organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,3-Di­chloro­phen­yl)-2-nitro­benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 21 November 2012; accepted 22 November 2012; online 12 December 2012)

In the title compound, C12H8Cl2N2O4S, the N—C bond in the C—SO2—NH—C segment has gauche torsions with respect to the S=O bonds. Further, the N—H bond is syn to the ortho-nitro group in the sulfonyl benzene ring and also syn to both the ortho- and meta-Cl atoms in the aniline ring. The mol­ecule is twisted at the S—N bond with a torsion angle of 61.15 (18)°. The dihedral angle between the planes of the benzene rings is 68.00 (6)°. The amide H atom exhibits an intra­molecular bifurcated N—H⋯(O,O) hydrogen bond. In the crystal, pairs of N—H⋯O(S) hydrogen bonds link the mol­ecules into inversion dimers with R22(8) motifs.

Related literature

For our studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Gowda & Weiss (1994[Gowda, B. T. & Weiss, A. (1994). Z. Naturforsch. Teil A, 49, 695-702.]), of N-aryl­sulfonamides, see: Chaithanya et al. (2012[Chaithanya, U., Foro, S. & Gowda, B. T. (2012). Acta Cryst. E68, o3188.]); Gowda et al. (2002[Gowda, B. T., Jyothi, K. & D'Souza, J. D. (2002). Z. Naturforsch. Teil A, 57, 967-973.]) and of N-chloroaryl-sulfonamides, see: Gowda & Shetty (2004[Gowda, B. T. & Shetty, M. (2004). J. Phys. Org. Chem. 17, 848-864.]); Shetty & Gowda (2004[Shetty, M. & Gowda, B. T. (2004). Z. Naturforsch. Teil B, 59, 63-72.]).

[Scheme 1]

Experimental

Crystal data
  • C12H8Cl2N2O4S

  • Mr = 347.16

  • Monoclinic, P 21 /n

  • a = 8.2197 (5) Å

  • b = 15.863 (1) Å

  • c = 11.0108 (6) Å

  • β = 93.450 (6)°

  • V = 1433.09 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.61 mm−1

  • T = 293 K

  • 0.44 × 0.36 × 0.28 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.774, Tmax = 0.847

  • 5760 measured reflections

  • 2923 independent reflections

  • 2304 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.092

  • S = 1.01

  • 2923 reflections

  • 193 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.83 (2) 2.48 (2) 3.136 (2) 137 (2)
N1—H1N⋯O3 0.83 (2) 2.51 (2) 3.065 (3) 125 (2)
Symmetry code: (i) -x, -y+2, -z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of studying the effect of substituents on the structures and other aspects of N-(aryl)-amides (Gowda et al., 1994); N-arylsulfonamides (Chaithanya et al., 2012; Gowda et al., 2002) and N-chloroarylsulfonamides(Gowda & Shetty, 2004; Shetty & Gowda, 2004), in the present work, the crystal structure of N-(2,3-dichlorophenyl)-2-nitrobenzenesulfonamide (I) has been determined (Fig. 1). The conformation of the N—H bond is syn to the ortho-nitro group in the sulfonyl benzene ring and also syn to both the ortho- and meta-Cl atoms in the anilino ring, compared to the syn conformation between the N—H bond and the ortho-nitro group in the sulfonyl benzene ring and anti conformation between the N—H bond and the ortho- and meta-methyl groups in the anilino ring observed in N-(2,3-dimethylphenyl)-2-nitrobenzenesulfonamide (II) (Chaithanya et al., 2012).

The molecule in (I) is twisted at the S—N bond with the torsion angle of 61.15 (18)°, compared to the values of -60.37 (30) and 58.81 (34)° in the two independent molecules of (II).

The dihedral angle between the sulfonyl and the anilino ring is 68.00 (6)°, compared to the values of 53.67 (8) and 56.99 (9)° in the two molecules of (II).

The amide H-atom showed bifurcated intramolecular H-bonding with the O-atom of the ortho-nitro group in the sulfonyl benzene ring, generating S(7) motifs and the intermolecular H-bonding with the sulfonyl oxygen atom of the other molecule, generating inversion dimers (Table 1, Fig. 2.)

Related literature top

For our studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Gowda et al. (1994), of N-arylsulfonamides, see: Chaithanya et al. (2012); Gowda et al. (2002) and of N-chloroaryl-sulfonamides, see: Gowda & Shetty (2004); Shetty & Gowda (2004).

Experimental top

The title compound was prepared by treating 2-nitrobenzenesulfonylchloride with 2,3-dichloroaniline in the stoichiometric ratio and boiling the reaction mixture for 15 minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resultant solid N-(2,3-dichlorophenyl)-2-nitrobenzenesulfon- amide was filtered under suction and washed thoroughly with cold water and dilute HCl to remove the excess sulfonylchloride and aniline, respectively. It was then recrystallized to constant melting point from dilute ethanol. The purity of the compound was checked and characterized by its infrared spectra.

Prism like colourless single crystals of the title compound used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation of the solvent at room temperature.

Refinement top

H atoms bonded to C were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93 Å. The amino H atom was freely refined with the N—H distance restrained to 0.86 (2) Å. All H atoms were refined with isotropic displacement parameters set at 1.2 Ueq of the parent atom.

Structure description top

As a part of studying the effect of substituents on the structures and other aspects of N-(aryl)-amides (Gowda et al., 1994); N-arylsulfonamides (Chaithanya et al., 2012; Gowda et al., 2002) and N-chloroarylsulfonamides(Gowda & Shetty, 2004; Shetty & Gowda, 2004), in the present work, the crystal structure of N-(2,3-dichlorophenyl)-2-nitrobenzenesulfonamide (I) has been determined (Fig. 1). The conformation of the N—H bond is syn to the ortho-nitro group in the sulfonyl benzene ring and also syn to both the ortho- and meta-Cl atoms in the anilino ring, compared to the syn conformation between the N—H bond and the ortho-nitro group in the sulfonyl benzene ring and anti conformation between the N—H bond and the ortho- and meta-methyl groups in the anilino ring observed in N-(2,3-dimethylphenyl)-2-nitrobenzenesulfonamide (II) (Chaithanya et al., 2012).

The molecule in (I) is twisted at the S—N bond with the torsion angle of 61.15 (18)°, compared to the values of -60.37 (30) and 58.81 (34)° in the two independent molecules of (II).

The dihedral angle between the sulfonyl and the anilino ring is 68.00 (6)°, compared to the values of 53.67 (8) and 56.99 (9)° in the two molecules of (II).

The amide H-atom showed bifurcated intramolecular H-bonding with the O-atom of the ortho-nitro group in the sulfonyl benzene ring, generating S(7) motifs and the intermolecular H-bonding with the sulfonyl oxygen atom of the other molecule, generating inversion dimers (Table 1, Fig. 2.)

For our studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Gowda et al. (1994), of N-arylsulfonamides, see: Chaithanya et al. (2012); Gowda et al. (2002) and of N-chloroaryl-sulfonamides, see: Gowda & Shetty (2004); Shetty & Gowda (2004).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom labelling scheme and with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of the title compound viewed down the a axis with hydrogen bonding shown as dashed lines.
N-(2,3-Dichlorophenyl)-2-nitrobenzenesulfonamide top
Crystal data top
C12H8Cl2N2O4SF(000) = 704
Mr = 347.16Dx = 1.609 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2186 reflections
a = 8.2197 (5) Åθ = 2.6–27.7°
b = 15.863 (1) ŵ = 0.61 mm1
c = 11.0108 (6) ÅT = 293 K
β = 93.450 (6)°Prism, colourless
V = 1433.09 (15) Å30.44 × 0.36 × 0.28 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2923 independent reflections
Radiation source: fine-focus sealed tube2304 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
Rotation method data acquisition using ω scansθmax = 26.4°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 410
Tmin = 0.774, Tmax = 0.847k = 1919
5760 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0395P)2 + 0.7218P]
where P = (Fo2 + 2Fc2)/3
2923 reflections(Δ/σ)max = 0.002
193 parametersΔρmax = 0.35 e Å3
2 restraintsΔρmin = 0.34 e Å3
Crystal data top
C12H8Cl2N2O4SV = 1433.09 (15) Å3
Mr = 347.16Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.2197 (5) ŵ = 0.61 mm1
b = 15.863 (1) ÅT = 293 K
c = 11.0108 (6) Å0.44 × 0.36 × 0.28 mm
β = 93.450 (6)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2923 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2304 reflections with I > 2σ(I)
Tmin = 0.774, Tmax = 0.847Rint = 0.013
5760 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0372 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.35 e Å3
2923 reflectionsΔρmin = 0.34 e Å3
193 parameters
Special details top

Experimental. Absorption correction: CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1808 (2)0.83051 (12)0.19670 (17)0.0339 (4)
C20.0312 (2)0.80943 (13)0.24194 (17)0.0376 (4)
C30.0199 (3)0.75308 (15)0.3365 (2)0.0494 (6)
H30.08140.73820.36310.059*
C40.1601 (3)0.71913 (15)0.3910 (2)0.0572 (6)
H40.15380.68200.45600.069*
C50.3075 (3)0.73969 (15)0.3501 (2)0.0576 (6)
H50.40170.71710.38830.069*
C60.3199 (3)0.79411 (14)0.2517 (2)0.0455 (5)
H60.42150.80600.22290.055*
C70.3264 (2)1.02271 (12)0.21739 (18)0.0352 (4)
C80.2745 (3)1.05973 (14)0.32373 (19)0.0410 (5)
C90.3880 (3)1.09390 (15)0.40794 (19)0.0474 (5)
C100.5515 (3)1.08976 (16)0.3900 (2)0.0573 (6)
H100.62721.11220.44730.069*
C110.6023 (3)1.05199 (16)0.2863 (2)0.0593 (7)
H110.71311.04870.27420.071*
C120.4916 (3)1.01906 (14)0.2003 (2)0.0459 (5)
H120.52800.99420.13040.055*
N10.2103 (2)0.99427 (11)0.12555 (16)0.0385 (4)
H1N0.116 (2)1.0115 (14)0.131 (2)0.046*
N20.1233 (2)0.84663 (14)0.19410 (17)0.0477 (5)
O10.37021 (19)0.88086 (10)0.03520 (14)0.0518 (4)
O20.0757 (2)0.89329 (10)0.01537 (13)0.0526 (4)
O30.1264 (2)0.92105 (13)0.16889 (19)0.0696 (5)
O40.2424 (2)0.80065 (14)0.18634 (18)0.0736 (6)
Cl10.06982 (8)1.06521 (6)0.34758 (7)0.0781 (3)
Cl20.32597 (10)1.14330 (5)0.53734 (6)0.0784 (3)
S10.21072 (6)0.89869 (3)0.07156 (4)0.03673 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0374 (10)0.0298 (10)0.0343 (9)0.0005 (8)0.0010 (8)0.0022 (8)
C20.0400 (11)0.0381 (11)0.0346 (10)0.0017 (9)0.0028 (9)0.0032 (8)
C30.0596 (14)0.0482 (13)0.0414 (12)0.0091 (11)0.0102 (11)0.0017 (10)
C40.0835 (15)0.0432 (13)0.0435 (12)0.0079 (13)0.0078 (12)0.0094 (10)
C50.0628 (13)0.0449 (14)0.0621 (15)0.0044 (11)0.0222 (11)0.0079 (11)
C60.0398 (11)0.0391 (12)0.0563 (13)0.0009 (9)0.0080 (10)0.0007 (10)
C70.0371 (10)0.0286 (10)0.0397 (10)0.0019 (8)0.0003 (8)0.0034 (8)
C80.0383 (11)0.0430 (12)0.0421 (11)0.0025 (9)0.0058 (9)0.0006 (9)
C90.0555 (14)0.0459 (13)0.0405 (11)0.0005 (11)0.0010 (10)0.0066 (10)
C100.0496 (14)0.0566 (16)0.0637 (15)0.0016 (12)0.0136 (12)0.0145 (12)
C110.0360 (12)0.0609 (16)0.0803 (18)0.0010 (11)0.0013 (12)0.0143 (14)
C120.0404 (11)0.0445 (13)0.0531 (13)0.0006 (10)0.0059 (10)0.0082 (10)
N10.0361 (9)0.0356 (10)0.0431 (9)0.0017 (8)0.0044 (8)0.0006 (8)
N20.0357 (10)0.0632 (14)0.0450 (10)0.0018 (9)0.0068 (8)0.0006 (9)
O10.0524 (9)0.0535 (10)0.0518 (9)0.0029 (8)0.0213 (8)0.0098 (7)
O20.0637 (10)0.0515 (10)0.0406 (8)0.0080 (8)0.0149 (7)0.0003 (7)
O30.0492 (10)0.0597 (12)0.0991 (14)0.0157 (9)0.0011 (10)0.0076 (11)
O40.0416 (9)0.0996 (16)0.0790 (13)0.0178 (10)0.0019 (9)0.0072 (11)
Cl10.0441 (4)0.1163 (7)0.0756 (5)0.0079 (4)0.0186 (3)0.0316 (4)
Cl20.0881 (5)0.0950 (6)0.0527 (4)0.0046 (4)0.0083 (4)0.0295 (4)
S10.0411 (3)0.0379 (3)0.0312 (2)0.0025 (2)0.0018 (2)0.0019 (2)
Geometric parameters (Å, º) top
C1—C61.387 (3)C8—C91.386 (3)
C1—C21.395 (3)C8—Cl11.721 (2)
C1—S11.780 (2)C9—C101.371 (3)
C2—C31.379 (3)C9—Cl21.730 (2)
C2—N21.469 (3)C10—C111.376 (4)
C3—C41.376 (3)C10—H100.9300
C3—H30.9300C11—C121.377 (3)
C4—C51.358 (4)C11—H110.9300
C4—H40.9300C12—H120.9300
C5—C61.394 (3)N1—S11.6287 (18)
C5—H50.9300N1—H1N0.827 (16)
C6—H60.9300N2—O31.213 (3)
C7—C121.384 (3)N2—O41.220 (2)
C7—C81.399 (3)O1—S11.4221 (16)
C7—N11.422 (3)O2—S11.4236 (16)
C6—C1—C2117.74 (19)C10—C9—C8120.7 (2)
C6—C1—S1116.24 (16)C10—C9—Cl2118.70 (18)
C2—C1—S1126.01 (15)C8—C9—Cl2120.55 (18)
C3—C2—C1121.7 (2)C9—C10—C11119.3 (2)
C3—C2—N2115.78 (19)C9—C10—H10120.4
C1—C2—N2122.49 (18)C11—C10—H10120.4
C4—C3—C2119.4 (2)C12—C11—C10121.0 (2)
C4—C3—H3120.3C12—C11—H11119.5
C2—C3—H3120.3C10—C11—H11119.5
C5—C4—C3120.1 (2)C11—C12—C7120.3 (2)
C5—C4—H4119.9C11—C12—H12119.9
C3—C4—H4119.9C7—C12—H12119.9
C4—C5—C6121.0 (2)C7—N1—S1122.60 (14)
C4—C5—H5119.5C7—N1—H1N115.9 (16)
C6—C5—H5119.5S1—N1—H1N110.9 (17)
C1—C6—C5120.0 (2)O3—N2—O4124.1 (2)
C1—C6—H6120.0O3—N2—C2118.64 (19)
C5—C6—H6120.0O4—N2—C2117.2 (2)
C12—C7—C8118.85 (19)O1—S1—O2119.54 (10)
C12—C7—N1120.83 (19)O1—S1—N1108.08 (10)
C8—C7—N1120.21 (18)O2—S1—N1106.41 (9)
C9—C8—C7119.83 (19)O1—S1—C1105.65 (10)
C9—C8—Cl1120.22 (17)O2—S1—C1110.21 (9)
C7—C8—Cl1119.92 (16)N1—S1—C1106.24 (9)
C6—C1—C2—C31.3 (3)Cl2—C9—C10—C11178.8 (2)
S1—C1—C2—C3177.24 (17)C9—C10—C11—C120.5 (4)
C6—C1—C2—N2177.51 (19)C10—C11—C12—C70.6 (4)
S1—C1—C2—N24.0 (3)C8—C7—C12—C110.5 (3)
C1—C2—C3—C42.6 (3)N1—C7—C12—C11175.6 (2)
N2—C2—C3—C4176.3 (2)C12—C7—N1—S157.5 (3)
C2—C3—C4—C51.4 (4)C8—C7—N1—S1126.45 (18)
C3—C4—C5—C61.0 (4)C3—C2—N2—O3138.7 (2)
C2—C1—C6—C51.1 (3)C1—C2—N2—O340.2 (3)
S1—C1—C6—C5179.79 (18)C3—C2—N2—O438.8 (3)
C4—C5—C6—C12.3 (4)C1—C2—N2—O4142.3 (2)
C12—C7—C8—C91.7 (3)C7—N1—S1—O151.85 (19)
N1—C7—C8—C9174.38 (19)C7—N1—S1—O2178.59 (16)
C12—C7—C8—Cl1179.99 (17)C7—N1—S1—C161.15 (18)
N1—C7—C8—Cl13.9 (3)C6—C1—S1—O116.35 (18)
C7—C8—C9—C101.9 (3)C2—C1—S1—O1162.21 (17)
Cl1—C8—C9—C10179.9 (2)C6—C1—S1—O2146.80 (16)
C7—C8—C9—Cl2177.68 (17)C2—C1—S1—O231.8 (2)
Cl1—C8—C9—Cl20.6 (3)C6—C1—S1—N198.31 (17)
C8—C9—C10—C110.7 (4)C2—C1—S1—N183.13 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.83 (2)2.48 (2)3.136 (2)137 (2)
N1—H1N···O30.83 (2)2.51 (2)3.065 (3)125 (2)
N1—H1N···Cl10.83 (2)2.58 (2)2.9858 (19)111 (2)
Symmetry code: (i) x, y+2, z.

Experimental details

Crystal data
Chemical formulaC12H8Cl2N2O4S
Mr347.16
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.2197 (5), 15.863 (1), 11.0108 (6)
β (°) 93.450 (6)
V3)1433.09 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.61
Crystal size (mm)0.44 × 0.36 × 0.28
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.774, 0.847
No. of measured, independent and
observed [I > 2σ(I)] reflections
5760, 2923, 2304
Rint0.013
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.092, 1.01
No. of reflections2923
No. of parameters193
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.34

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.827 (16)2.48 (2)3.136 (2)137 (2)
N1—H1N···O30.827 (16)2.51 (2)3.065 (3)125 (2)
N1—H1N···Cl10.827 (16)2.58 (2)2.9858 (19)111.4 (18)
Symmetry code: (i) x, y+2, z.
 

Acknowledgements

BTG thanks the University Grants Commission, Government of India, New Delhi, for a special grant under the UGC–BSR one-time grant to faculty and the Department of Science and Technology, Government of India, New Delhi, for the research grant under its Promotion of University Research and Scientific Excellence Programme.

References

First citationChaithanya, U., Foro, S. & Gowda, B. T. (2012). Acta Cryst. E68, o3188.  CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Jyothi, K. & D'Souza, J. D. (2002). Z. Naturforsch. Teil A, 57, 967–973.  CAS Google Scholar
First citationGowda, B. T. & Shetty, M. (2004). J. Phys. Org. Chem. 17, 848–864.  Web of Science CrossRef CAS Google Scholar
First citationGowda, B. T. & Weiss, A. (1994). Z. Naturforsch. Teil A, 49, 695–702.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShetty, M. & Gowda, B. T. (2004). Z. Naturforsch. Teil B, 59, 63–72.  CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds