated (Lobana, et al., 2009). More recently, thiosemicarbazones have been studied as ligands for metal catalyzed reactions such as Mizoroki–Heck couplings (Xie et al., 2010) and hydrogenations (Pelagatti et al., 1998). A similar and related structure has been reported (Anderson, et al., 2012). The crystal structure of a novel thiosemicarbazone molecule, C13H18N4O2S, I, is reported here.

In I the dihedral angle between least squares planes of the benzene ring (C4–C9) and hydrazinecarbothioamide (N1/C2/S1/N2/N3) group is 75.1 (2)° (Fig. 1). Bond lengths are in normal ranges (Allen et al., 1987). Weak H—H···N intramolecular interactions and O—H···S intermolecular interactions (Table 1) link the molecules into columns along [1 0 0] (Fig. 2).

For thiosemicarbazone structures and their biological activity, see: Lobana et al. (2009). For thiosemicarbazone as ligands for hydrogenations or metal-catalysed reactions, see: Pelagatti et al. (1998); Xie et al. (2010). For a related structure, see: Anderson et al. (2012). For standard bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. A weak H—H···N intramolecular interaction with the solvent acetonitrile molecule is shown with a dashed line. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Packing diagram viewed along the c axis. Weak H—H···N intramolecular interactions and O—H···S intermolecular interactions which link the molecules into columns along [1 0 0] are shown by dashed lines.
2-[1-(2-Hydroxy-6-methoxyphenyl)ethylidene]-N- methylhydrazinecarbothioamide acetonitrile monosolvate top
Crystal data top
C11H15N3O2S·C2H3NZ = 2
Mr = 294.38F(000) = 312
Triclinic, P1Dx = 1.269 Mg m3
Hall symbol: -P 1Melting point = 415–420 K
a = 7.6232 (10) ÅCu Kα radiation, λ = 1.54184 Å
b = 9.4004 (9) ÅCell parameters from 2112 reflections
c = 11.8031 (12) Åθ = 4.0–72.3°
α = 80.121 (8)°µ = 1.93 mm1
β = 71.555 (10)°T = 173 K
γ = 74.732 (10)°Chunk, colourless
V = 770.44 (16) Å30.44 × 0.28 × 0.12 mm
Data collection top
Agilent Xcalibur (Eos, Gemini CCD)
diffractometer
2968 independent reflections
Radiation source: Enhance (Cu) X–ray Source2622 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 16.0416 pixels mm-1θmax = 72.4°, θmin = 4.0°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
k = 711
Tmin = 0.575, Tmax = 1.000l = 1214
4716 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.115P)2 + 0.1027P]
where P = (Fo2 + 2Fc2)/3
2968 reflections(Δ/σ)max < 0.001
186 parametersΔρmax = 1.13 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C11H15N3O2S·C2H3Nγ = 74.732 (10)°
Mr = 294.38V = 770.44 (16) Å3
Triclinic, P1Z = 2
a = 7.6232 (10) ÅCu Kα radiation
b = 9.4004 (9) ŵ = 1.93 mm1
c = 11.8031 (12) ÅT = 173 K
α = 80.121 (8)°0.44 × 0.28 × 0.12 mm
β = 71.555 (10)°
Data collection top
Agilent Xcalibur (Eos, Gemini CCD)
diffractometer
2968 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
2622 reflections with I > 2σ(I)
Tmin = 0.575, Tmax = 1.000Rint = 0.020
4716 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.170H-atom parameters constrained
S = 1.06Δρmax = 1.13 e Å3
2968 reflectionsΔρmin = 0.26 e Å3
186 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.25112 (8)1.21212 (6)0.65436 (4)0.0389 (2)
O10.6434 (2)0.76106 (19)0.83823 (13)0.0433 (4)
O20.0253 (2)0.7583 (2)1.08053 (14)0.0453 (4)
H20.04460.76451.15140.068*
N10.2464 (3)0.9666 (2)0.57065 (15)0.0378 (4)
H10.24990.87100.58130.045*
N20.2694 (3)0.94030 (19)0.76141 (15)0.0362 (4)
H2A0.27920.97620.82270.043*
N30.2683 (2)0.79307 (19)0.76798 (15)0.0345 (4)
C10.2309 (3)1.0463 (3)0.45605 (19)0.0430 (5)
H1A0.22480.97770.40420.064*
H1B0.34191.08930.41760.064*
H1C0.11551.12550.46910.064*
C20.2555 (3)1.0302 (2)0.66005 (18)0.0330 (4)
C30.2951 (3)0.7115 (2)0.86217 (18)0.0342 (5)
C40.3366 (3)0.7630 (2)0.96197 (17)0.0334 (5)
C50.1988 (3)0.7793 (2)1.07313 (18)0.0360 (5)
C60.2433 (3)0.8147 (2)1.16953 (19)0.0403 (5)
H60.15000.82671.24490.048*
C70.4234 (3)0.8320 (2)1.15433 (19)0.0404 (5)
H70.45310.85461.22060.049*
C80.5626 (3)0.8174 (2)1.0454 (2)0.0378 (5)
H80.68570.83101.03630.045*
C90.5175 (3)0.7824 (2)0.94952 (18)0.0348 (5)
C100.2904 (4)0.5518 (2)0.8712 (2)0.0459 (6)
H10A0.26530.53220.79960.069*
H10B0.18980.52890.94260.069*
H10C0.41290.48960.87740.069*
C110.8359 (3)0.7636 (3)0.8237 (2)0.0465 (6)
H11A0.91380.73730.74330.070*
H11B0.88310.69210.88410.070*
H11C0.84280.86320.83370.070*
N1A0.2277 (5)0.6691 (3)0.5126 (3)0.0736 (8)
C1A0.2497 (4)0.5798 (3)0.4541 (2)0.0530 (6)
C2A0.2725 (7)0.4659 (4)0.3788 (3)0.0844 (12)
H2AA0.23160.51150.30760.127*
H2AB0.19520.39510.42380.127*
H2AC0.40620.41410.35410.127*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0540 (4)0.0364 (3)0.0265 (3)0.0125 (2)0.0111 (2)0.0006 (2)
O10.0434 (8)0.0578 (10)0.0286 (8)0.0144 (7)0.0074 (6)0.0046 (7)
O20.0443 (9)0.0651 (11)0.0280 (8)0.0151 (7)0.0071 (6)0.0096 (7)
N10.0521 (11)0.0381 (9)0.0228 (8)0.0071 (8)0.0123 (7)0.0041 (7)
N20.0521 (10)0.0347 (9)0.0246 (8)0.0098 (7)0.0147 (7)0.0029 (7)
N30.0423 (9)0.0350 (9)0.0264 (8)0.0076 (7)0.0101 (7)0.0049 (7)
C10.0565 (13)0.0500 (13)0.0232 (10)0.0094 (10)0.0137 (9)0.0049 (9)
C20.0343 (10)0.0386 (10)0.0235 (9)0.0062 (8)0.0066 (7)0.0026 (8)
C30.0382 (10)0.0375 (11)0.0265 (10)0.0088 (8)0.0083 (8)0.0035 (8)
C40.0463 (11)0.0300 (10)0.0238 (9)0.0075 (8)0.0123 (8)0.0004 (7)
C50.0443 (11)0.0373 (11)0.0259 (9)0.0072 (8)0.0118 (8)0.0010 (8)
C60.0496 (12)0.0445 (12)0.0248 (10)0.0054 (9)0.0104 (9)0.0064 (8)
C70.0549 (13)0.0399 (11)0.0302 (10)0.0077 (9)0.0183 (9)0.0058 (8)
C80.0456 (11)0.0358 (11)0.0351 (11)0.0093 (9)0.0166 (9)0.0011 (8)
C90.0444 (11)0.0320 (10)0.0264 (9)0.0075 (8)0.0105 (8)0.0006 (7)
C100.0625 (14)0.0360 (12)0.0407 (12)0.0123 (10)0.0160 (11)0.0031 (9)
C110.0419 (12)0.0558 (14)0.0383 (12)0.0108 (10)0.0086 (10)0.0008 (10)
N1A0.098 (2)0.0602 (15)0.0683 (17)0.0126 (14)0.0275 (15)0.0228 (14)
C1A0.0675 (16)0.0453 (13)0.0412 (13)0.0115 (11)0.0082 (11)0.0068 (11)
C2A0.152 (4)0.0515 (16)0.0383 (14)0.0300 (19)0.0020 (18)0.0111 (12)
Geometric parameters (Å, º) top
S1—C21.692 (2)C5—C61.398 (3)
O1—C91.371 (3)C6—C71.377 (3)
O1—C111.429 (3)C6—H60.9500
O2—C51.361 (3)C7—C81.385 (3)
O2—H20.8400C7—H70.9500
N1—C21.327 (3)C8—C91.393 (3)
N1—C11.453 (3)C8—H80.9500
N1—H10.8800C10—H10A0.9800
N2—C21.357 (3)C10—H10B0.9800
N2—N31.375 (2)C10—H10C0.9800
N2—H2A0.8800C11—H11A0.9800
N3—C31.278 (3)C11—H11B0.9800
C1—H1A0.9800C11—H11C0.9800
C1—H1B0.9800N1A—C1A1.123 (3)
C1—H1C0.9800C1A—C2A1.448 (4)
C3—C41.495 (3)C2A—H2AA0.9800
C3—C101.496 (3)C2A—H2AB0.9800
C4—C91.397 (3)C2A—H2AC0.9800
C4—C51.400 (3)
C9—O1—C11117.25 (18)C5—C6—H6120.3
C5—O2—H2109.5C6—C7—C8122.0 (2)
C2—N1—C1123.52 (19)C6—C7—H7119.0
C2—N1—H1118.2C8—C7—H7119.0
C1—N1—H1118.2C7—C8—C9118.3 (2)
C2—N2—N3119.82 (17)C7—C8—H8120.9
C2—N2—H2A120.1C9—C8—H8120.9
N3—N2—H2A120.1O1—C9—C8124.1 (2)
C3—N3—N2117.10 (17)O1—C9—C4114.70 (18)
N1—C1—H1A109.5C8—C9—C4121.23 (19)
N1—C1—H1B109.5C3—C10—H10A109.5
H1A—C1—H1B109.5C3—C10—H10B109.5
N1—C1—H1C109.5H10A—C10—H10B109.5
H1A—C1—H1C109.5C3—C10—H10C109.5
H1B—C1—H1C109.5H10A—C10—H10C109.5
N1—C2—N2116.28 (19)H10B—C10—H10C109.5
N1—C2—S1124.32 (16)O1—C11—H11A109.5
N2—C2—S1119.40 (16)O1—C11—H11B109.5
N3—C3—C4124.78 (19)H11A—C11—H11B109.5
N3—C3—C10117.49 (19)O1—C11—H11C109.5
C4—C3—C10117.71 (18)H11A—C11—H11C109.5
C9—C4—C5119.05 (19)H11B—C11—H11C109.5
C9—C4—C3120.69 (18)N1A—C1A—C2A178.4 (4)
C5—C4—C3119.99 (19)C1A—C2A—H2AA109.5
O2—C5—C6123.43 (19)C1A—C2A—H2AB109.5
O2—C5—C4116.64 (18)H2AA—C2A—H2AB109.5
C6—C5—C4119.9 (2)C1A—C2A—H2AC109.5
C7—C6—C5119.5 (2)H2AA—C2A—H2AC109.5
C7—C6—H6120.3H2AB—C2A—H2AC109.5
C2—N2—N3—C3175.26 (18)C3—C4—C5—C6174.31 (19)
C1—N1—C2—N2179.94 (19)O2—C5—C6—C7179.1 (2)
C1—N1—C2—S10.2 (3)C4—C5—C6—C70.5 (3)
N3—N2—C2—N11.7 (3)C5—C6—C7—C80.9 (3)
N3—N2—C2—S1178.38 (14)C6—C7—C8—C90.8 (3)
N2—N3—C3—C43.1 (3)C11—O1—C9—C85.1 (3)
N2—N3—C3—C10178.83 (18)C11—O1—C9—C4173.45 (18)
N3—C3—C4—C977.2 (3)C7—C8—C9—O1178.17 (19)
C10—C3—C4—C9100.9 (2)C7—C8—C9—C40.3 (3)
N3—C3—C4—C5108.7 (2)C5—C4—C9—O1178.65 (18)
C10—C3—C4—C573.2 (3)C3—C4—C9—O14.5 (3)
C9—C4—C5—O2179.60 (18)C5—C4—C9—C80.0 (3)
C3—C4—C5—O25.4 (3)C3—C4—C9—C8174.16 (19)
C9—C4—C5—C60.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···S1i0.842.343.1823 (17)177
N1—H1···N1A0.882.253.039 (3)149
Symmetry code: (i) x, y+2, z+2.

Experimental details

Crystal data
Chemical formulaC11H15N3O2S·C2H3N
Mr294.38
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.6232 (10), 9.4004 (9), 11.8031 (12)
α, β, γ (°)80.121 (8), 71.555 (10), 74.732 (10)
V3)770.44 (16)
Z2
Radiation typeCu Kα
µ (mm1)1.93
Crystal size (mm)0.44 × 0.28 × 0.12
Data collection
DiffractometerAgilent Xcalibur (Eos, Gemini CCD)
Absorption correctionMulti-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
Tmin, Tmax0.575, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4716, 2968, 2622
Rint0.020
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.170, 1.06
No. of reflections2968
No. of parameters186
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.13, 0.26

Computer programs: CrysAlis PRO (Agilent, 2012), CrysAlis RED (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···S1i0.842.343.1823 (17)177.4
N1—H1···N1A0.882.253.039 (3)148.8
Symmetry code: (i) x, y+2, z+2.
 

Acknowledgements

JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAnderson, B. J., Kennedy, C. J. & Jasinski, J. P. (2012). Acta Cryst. E68, o2982.  CSD CrossRef IUCr Journals Google Scholar
First citationLobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977–1055.  Web of Science CrossRef CAS Google Scholar
First citationPelagatti, P., Venturini, A., Carcelli, M., Costa, M., Bacchi, A., Pelizzi, G. & Pelizza, C. (1998). J. Chem. Soc. Dalton Trans. pp. 2715–2721.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, G., Chellan, P., Mao, J., Chibale, K. & Smith, G. S. (2010). Adv. Synth. Catal. 352, 1641–1647.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds