organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,5-Dimeth­­oxy­phen­yl)-6-nitro­quinazolin-4-amine

aH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan, and bPCSIR Labortories Complex, Karachi, Shahrah-e-Dr. Salmuzzaman Siddiqui, Karachi 75280, Pakistan
*Correspondence e-mail: dr.sammer.yousuf@gmail.com

(Received 21 November 2012; accepted 28 November 2012; online 5 December 2012)

In the title mol­ecule, C16H14N4O4, the quinazoline ring is substanti­ally planar (r.m.s. deviation = 0.0129 Å) and forms a dihedral angle of 2.73 (8)° with the benzene ring. The conformation of the mol­ecule is stabilized by an intra­molecular C—H⋯N hydrogen bond. In the crystal, mol­ecules are linked into chains running parallel to the b axis by C—H⋯O hydrogen bonds. In addition, ππ stacking is observed between dimethoxy-substituted and nitro-substituted benzene rings, with centroid–centroid distances in the range 3.6438 (10)–3.7148 (10) Å.

Related literature

For the biological activity of quinazoline derivatives, see: Arfan et al. (2008[Arfan, M., Khan, R., Imran, M., Khan, H. & Mehmood, J. (2008). J. Chem. Soc. Pak. 30, 299-305.]); Sheng-Li et al. (2005[Sheng-Li, C., Yu-Ping, F., Yu-Yang, J., Shi-Ying, L., Guo-Yu, D. & Run-Tao, L. (2005). Bioorg. Med. Chem. Lett. 15, 1915-1917.]); Kung et al. (1999[Kung, P.-P., Casper, M. D., Cook, K. L., Wilson-Lingardo, L., Risen, L. M., Vickers, T. A., Ranken, R., Blyn, L. B., Wyatt, J. R., Cook, P. D. & Ecker, D. J. (1999). J. Med. Chem. 42, 4705-4713.]); Ram et al. (1990[Ram, V. J., Singha, U. K. & Guru, P. Y. (1990). Eur. J. Med. Chem. 25 , 533-538.]); Misra et al. (1981[Misra, V. S., Singh, C., Agarwal, R. & Choudhary, K. C. (1981). J. Chem. Soc. Pak. 3,, 209-213.]); Hess et al. (1968[Hess, H. J., Cronin, T. H. & Scriabine, A. (1968). J. Med. Chem. 11, 130-136.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14N4O4

  • Mr = 326.31

  • Triclinic, [P \overline 1]

  • a = 7.2440 (7) Å

  • b = 10.2832 (10) Å

  • c = 11.1622 (11) Å

  • α = 72.475 (2)°

  • β = 83.663 (2)°

  • γ = 70.429 (2)°

  • V = 747.05 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.29 × 0.19 × 0.15 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.970, Tmax = 0.984

  • 8510 measured reflections

  • 2792 independent reflections

  • 2249 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.120

  • S = 1.05

  • 2792 reflections

  • 224 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯N2 0.93 2.22 2.833 (2) 123
C8—H8A⋯O3i 0.93 2.60 3.490 (2) 161
Symmetry code: (i) x, y+1, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Quinazoline derivatives are the aromatic bicyclic compounds obtained upon the fusion of benzene and pyrimidine rings. Quinazoline analogs are found to be biologically active rendering a variety of therapeutic effects such as anti-inflammatory (Misra et al., 1981), anticancer (Sheng-Li et al., 2005), antihypertensive (Hess et al., 1968), antibacterial (Kung et al., 1999), leishmanicidal (Ram et al., 1990) and antimicrobial (Arfan et al., 2008) activities. The title compound is a quiazoline derivative synthesized as a part of our ongoing project in order to evaluate the biological potential of new derivatives of this important class of organic compounds.

The molecule of the title compound (Fig. 1) is composed of a phenyl (C1–C6) and a nearly planar quinazoline ring (N2–N3/C7–C14; r.m.s. deviation 0.0129 Å) linked through a C6—N1—C7 amino linkage. The bond lengths (Allen et al., 1987) and angles were found to be in normal range. The molecular conformation is stabilized by an intramolecular C5—H5A···N2 hydrogen bond (Table 1). In the crystal, molecules form chains by intermolecular C8—H8A···O3 interactions (symmetry codes as in Table 1, Fig. 2) running parallel to the b axis. The crystal structure is further strengthened by significant ππ stackings: Cg(1)···Cg(2)i, 3.7148 (10) Å; Cg(1)···Cg(3)i, 3.7099 (10) Å; Cg(1)··· Cg(3)ii, 3.6438 (10) Å; Cg(1), Cg(2) and Cg(3) are the centroids of the C1–C6, N2/C7/C11/C9/N3/C8 and C9–C14 rings, respectively; symmetry codes: (i) 1-x, 2-y, -z; (ii) -x, 2-y, -z.

Related literature top

For the biological activity of quinazoline derivatives, see: Arfan et al. (2008); Sheng-Li et al. (2005); Kung et al. (1999); Ram et al. (1990); Misra et al. (1981); Hess et al. (1968). For bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of (E)-N'-(2-cyano-4-nitrophenyl)-N,N-dimethylformimidamide (0.436 g, 2 mmol) and 2,5-dimethoxyaniline (0.35 g, 2 mmol) was refluxed in acetic acid (12 ml) at 75 °C for 2 h. Progress of the reaction was monitored by thin layer chromatography. After completion of the reaction, the mixture was cooled to room temperature and neutralized by adding a saturated aqueous solution of sodium bicarbonate until the evolution of CO2 gas ceased. The reaction mixture yielded brown crystals on standing at room temperature, which were filtered and washed with water. The crystals were re-grown using ethanol and collected in 50.2% yield (0.3273 g). All chemicals were purchased by sigma Aldrich Germany.

Refinement top

H atoms on aromatic rings and methyl carbons were positioned geomatrically with 0.93–0.96 Å and constrained to ride on their parent atoms with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms. The H atoms of the nitrogen atom (N–H = 0.868 (19) Å) was located in a difference Fourier map and refined isotropically. A rotating group model was applied to the methyl groups.

Structure description top

Quinazoline derivatives are the aromatic bicyclic compounds obtained upon the fusion of benzene and pyrimidine rings. Quinazoline analogs are found to be biologically active rendering a variety of therapeutic effects such as anti-inflammatory (Misra et al., 1981), anticancer (Sheng-Li et al., 2005), antihypertensive (Hess et al., 1968), antibacterial (Kung et al., 1999), leishmanicidal (Ram et al., 1990) and antimicrobial (Arfan et al., 2008) activities. The title compound is a quiazoline derivative synthesized as a part of our ongoing project in order to evaluate the biological potential of new derivatives of this important class of organic compounds.

The molecule of the title compound (Fig. 1) is composed of a phenyl (C1–C6) and a nearly planar quinazoline ring (N2–N3/C7–C14; r.m.s. deviation 0.0129 Å) linked through a C6—N1—C7 amino linkage. The bond lengths (Allen et al., 1987) and angles were found to be in normal range. The molecular conformation is stabilized by an intramolecular C5—H5A···N2 hydrogen bond (Table 1). In the crystal, molecules form chains by intermolecular C8—H8A···O3 interactions (symmetry codes as in Table 1, Fig. 2) running parallel to the b axis. The crystal structure is further strengthened by significant ππ stackings: Cg(1)···Cg(2)i, 3.7148 (10) Å; Cg(1)···Cg(3)i, 3.7099 (10) Å; Cg(1)··· Cg(3)ii, 3.6438 (10) Å; Cg(1), Cg(2) and Cg(3) are the centroids of the C1–C6, N2/C7/C11/C9/N3/C8 and C9–C14 rings, respectively; symmetry codes: (i) 1-x, 2-y, -z; (ii) -x, 2-y, -z.

For the biological activity of quinazoline derivatives, see: Arfan et al. (2008); Sheng-Li et al. (2005); Kung et al. (1999); Ram et al. (1990); Misra et al. (1981); Hess et al. (1968). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. An intramolecular hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The crystal packing of the title compound. Only hydrogen atoms involved in hydrogen bonding (dashed lines) are shown.
N-(2,5-Dimethoxyphenyl)-6-nitroquinazolin-4-amine top
Crystal data top
C16H14N4O4Z = 2
Mr = 326.31F(000) = 340
Triclinic, P1Dx = 1.451 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2440 (7) ÅCell parameters from 2914 reflections
b = 10.2832 (10) Åθ = 2.2–28.2°
c = 11.1622 (11) ŵ = 0.11 mm1
α = 72.475 (2)°T = 298 K
β = 83.663 (2)°Block, brown
γ = 70.429 (2)°0.29 × 0.19 × 0.15 mm
V = 747.05 (13) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2792 independent reflections
Radiation source: fine-focus sealed tube2249 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scanθmax = 25.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 88
Tmin = 0.970, Tmax = 0.984k = 1212
8510 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0634P)2 + 0.1096P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2792 reflectionsΔρmax = 0.18 e Å3
224 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.012 (3)
Crystal data top
C16H14N4O4γ = 70.429 (2)°
Mr = 326.31V = 747.05 (13) Å3
Triclinic, P1Z = 2
a = 7.2440 (7) ÅMo Kα radiation
b = 10.2832 (10) ŵ = 0.11 mm1
c = 11.1622 (11) ÅT = 298 K
α = 72.475 (2)°0.29 × 0.19 × 0.15 mm
β = 83.663 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2792 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2249 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.984Rint = 0.021
8510 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.18 e Å3
2792 reflectionsΔρmin = 0.20 e Å3
224 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.32912 (17)0.94268 (12)0.22927 (10)0.0562 (3)
O20.3236 (2)1.48679 (13)0.24856 (12)0.0691 (4)
O30.1791 (2)0.42539 (13)0.34841 (13)0.0830 (5)
O40.2239 (2)0.50964 (14)0.15126 (12)0.0760 (4)
N10.25382 (19)1.01670 (14)0.02167 (11)0.0433 (3)
H1A0.271 (2)0.936 (2)0.0378 (16)0.057 (5)*
N20.1798 (2)1.14710 (13)0.12319 (12)0.0509 (4)
N30.1201 (2)1.04595 (13)0.34070 (12)0.0490 (3)
N40.1950 (2)0.52243 (14)0.25729 (13)0.0527 (4)
C10.3302 (2)1.07924 (17)0.23984 (14)0.0458 (4)
C20.3659 (2)1.1756 (2)0.34973 (15)0.0538 (4)
H2B0.39231.14890.42390.065*
C30.3625 (2)1.31047 (19)0.35023 (15)0.0553 (4)
H3B0.38701.37420.42440.066*
C40.3231 (2)1.35085 (17)0.24107 (15)0.0498 (4)
C50.2860 (2)1.25646 (16)0.12990 (15)0.0470 (4)
H5A0.25901.28430.05630.056*
C60.2894 (2)1.12074 (16)0.12903 (13)0.0413 (3)
C70.2062 (2)1.02516 (15)0.09734 (13)0.0383 (3)
C80.1392 (3)1.14894 (17)0.24328 (15)0.0543 (4)
H8A0.12231.23610.25890.065*
C90.1398 (2)0.91960 (15)0.31559 (13)0.0388 (3)
C100.1148 (2)0.80460 (16)0.41591 (14)0.0444 (4)
H10A0.08590.81670.49590.053*
C110.1322 (2)0.67639 (16)0.39744 (14)0.0440 (4)
H11A0.11560.60070.46380.053*
C120.1754 (2)0.66082 (14)0.27654 (14)0.0399 (3)
C130.2004 (2)0.76883 (15)0.17581 (13)0.0388 (3)
H13A0.22810.75460.09650.047*
C140.18346 (19)0.90156 (14)0.19406 (13)0.0358 (3)
C150.3816 (3)0.8934 (2)0.33839 (17)0.0663 (5)
H15A0.38110.79590.31870.099*
H15B0.51020.89740.36640.099*
H15C0.28890.95340.40360.099*
C160.2820 (3)1.5289 (2)0.1356 (2)0.0781 (6)
H16A0.28911.62420.15150.117*
H16B0.37601.46310.07300.117*
H16C0.15281.52780.10610.117*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0745 (8)0.0609 (7)0.0399 (6)0.0283 (6)0.0097 (5)0.0198 (5)
O20.0911 (9)0.0502 (7)0.0614 (8)0.0316 (7)0.0063 (7)0.0012 (6)
O30.1479 (14)0.0451 (7)0.0626 (8)0.0462 (8)0.0084 (8)0.0107 (6)
O40.1248 (12)0.0602 (8)0.0589 (8)0.0407 (8)0.0150 (8)0.0326 (6)
N10.0579 (8)0.0396 (7)0.0338 (7)0.0191 (6)0.0037 (5)0.0098 (5)
N20.0736 (9)0.0398 (7)0.0417 (7)0.0227 (6)0.0058 (6)0.0123 (6)
N30.0688 (9)0.0436 (7)0.0419 (7)0.0235 (6)0.0078 (6)0.0189 (6)
N40.0701 (9)0.0434 (7)0.0505 (8)0.0224 (7)0.0030 (7)0.0181 (6)
C10.0430 (8)0.0549 (9)0.0386 (8)0.0169 (7)0.0003 (6)0.0105 (7)
C20.0529 (9)0.0717 (11)0.0335 (8)0.0209 (8)0.0025 (7)0.0098 (7)
C30.0542 (10)0.0614 (10)0.0399 (9)0.0218 (8)0.0014 (7)0.0048 (7)
C40.0484 (9)0.0474 (9)0.0461 (9)0.0165 (7)0.0019 (7)0.0003 (7)
C50.0495 (9)0.0470 (8)0.0405 (8)0.0164 (7)0.0007 (7)0.0060 (7)
C60.0394 (8)0.0469 (8)0.0336 (8)0.0143 (6)0.0016 (6)0.0048 (6)
C70.0402 (8)0.0403 (8)0.0349 (7)0.0138 (6)0.0008 (6)0.0109 (6)
C80.0794 (12)0.0412 (8)0.0498 (9)0.0251 (8)0.0078 (8)0.0199 (7)
C90.0414 (8)0.0414 (8)0.0374 (8)0.0154 (6)0.0023 (6)0.0152 (6)
C100.0564 (9)0.0474 (8)0.0331 (7)0.0210 (7)0.0079 (6)0.0146 (6)
C110.0518 (9)0.0432 (8)0.0375 (8)0.0204 (7)0.0040 (6)0.0078 (6)
C120.0441 (8)0.0357 (7)0.0430 (8)0.0140 (6)0.0001 (6)0.0140 (6)
C130.0444 (8)0.0410 (8)0.0334 (7)0.0137 (6)0.0012 (6)0.0142 (6)
C140.0359 (7)0.0377 (7)0.0341 (7)0.0119 (6)0.0007 (6)0.0105 (6)
C150.0800 (13)0.0786 (12)0.0517 (10)0.0321 (10)0.0150 (9)0.0323 (9)
C160.1048 (16)0.0540 (11)0.0800 (14)0.0356 (11)0.0166 (12)0.0196 (10)
Geometric parameters (Å, º) top
O1—C11.3761 (19)C4—C51.389 (2)
O1—C151.4234 (19)C5—C61.385 (2)
O2—C41.376 (2)C5—H5A0.9300
O2—C161.423 (2)C7—C141.4430 (19)
O3—N41.2179 (17)C8—H8A0.9300
O4—N41.2176 (17)C9—C101.409 (2)
N1—C71.3564 (18)C9—C141.4115 (19)
N1—C61.4112 (18)C10—C111.358 (2)
N1—H1A0.868 (19)C10—H10A0.9300
N2—C71.3182 (19)C11—C121.396 (2)
N2—C81.345 (2)C11—H11A0.9300
N3—C81.302 (2)C12—C131.367 (2)
N3—C91.3687 (18)C13—C141.4033 (19)
N4—C121.4608 (18)C13—H13A0.9300
C1—C21.387 (2)C15—H15A0.9600
C1—C61.397 (2)C15—H15B0.9600
C2—C31.377 (2)C15—H15C0.9600
C2—H2B0.9300C16—H16A0.9600
C3—C41.374 (2)C16—H16B0.9600
C3—H3B0.9300C16—H16C0.9600
C1—O1—C15117.06 (13)N3—C8—H8A115.4
C4—O2—C16116.73 (13)N2—C8—H8A115.4
C7—N1—C6129.76 (13)N3—C9—C10117.95 (13)
C7—N1—H1A118.8 (12)N3—C9—C14122.40 (13)
C6—N1—H1A111.4 (12)C10—C9—C14119.65 (12)
C7—N2—C8117.26 (13)C11—C10—C9120.95 (13)
C8—N3—C9114.77 (13)C11—C10—H10A119.5
O4—N4—O3123.00 (13)C9—C10—H10A119.5
O4—N4—C12118.81 (13)C10—C11—C12118.47 (13)
O3—N4—C12118.18 (13)C10—C11—H11A120.8
O1—C1—C2125.36 (14)C12—C11—H11A120.8
O1—C1—C6115.44 (13)C13—C12—C11123.04 (13)
C2—C1—C6119.20 (15)C13—C12—N4118.71 (13)
C3—C2—C1120.74 (15)C11—C12—N4118.25 (13)
C3—C2—H2B119.6C12—C13—C14118.91 (13)
C1—C2—H2B119.6C12—C13—H13A120.5
C4—C3—C2119.96 (14)C14—C13—H13A120.5
C4—C3—H3B120.0C13—C14—C9118.98 (12)
C2—C3—H3B120.0C13—C14—C7125.30 (12)
C3—C4—O2116.71 (14)C9—C14—C7115.72 (12)
C3—C4—C5120.38 (15)O1—C15—H15A109.5
O2—C4—C5122.91 (15)O1—C15—H15B109.5
C6—C5—C4119.81 (15)H15A—C15—H15B109.5
C6—C5—H5A120.1O1—C15—H15C109.5
C4—C5—H5A120.1H15A—C15—H15C109.5
C5—C6—C1119.91 (13)H15B—C15—H15C109.5
C5—C6—N1124.48 (13)O2—C16—H16A109.5
C1—C6—N1115.61 (13)O2—C16—H16B109.5
N2—C7—N1119.40 (13)H16A—C16—H16B109.5
N2—C7—C14120.64 (13)O2—C16—H16C109.5
N1—C7—C14119.95 (12)H16A—C16—H16C109.5
N3—C8—N2129.14 (14)H16B—C16—H16C109.5
C15—O1—C1—C24.4 (2)C7—N2—C8—N30.5 (3)
C15—O1—C1—C6176.33 (14)C8—N3—C9—C10178.01 (14)
O1—C1—C2—C3179.65 (14)C8—N3—C9—C141.9 (2)
C6—C1—C2—C30.4 (2)N3—C9—C10—C11179.96 (14)
C1—C2—C3—C40.2 (2)C14—C9—C10—C110.0 (2)
C2—C3—C4—O2179.56 (14)C9—C10—C11—C120.0 (2)
C2—C3—C4—C50.1 (2)C10—C11—C12—C130.2 (2)
C16—O2—C4—C3179.79 (16)C10—C11—C12—N4179.70 (13)
C16—O2—C4—C50.6 (2)O4—N4—C12—C133.3 (2)
C3—C4—C5—C60.2 (2)O3—N4—C12—C13177.54 (14)
O2—C4—C5—C6179.49 (14)O4—N4—C12—C11176.73 (14)
C4—C5—C6—C10.1 (2)O3—N4—C12—C112.4 (2)
C4—C5—C6—N1179.94 (13)C11—C12—C13—C140.5 (2)
O1—C1—C6—C5179.67 (13)N4—C12—C13—C14179.45 (12)
C2—C1—C6—C50.4 (2)C12—C13—C14—C90.5 (2)
O1—C1—C6—N10.34 (19)C12—C13—C14—C7179.88 (13)
C2—C1—C6—N1179.66 (13)N3—C9—C14—C13179.70 (13)
C7—N1—C6—C51.8 (2)C10—C9—C14—C130.2 (2)
C7—N1—C6—C1178.23 (14)N3—C9—C14—C70.0 (2)
C8—N2—C7—N1177.84 (14)C10—C9—C14—C7179.89 (12)
C8—N2—C7—C142.6 (2)N2—C7—C14—C13177.34 (13)
C6—N1—C7—N22.7 (2)N1—C7—C14—C132.2 (2)
C6—N1—C7—C14177.71 (13)N2—C7—C14—C92.3 (2)
C9—N3—C8—N21.8 (3)N1—C7—C14—C9178.10 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···N20.932.222.833 (2)123
C8—H8A···O3i0.932.603.490 (2)161
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC16H14N4O4
Mr326.31
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.2440 (7), 10.2832 (10), 11.1622 (11)
α, β, γ (°)72.475 (2), 83.663 (2), 70.429 (2)
V3)747.05 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.29 × 0.19 × 0.15
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.970, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
8510, 2792, 2249
Rint0.021
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.120, 1.05
No. of reflections2792
No. of parameters224
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.20

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···N20.93002.22002.833 (2)123.00
C8—H8A···O3i0.93002.60003.490 (2)161.00
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The authors are thankful to the Higher Education Commission (HEC) Pakistan (project No. 20–2073) and the Pakistan Academy of Sciences (PAS) for their financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationArfan, M., Khan, R., Imran, M., Khan, H. & Mehmood, J. (2008). J. Chem. Soc. Pak. 30, 299–305.  CAS Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHess, H. J., Cronin, T. H. & Scriabine, A. (1968). J. Med. Chem. 11, 130–136.  CrossRef CAS PubMed Web of Science Google Scholar
First citationKung, P.-P., Casper, M. D., Cook, K. L., Wilson-Lingardo, L., Risen, L. M., Vickers, T. A., Ranken, R., Blyn, L. B., Wyatt, J. R., Cook, P. D. & Ecker, D. J. (1999). J. Med. Chem. 42, 4705–4713.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMisra, V. S., Singh, C., Agarwal, R. & Choudhary, K. C. (1981). J. Chem. Soc. Pak. 3,, 209–213.  Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationRam, V. J., Singha, U. K. & Guru, P. Y. (1990). Eur. J. Med. Chem. 25 , 533–538.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheng-Li, C., Yu-Ping, F., Yu-Yang, J., Shi-Ying, L., Guo-Yu, D. & Run-Tao, L. (2005). Bioorg. Med. Chem. Lett. 15, 1915–1917.  Web of Science PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds