organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Cytosinium orotate dihydrate

aChemistry Department, "Sapienza" University of Rome, P.le A. Moro, 5, I-00185 Rome, Italy
*Correspondence e-mail: g.portalone@caspur.it

(Received 14 November 2012; accepted 29 November 2012; online 5 December 2012)

The title compound, C4H6N3O+·C5H3N2O4·2H2O or Cyt+·Or·2H2O, was synthesized by a reaction between cytosine (4-amino-2-hy­droxy­pyrimidine, Cyt) and orotic acid (2,4-dihy­droxy-6-carb­oxy­pyrimidine, Or) in aqueous solution. The two ions are joined by two N+—H⋯O (±)-(CAHB) hydrogen bonds, forming a dimer with graph-set motif R22(8). In the crystal, the ion pairs of the asymmetric unit are joined by four N—H⋯O inter­actions to adjacent dimers, forming hydrogen-bonded rings with R22(8) graph-set motif in a two-dimensional network. The formation of the three-dimensional array is facilitated by water mol­ecules, which act as bridges between structural sub-units linked in R32(8) and R32(7) hydrogen-bonded rings. The orotate anion is essentially planar, as the dihedral angle between the planes defined by the carboxylate group and the uracil fragment is 4.0 (4)°.

Related literature

For the supra­molecular association in proton-transfer adducts containing mol­ecules of biological inter­est, see: Portalone & Colapietro (2007[Portalone, G. & Colapietro, M. (2007). J. Chem. Crystallogr. 37, 141-145.], 2009[Portalone, G. & Colapietro, M. (2009). J. Chem. Crystallogr. 39, 193-200.]); Portalone (2010[Portalone, G. (2010). Acta Cryst. C66, o295-o301.], 2011[Portalone, G. (2011). Chem. Centr. J. 5, 51.]); Portalone & Irrera (2011[Portalone, G. & Irrera, S. (2011). J. Mol. Struct. 991, 92-96.]). For the crystal structure of neutral cytosine, see: McClure & Craven (1973[McClure, R. J. & Craven, B. M. (1973). Acta Cryst. B29, 1234-1238.]). For the crystal structures of orotic acid and its salts, see: Lutz (2001[Lutz, M. (2001). Acta Cryst. E57, m103-m105.]); Portalone (2008[Portalone, G. (2008). Acta Cryst. E64, o656.]); Solbakk (1971[Solbakk, J. (1971). Acta Chem. Scand. 25, 3006-3018.]). For computation of ring patterns formed by hydrogen bonds in crystal structures, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C4H6N3O+·C5H3N2O4·2H2O

  • Mr = 303.24

  • Monoclinic, P 21 /c

  • a = 5.1486 (2) Å

  • b = 15.1631 (6) Å

  • c = 16.4206 (7) Å

  • β = 90.562 (3)°

  • V = 1281.87 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 298 K

  • 0.15 × 0.10 × 0.10 mm

Data collection
  • Oxford Diffraction Xcalibur S CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.980, Tmax = 0.987

  • 27833 measured reflections

  • 2328 independent reflections

  • 1954 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.125

  • S = 1.13

  • 2328 reflections

  • 228 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H7⋯O1i 0.76 (2) 2.05 (2) 2.809 (2) 172 (2)
N10—H10A⋯O3 0.97 (3) 1.90 (3) 2.871 (2) 173 (2)
N10—H10B⋯O6W 0.87 (2) 2.05 (2) 2.876 (3) 158 (2)
N9—H9⋯O4 0.86 (3) 1.87 (3) 2.7299 (19) 176 (2)
N1—H1⋯O5ii 0.88 (2) 2.20 (2) 3.051 (2) 165.6 (17)
N3—H3⋯O1iii 0.93 (2) 1.93 (2) 2.8624 (18) 179.3 (19)
O6W—H61⋯O2ii 0.85 (2) 1.99 (2) 2.806 (2) 163 (4)
O6W—H62⋯O7Wiv 0.87 (2) 2.07 (3) 2.873 (4) 154 (4)
O7W—H71⋯O4 0.90 (2) 1.97 (2) 2.867 (2) 173 (4)
O7W—H72⋯O5 0.90 (2) 2.27 (3) 2.979 (2) 136 (3)
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x-2, -y, -z+1; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

As part of our ongoing interest in supramolecular architectures of biologically important proton-transfer compounds (Portalone & Colapietro, 2007, 2009; Portalone, 2010, 2011; Portalone & Irrera, 2011), cytosinium orotate dihydrate, C4H6N3O+. C5H3N2O4-.2 H2O, Cyt+Or-, has been synthesized by a reaction between cytosine (4-amino-2-hydroxypyrimidine, Cyt) and orotic acid (2,4-dihydroxy-6-carboxypyrimidine, Or) in water solution.

The title compund crystallizes in the monoclinic space group P21/c, with one protonated aminooxo tautomer (Cyt+), one diketo anionic tautomer (Or-) and two water molecules of crystallization (Fig 1).

In Cyt+ cation protonation occurs at the N9 atom. The molecular geometry is quite similar to those found in previously reported structures of cytosinium salts of organic acids. In particular, as shown in previous studies (Portalone & Colapietro, 2009; Portalone, 2011), the internal angle C8-N9-C10 is sensitive to protonation, being larger (124.86 (15)°) than the corresponding one in the neutral cytosine molecule (119.4 (2)°, McClure & Craven, 1973). The cytosine ring is slightly puckered with N7, C8 and C10 atoms deviating from the mean plane of the other atoms by 0.028 (1), -0.019 (1) and 0.023 (1) Å, respectively. Nevertheless, the variation observed for the C10—N9 and C10—N10 bond distances in passing from the protonated (1.351 (2), 1.302 (2) Å) to the neutral cytosine molecule (1.341 (2), 1.326 (2) Å, McClure & Craven, 1973) suggests some degree of delocalization of π-electron density through the amidinium moiety.

In Or- anion the pyrimidine ring is essentially planar and the carboxylate group forms dihedral angle of 4.0 (4)° with the mean plane of the uracil fragment, which is close to the value observed in orotic acid (2.2 (2)°, Portalone, 2008). In this anion bond lengths and bond angles of the heteroaromatic ring are in accord with those obtained for other similar structures of ammonium orotate monohydrate (Solbakk, 1971), lithium orotate monohydrate (Lutz, 2001) and benzamidinium orotate hemihydrate (Portalone, 2010). Bond distances around atom C7 indicate a carboxylate group with delocalization of the negative charge between atoms O3 and O4.

The two ions are joined by two N+—H···O- (±)CAHB hydrogen bonds to form a dimer with graph-set motif R22(8) (Bernstein et al., 1995). In the crystal, the ion pairs of the asymmetric unit are joined by four N—H···O interactions with D···A distances ranging from 2.809 (2) to 3.051 (2) Å. Adjacent ion pairs form hydrogen-bonded rings with R22(8) graph-set motif in a bi-dimensional network (Table 2). The formation of the three-dimensional array is facilitated by water molecules, which act as bridges between structural subunits linked in R23(8) and R23(7) hydrogen-bonded rings. Water molecules play an important role in the cohesion and the stability of the crystal structure: they are involved in four O—H···O hydrogen bonds, three connecting two Or- anions and one Cyt+ cation as donor (O6W—H61···O2, O7W—H71···O4 and O7W—H72···O5), and one between two water molecules (O6W—H62···O7W).

Related literature top

For the supramolecular association in proton-transfer adducts containing molecules of biological interest, see: Portalone & Colapietro (2007, 2009); Portalone (2010, 2011); Portalone & Irrera (2011). For the crystal structure of neutral cytosine, see: McClure & Craven (1973). For the crystal structures of orotic acid and its salts, see: Lutz (2001); Portalone (2008); Solbakk (1971). For computation of ring patterns formed by hydrogen bonds in crystal structures, see: Bernstein et al. (1995).

Experimental top

A water solution (6 ml) of cytosine (0.01 mmol, Fluka at 96% purity) was mixed with an aqueous solution (5 ml) containing orotic acid (0.01 mmol, Sigma Aldrich, 98%), and the resulting mixture was heated under reflux with stirring for 3 h. After cooling the solution to an ambient temperature, colourless crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of the solvent after two weeks.

Refinement top

All H atoms were identified in difference Fourier maps, but for refinement all C-bound H atoms were placed in calculated positions, with C—H = 0.93 Å and refined as riding on their carrier atoms. The Uiso values were kept equal to 1.2Ueq(C). Positional and thermal parameters of H atoms attached to N atoms were refined freely, giving N—H distances in the range 0.76 (2) - 0.97 (3) Å. For the water molecules, the O—H distances of the H atoms attached to O6W and O7W were restrained to 0.85 (2) - 0.90 (2) Å, and the H atoms were refined with Uiso equal to 1.5Ueq(O).

Structure description top

As part of our ongoing interest in supramolecular architectures of biologically important proton-transfer compounds (Portalone & Colapietro, 2007, 2009; Portalone, 2010, 2011; Portalone & Irrera, 2011), cytosinium orotate dihydrate, C4H6N3O+. C5H3N2O4-.2 H2O, Cyt+Or-, has been synthesized by a reaction between cytosine (4-amino-2-hydroxypyrimidine, Cyt) and orotic acid (2,4-dihydroxy-6-carboxypyrimidine, Or) in water solution.

The title compund crystallizes in the monoclinic space group P21/c, with one protonated aminooxo tautomer (Cyt+), one diketo anionic tautomer (Or-) and two water molecules of crystallization (Fig 1).

In Cyt+ cation protonation occurs at the N9 atom. The molecular geometry is quite similar to those found in previously reported structures of cytosinium salts of organic acids. In particular, as shown in previous studies (Portalone & Colapietro, 2009; Portalone, 2011), the internal angle C8-N9-C10 is sensitive to protonation, being larger (124.86 (15)°) than the corresponding one in the neutral cytosine molecule (119.4 (2)°, McClure & Craven, 1973). The cytosine ring is slightly puckered with N7, C8 and C10 atoms deviating from the mean plane of the other atoms by 0.028 (1), -0.019 (1) and 0.023 (1) Å, respectively. Nevertheless, the variation observed for the C10—N9 and C10—N10 bond distances in passing from the protonated (1.351 (2), 1.302 (2) Å) to the neutral cytosine molecule (1.341 (2), 1.326 (2) Å, McClure & Craven, 1973) suggests some degree of delocalization of π-electron density through the amidinium moiety.

In Or- anion the pyrimidine ring is essentially planar and the carboxylate group forms dihedral angle of 4.0 (4)° with the mean plane of the uracil fragment, which is close to the value observed in orotic acid (2.2 (2)°, Portalone, 2008). In this anion bond lengths and bond angles of the heteroaromatic ring are in accord with those obtained for other similar structures of ammonium orotate monohydrate (Solbakk, 1971), lithium orotate monohydrate (Lutz, 2001) and benzamidinium orotate hemihydrate (Portalone, 2010). Bond distances around atom C7 indicate a carboxylate group with delocalization of the negative charge between atoms O3 and O4.

The two ions are joined by two N+—H···O- (±)CAHB hydrogen bonds to form a dimer with graph-set motif R22(8) (Bernstein et al., 1995). In the crystal, the ion pairs of the asymmetric unit are joined by four N—H···O interactions with D···A distances ranging from 2.809 (2) to 3.051 (2) Å. Adjacent ion pairs form hydrogen-bonded rings with R22(8) graph-set motif in a bi-dimensional network (Table 2). The formation of the three-dimensional array is facilitated by water molecules, which act as bridges between structural subunits linked in R23(8) and R23(7) hydrogen-bonded rings. Water molecules play an important role in the cohesion and the stability of the crystal structure: they are involved in four O—H···O hydrogen bonds, three connecting two Or- anions and one Cyt+ cation as donor (O6W—H61···O2, O7W—H71···O4 and O7W—H72···O5), and one between two water molecules (O6W—H62···O7W).

For the supramolecular association in proton-transfer adducts containing molecules of biological interest, see: Portalone & Colapietro (2007, 2009); Portalone (2010, 2011); Portalone & Irrera (2011). For the crystal structure of neutral cytosine, see: McClure & Craven (1973). For the crystal structures of orotic acid and its salts, see: Lutz (2001); Portalone (2008); Solbakk (1971). For computation of ring patterns formed by hydrogen bonds in crystal structures, see: Bernstein et al. (1995).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: WinGX (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound. Displacements ellipsoids are at the 50% probability level. The asymmetric unit was selected so that the two ions are linked by N+.—H···O- hydrogen bonds. H atoms are shown as small spheres of arbitrary radii. Hydrogen bonds are indicated by dashed lines.
[Figure 2] Fig. 2. Crystal packing diagram for (I) viewed approximately down a. All atoms are shown as small spheres of arbitrary radii. For the sake of clarity, H atoms not involved in hydrogen bonding have been omitted. Hydrogen bonding is indicated by dashed lines.
4-Amino-2-oxo-1,2-dihydropyrimidin-3-ium 2,6-dioxo-1,2,3,6-tetrahydropyrimidine-4-carboxylate dihydrate top
Crystal data top
C4H6N3O+·C5H3N2O4·2H2OF(000) = 632
Mr = 303.24Dx = 1.571 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 14285 reflections
a = 5.1486 (2) Åθ = 2.7–29.0°
b = 15.1631 (6) ŵ = 0.14 mm1
c = 16.4206 (7) ÅT = 298 K
β = 90.562 (3)°Tablets, colourless
V = 1281.87 (9) Å30.15 × 0.10 × 0.10 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur S CCD
diffractometer
2328 independent reflections
Radiation source: Enhance (Mo) X-ray source1954 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 16.0696 pixels mm-1θmax = 25.3°, θmin = 2.7°
ω and φ scansh = 66
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 1818
Tmin = 0.980, Tmax = 0.987l = 1919
27833 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.0662P)2 + 0.3271P]
where P = (Fo2 + 2Fc2)/3
2328 reflections(Δ/σ)max < 0.001
228 parametersΔρmax = 0.20 e Å3
4 restraintsΔρmin = 0.21 e Å3
Crystal data top
C4H6N3O+·C5H3N2O4·2H2OV = 1281.87 (9) Å3
Mr = 303.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.1486 (2) ŵ = 0.14 mm1
b = 15.1631 (6) ÅT = 298 K
c = 16.4206 (7) Å0.15 × 0.10 × 0.10 mm
β = 90.562 (3)°
Data collection top
Oxford Diffraction Xcalibur S CCD
diffractometer
2328 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
1954 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.987Rint = 0.034
27833 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0464 restraints
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.13Δρmax = 0.20 e Å3
2328 reflectionsΔρmin = 0.21 e Å3
228 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O50.2952 (3)0.32438 (9)0.16089 (11)0.0590 (5)
N70.6235 (3)0.26032 (12)0.09082 (11)0.0419 (5)
H70.678 (5)0.3059 (15)0.0814 (14)0.046 (6)*
C80.4062 (4)0.25827 (12)0.13766 (12)0.0382 (5)
N100.3426 (4)0.02351 (12)0.15490 (11)0.0453 (5)
H10A0.193 (5)0.0195 (17)0.1906 (16)0.067 (7)*
H10B0.427 (4)0.0231 (16)0.1400 (13)0.051 (6)*
N90.3208 (3)0.17444 (10)0.15622 (10)0.0349 (4)
H90.188 (5)0.1701 (14)0.1872 (16)0.055 (7)*
C100.4331 (3)0.09908 (11)0.13046 (11)0.0331 (4)
C110.6503 (4)0.10687 (13)0.07734 (12)0.0391 (5)
H110.72930.05710.05550.050 (6)*
C120.7361 (4)0.18745 (13)0.06001 (12)0.0398 (5)
H120.87760.19370.02570.048 (6)*
O10.7741 (2)0.06618 (8)0.44582 (8)0.0403 (4)
O20.8140 (3)0.23043 (8)0.45689 (9)0.0485 (4)
O30.0719 (3)0.01695 (8)0.27044 (9)0.0474 (4)
O40.0853 (3)0.16324 (8)0.26139 (8)0.0440 (4)
N10.4837 (3)0.01212 (10)0.36986 (9)0.0322 (4)
H10.419 (4)0.0379 (14)0.3528 (11)0.039 (5)*
C20.6871 (3)0.00513 (11)0.42196 (10)0.0293 (4)
N30.7902 (3)0.08258 (9)0.44828 (9)0.0318 (4)
H30.932 (4)0.0768 (13)0.4826 (13)0.042 (5)*
C40.7074 (4)0.16627 (11)0.42733 (11)0.0323 (4)
C50.4941 (4)0.16797 (11)0.37152 (11)0.0325 (4)
H50.42830.22170.35390.039*
C60.3900 (3)0.09262 (11)0.34486 (10)0.0289 (4)
C70.1609 (3)0.09014 (11)0.28677 (10)0.0307 (4)
O6W0.7353 (4)0.09802 (12)0.10206 (16)0.0836 (7)
H610.733 (8)0.1472 (17)0.078 (2)0.125*
H620.812 (8)0.112 (3)0.1479 (16)0.125*
O7W0.1266 (4)0.35051 (13)0.28142 (14)0.0868 (7)
H710.125 (8)0.2911 (13)0.278 (2)0.130*
H720.033 (7)0.373 (2)0.2403 (18)0.130*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O50.0601 (10)0.0344 (8)0.0831 (12)0.0029 (6)0.0346 (9)0.0003 (7)
N70.0389 (10)0.0309 (9)0.0561 (11)0.0062 (7)0.0192 (8)0.0093 (8)
C80.0359 (11)0.0339 (10)0.0448 (11)0.0012 (8)0.0129 (8)0.0059 (8)
N100.0468 (11)0.0310 (9)0.0585 (11)0.0032 (8)0.0238 (9)0.0019 (8)
N90.0295 (9)0.0344 (9)0.0411 (9)0.0020 (6)0.0149 (7)0.0045 (6)
C100.0297 (10)0.0338 (9)0.0359 (10)0.0031 (7)0.0069 (8)0.0020 (7)
C110.0368 (11)0.0377 (10)0.0431 (11)0.0007 (8)0.0161 (8)0.0020 (8)
C120.0323 (11)0.0445 (11)0.0431 (11)0.0010 (8)0.0167 (8)0.0082 (9)
O10.0435 (8)0.0247 (6)0.0534 (8)0.0003 (5)0.0287 (6)0.0030 (6)
O20.0573 (9)0.0240 (6)0.0648 (9)0.0027 (6)0.0322 (7)0.0025 (6)
O30.0467 (9)0.0344 (7)0.0616 (9)0.0021 (6)0.0304 (7)0.0024 (6)
O40.0451 (8)0.0338 (7)0.0536 (8)0.0068 (6)0.0281 (7)0.0031 (6)
N10.0325 (9)0.0256 (8)0.0388 (9)0.0000 (6)0.0175 (7)0.0004 (6)
C20.0282 (10)0.0266 (9)0.0332 (9)0.0003 (7)0.0130 (7)0.0020 (7)
N30.0306 (8)0.0274 (8)0.0376 (8)0.0002 (6)0.0184 (7)0.0009 (6)
C40.0343 (10)0.0246 (8)0.0383 (10)0.0016 (7)0.0118 (8)0.0018 (7)
C50.0339 (10)0.0253 (8)0.0385 (10)0.0040 (7)0.0134 (8)0.0028 (7)
C60.0260 (9)0.0312 (9)0.0297 (9)0.0043 (7)0.0067 (7)0.0044 (7)
C70.0268 (9)0.0320 (9)0.0334 (9)0.0030 (7)0.0095 (7)0.0014 (7)
O6W0.0904 (15)0.0403 (9)0.1201 (19)0.0107 (9)0.0027 (13)0.0186 (11)
O7W0.0985 (15)0.0480 (10)0.1149 (17)0.0042 (10)0.0569 (13)0.0065 (11)
Geometric parameters (Å, º) top
O5—C81.217 (2)O3—C71.231 (2)
N7—C121.349 (2)O4—C71.248 (2)
N7—C81.364 (2)N1—C21.363 (2)
N7—H70.76 (2)N1—C61.377 (2)
C8—N91.380 (2)N1—H10.88 (2)
N10—C101.302 (2)C2—N31.361 (2)
N10—H10A0.97 (3)N3—C41.383 (2)
N10—H10B0.87 (2)N3—H30.93 (2)
N9—C101.351 (2)C4—C51.437 (2)
N9—H90.86 (3)C5—C61.338 (2)
C10—C111.430 (2)C5—H50.9300
C11—C121.331 (3)C6—C71.525 (2)
C11—H110.9300O6W—H610.845 (19)
C12—H120.9300O6W—H620.871 (19)
O1—C21.2357 (19)O7W—H710.902 (19)
O2—C41.220 (2)O7W—H720.898 (19)
C12—N7—C8123.41 (17)C2—N1—H1115.5 (13)
C12—N7—H7120.5 (18)C6—N1—H1122.5 (13)
C8—N7—H7116.1 (18)O1—C2—N3120.71 (14)
O5—C8—N7123.23 (17)O1—C2—N1123.39 (15)
O5—C8—N9122.53 (16)N3—C2—N1115.89 (14)
N7—C8—N9114.23 (16)C2—N3—C4126.19 (14)
C10—N10—H10A121.9 (15)C2—N3—H3114.9 (12)
C10—N10—H10B116.6 (15)C4—N3—H3118.9 (12)
H10A—N10—H10B121 (2)O2—C4—N3119.45 (15)
C10—N9—C8124.86 (15)O2—C4—C5126.07 (15)
C10—N9—H9117.9 (15)N3—C4—C5114.48 (14)
C8—N9—H9117.3 (15)C6—C5—C4120.29 (15)
N10—C10—N9119.49 (16)C6—C5—H5119.9
N10—C10—C11123.05 (17)C4—C5—H5119.9
N9—C10—C11117.46 (15)C5—C6—N1121.14 (15)
C12—C11—C10117.99 (17)C5—C6—C7122.74 (15)
C12—C11—H11121.0N1—C6—C7116.11 (15)
C10—C11—H11121.0O3—C7—O4127.60 (15)
C11—C12—N7121.83 (16)O3—C7—C6116.76 (15)
C11—C12—H12119.1O4—C7—C6115.65 (15)
N7—C12—H12119.1H61—O6W—H62102 (3)
C2—N1—C6121.99 (15)H71—O7W—H72109 (3)
C12—N7—C8—O5175.0 (2)N1—C2—N3—C40.2 (3)
C12—N7—C8—N94.6 (3)C2—N3—C4—O2178.38 (18)
O5—C8—N9—C10178.4 (2)C2—N3—C4—C50.9 (3)
N7—C8—N9—C101.2 (3)O2—C4—C5—C6178.4 (2)
C8—N9—C10—N10176.86 (19)N3—C4—C5—C60.8 (3)
C8—N9—C10—C112.7 (3)C4—C5—C6—N10.1 (3)
N10—C10—C11—C12176.2 (2)C4—C5—C6—C7178.95 (16)
N9—C10—C11—C123.4 (3)C2—N1—C6—C50.7 (3)
C10—C11—C12—N70.2 (3)C2—N1—C6—C7179.75 (16)
C8—N7—C12—C114.0 (3)C5—C6—C7—O3175.70 (18)
C6—N1—C2—O1179.52 (17)N1—C6—C7—O33.4 (2)
C6—N1—C2—N30.6 (3)C5—C6—C7—O44.2 (3)
O1—C2—N3—C4178.74 (18)N1—C6—C7—O4176.72 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···O1i0.76 (2)2.05 (2)2.809 (2)172 (2)
N10—H10A···O30.97 (3)1.90 (3)2.871 (2)173 (2)
N10—H10B···O6W0.87 (2)2.05 (2)2.876 (3)158 (2)
N9—H9···O40.86 (3)1.87 (3)2.7299 (19)176 (2)
N1—H1···O5ii0.88 (2)2.20 (2)3.051 (2)165.6 (17)
N3—H3···O1iii0.93 (2)1.93 (2)2.8624 (18)179.3 (19)
O6W—H61···O2ii0.85 (2)1.99 (2)2.806 (2)163 (4)
O6W—H62···O7Wiv0.87 (2)2.07 (3)2.873 (4)154 (4)
O7W—H71···O40.90 (2)1.97 (2)2.867 (2)173 (4)
O7W—H72···O50.90 (2)2.27 (3)2.979 (2)136 (3)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z+1/2; (iii) x2, y, z+1; (iv) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC4H6N3O+·C5H3N2O4·2H2O
Mr303.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)5.1486 (2), 15.1631 (6), 16.4206 (7)
β (°) 90.562 (3)
V3)1281.87 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.15 × 0.10 × 0.10
Data collection
DiffractometerOxford Diffraction Xcalibur S CCD
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.980, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
27833, 2328, 1954
Rint0.034
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.125, 1.13
No. of reflections2328
No. of parameters228
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.21

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 2012).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···O1i0.76 (2)2.05 (2)2.809 (2)172 (2)
N10—H10A···O30.97 (3)1.90 (3)2.871 (2)173 (2)
N10—H10B···O6W0.87 (2)2.05 (2)2.876 (3)158 (2)
N9—H9···O40.86 (3)1.87 (3)2.7299 (19)176 (2)
N1—H1···O5ii0.88 (2)2.20 (2)3.051 (2)165.6 (17)
N3—H3···O1iii0.93 (2)1.93 (2)2.8624 (18)179.3 (19)
O6W—H61···O2ii0.845 (19)1.99 (2)2.806 (2)163 (4)
O6W—H62···O7Wiv0.871 (19)2.07 (3)2.873 (4)154 (4)
O7W—H71···O40.902 (19)1.97 (2)2.867 (2)173 (4)
O7W—H72···O50.898 (19)2.27 (3)2.979 (2)136 (3)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z+1/2; (iii) x2, y, z+1; (iv) x+1, y1/2, z+1/2.
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLutz, M. (2001). Acta Cryst. E57, m103–m105.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMcClure, R. J. & Craven, B. M. (1973). Acta Cryst. B29, 1234–1238.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPortalone, G. (2008). Acta Cryst. E64, o656.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPortalone, G. (2010). Acta Cryst. C66, o295–o301.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPortalone, G. (2011). Chem. Centr. J. 5, 51.  Web of Science CSD CrossRef Google Scholar
First citationPortalone, G. & Colapietro, M. (2007). J. Chem. Crystallogr. 37, 141–145.  Web of Science CSD CrossRef CAS Google Scholar
First citationPortalone, G. & Colapietro, M. (2009). J. Chem. Crystallogr. 39, 193–200.  Web of Science CSD CrossRef CAS Google Scholar
First citationPortalone, G. & Irrera, S. (2011). J. Mol. Struct. 991, 92–96.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSolbakk, J. (1971). Acta Chem. Scand. 25, 3006–3018.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds