organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,6-Di­methyl­pyrimidin-2-amine

aKey Laboratory of Functional Organometallic Materials of General Colleges and Universities in Hunan Province, Department of Chemistry and Materials Science, Hengyang Normal University, Hengyang 421008, People's Republic of China
*Correspondence e-mail: w.w.fu@hotmail.com

(Received 23 November 2012; accepted 2 December 2012; online 8 December 2012)

The asymmetric unit of the title compound, C6H9N3, contains three crystallographically independent mol­ecules of similar geometry. All of the mol­ecules are almost planar, with r.m.s. deviations of 0.003, 0.016 and 0.005 Å. In the crystal, the mol­ecules are linked by N—H⋯N hydrogen bonds into zigzag ribbons parallel to the c axis, generating rings of R22(8) graph-set motif.

Related literature

For background to sulfonyl­urea herbicides, see: Deng (2003[Deng, J. B. (2003). World Pesticides 25, 24-29.]). For the properties and crystal structures of metal complexes of the title compound, see: Sun et al. (2010[Sun, D., Zhang, N., Huang, R. B. & Zheng, L. S. (2010). Cryst. Growth Des. 10, 3699-3709.]); Yang (2009[Yang, H. (2009). Acta Cryst. E65, m1177.]). For the structure of a hydrate form of the title compound, see: Lin et al. (2008[Lin, C. H., Guo, H. M. & Jian, F. F. (2008). Z. Kristallogr. New Cryst. Struct., 223, 511-512.]). For the synthesis, see: Fan et al. (2000[Fan, Y. T., Lu, H. J., Hou, H. W., Zhou, Z. M., Zhao, Q. H., Zhang, L. P. & Cheng, F. H. (2000). J. Coord. Chem. 50, 65-72.]); Yao & Qu (1997[Yao, Y. P. & Qu, H. X. (1997). Anhui Chem. Ind. 23, 23-24.]).

[Scheme 1]

Experimental

Crystal data
  • C6H9N3

  • Mr = 123.16

  • Monoclinic, C 2/c

  • a = 11.519 (7) Å

  • b = 11.021 (6) Å

  • c = 32.386 (18) Å

  • β = 91.112 (10)°

  • V = 4111 (4) Å3

  • Z = 24

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.26 × 0.18 × 0.17 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.980, Tmax = 0.987

  • 11005 measured reflections

  • 4020 independent reflections

  • 2252 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.175

  • S = 1.01

  • 4020 reflections

  • 245 parameters

  • H-atom parameters constrained

  • Δρmax = 1.08 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N2i 0.86 2.45 3.304 (4) 175
N1—H1B⋯N8ii 0.86 2.52 3.376 (4) 173
N4—H4A⋯N9iii 0.86 2.21 3.050 (3) 167
N4—H4B⋯N6iv 0.86 2.45 3.243 (4) 154
N7—H7A⋯N5v 0.86 2.57 3.421 (4) 173
N7—H7B⋯N3vi 0.86 2.36 3.219 (3) 176
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) x-1, y-1, z; (iv) [-x, y, -z+{\script{3\over 2}}]; (v) x+1, y+1, z; (vi) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 2008[Brandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

4,6-Dimethylpyrimidin-2-amine is an important intermediate especially for synthesis of sulfonylurea herbicides (Deng, 2003). It has also been used as an organic ligand in the fluorescence research on Ag(I) coordination complexes (Sun et al., 2010; Yang, 2009). As a continuation of our efforts aimed to the synthesis of new ligands based on this organic compound, the title compound has been unexpectedly obtained and its crystal structure is reported herein.

The asymmetric unit of the title compound consists of three crystallographically independent molecules of similar geometry (Fig. 1). All molecules are substantially planar, the r.m.s. deviations being 0.003, 0.016 and 0.005 Å for N1–N3/C1–C6, N4–N6/C7–C12 and N7–N9/C13–C18 respectively. In the crystal structure (Fig. 2), molecules are connected by classical intermolecular N—H···N hydrogen bonds (Table 1) to form zigzag ribbons parallel to the c axis generating rings of R22(8) graph set motif. The structure of a hydrate form of the title compound was reported recently (Lin et al., 2008).

Related literature top

For background to sulfonylurea herbicides, see: Deng (2003). For the properties and crystal structures of metal complexes of the title compound, see: Sun et al. (2010); Yang (2009). For the structure of a hydrate form of the title compound, see: Lin et al. (2008). For the synthesis, see: Fan et al. (2000); Yao & Qu (1997).

Experimental top

In an attempt to synthesize 1,3-bis(4,6-dimethylpyrimidin-2-yl)thiourea according to a literature method (Fan et al., 2000), 4,6-dimethylpyrimidin-2-amine (Yao & Qu, 1997) was used as material as a replacement for pyridin-2-amine. Sodium hydroxide (0.25 g, 6.25 mmol) was dissolved in absolute ethanol (25 ml), then 4,6-dimethylpyrimidin-2-amine (6.15 g, 50 mmol) and carbon disulfide (2.25 g, 30 mmol) were added. After refluxing for 6 h, the mixture was cooled and filtered. The title compound was obtained as colourless crystals suitable for X-ray diffraction instead of the expected thiourea derivative. All reagents and solvents were commercially available and used without further purification.

Refinement top

All non-H atoms were refined anisotropically. Hydrogen atoms were positioned geometrically and treated as riding atoms, with C—H = 0.90–1.00 Å, N—H = 0.88–0.91 Å and with with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(C) for methyl H atoms. The relatively high residual peak of 1.08 e/Å3 is located on a twofold axis.

Structure description top

4,6-Dimethylpyrimidin-2-amine is an important intermediate especially for synthesis of sulfonylurea herbicides (Deng, 2003). It has also been used as an organic ligand in the fluorescence research on Ag(I) coordination complexes (Sun et al., 2010; Yang, 2009). As a continuation of our efforts aimed to the synthesis of new ligands based on this organic compound, the title compound has been unexpectedly obtained and its crystal structure is reported herein.

The asymmetric unit of the title compound consists of three crystallographically independent molecules of similar geometry (Fig. 1). All molecules are substantially planar, the r.m.s. deviations being 0.003, 0.016 and 0.005 Å for N1–N3/C1–C6, N4–N6/C7–C12 and N7–N9/C13–C18 respectively. In the crystal structure (Fig. 2), molecules are connected by classical intermolecular N—H···N hydrogen bonds (Table 1) to form zigzag ribbons parallel to the c axis generating rings of R22(8) graph set motif. The structure of a hydrate form of the title compound was reported recently (Lin et al., 2008).

For background to sulfonylurea herbicides, see: Deng (2003). For the properties and crystal structures of metal complexes of the title compound, see: Sun et al. (2010); Yang (2009). For the structure of a hydrate form of the title compound, see: Lin et al. (2008). For the synthesis, see: Fan et al. (2000); Yao & Qu (1997).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP plot of the asymmetric unit of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the b axis. Hydrogen bonds are drawn as dashed lines.
4,6-Dimethylpyrimidin-2-amine top
Crystal data top
C6H9N3F(000) = 1584
Mr = 123.16Dx = 1.194 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1760 reflections
a = 11.519 (7) Åθ = 2.6–23.0°
b = 11.021 (6) ŵ = 0.08 mm1
c = 32.386 (18) ÅT = 296 K
β = 91.112 (10)°Block, colourless
V = 4111 (4) Å30.26 × 0.18 × 0.17 mm
Z = 24
Data collection top
Bruker APEXII CCD
diffractometer
4020 independent reflections
Radiation source: fine-focus sealed tube2252 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
φ and ω scansθmax = 26.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1414
Tmin = 0.980, Tmax = 0.987k = 136
11005 measured reflectionsl = 3939
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062H-atom parameters constrained
wR(F2) = 0.175 w = 1/[σ2(Fo2) + (0.0567P)2 + 5.4094P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
4020 reflectionsΔρmax = 1.08 e Å3
245 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0011 (2)
Crystal data top
C6H9N3V = 4111 (4) Å3
Mr = 123.16Z = 24
Monoclinic, C2/cMo Kα radiation
a = 11.519 (7) ŵ = 0.08 mm1
b = 11.021 (6) ÅT = 296 K
c = 32.386 (18) Å0.26 × 0.18 × 0.17 mm
β = 91.112 (10)°
Data collection top
Bruker APEXII CCD
diffractometer
4020 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2252 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.987Rint = 0.032
11005 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.175H-atom parameters constrained
S = 1.01Δρmax = 1.08 e Å3
4020 reflectionsΔρmin = 0.16 e Å3
245 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.47955 (19)0.1483 (2)0.53927 (8)0.0677 (7)
H1A0.44230.09610.52440.081*
H1B0.44220.20030.55370.081*
N20.64988 (18)0.0645 (2)0.51683 (7)0.0514 (6)
N30.65035 (18)0.2326 (2)0.56391 (6)0.0497 (6)
N40.0008 (2)0.2232 (2)0.69589 (8)0.0702 (8)
H4A0.03200.17410.67830.084*
H4B0.04380.26820.71100.084*
N50.17824 (19)0.1573 (2)0.67544 (7)0.0513 (6)
N60.15897 (19)0.3101 (2)0.72784 (7)0.0528 (6)
N71.03321 (19)0.9393 (2)0.61966 (8)0.0705 (8)
H7A1.07470.98890.63420.085*
H7B1.06620.88680.60420.085*
N80.85527 (19)0.8637 (2)0.59788 (7)0.0522 (6)
N90.87060 (18)1.0286 (2)0.64615 (7)0.0507 (6)
C10.5969 (2)0.1484 (2)0.54006 (8)0.0481 (6)
C20.7663 (2)0.0667 (2)0.51776 (8)0.0533 (7)
C30.8282 (2)0.1495 (3)0.54127 (9)0.0572 (7)
H3A0.90900.14980.54160.069*
C40.7666 (2)0.2320 (2)0.56421 (8)0.0515 (7)
C50.8265 (3)0.0260 (3)0.49198 (11)0.0766 (10)
H5A0.76970.07480.47760.115*
H5B0.87390.07690.50950.115*
H5C0.87450.01420.47230.115*
C60.8267 (3)0.3251 (3)0.59082 (11)0.0743 (9)
H6A0.76980.37390.60430.111*
H6B0.87410.37590.57400.111*
H6C0.87470.28500.61120.111*
C70.1161 (2)0.2298 (2)0.69984 (8)0.0487 (6)
C80.2939 (2)0.1687 (2)0.67901 (9)0.0547 (7)
C90.3449 (2)0.2505 (3)0.70623 (9)0.0597 (8)
H9A0.42520.25820.70810.072*
C100.2743 (2)0.3200 (2)0.73041 (8)0.0520 (7)
C110.3651 (3)0.0882 (3)0.65230 (12)0.0846 (11)
H11A0.31460.03830.63560.127*
H11B0.41390.03750.66940.127*
H11C0.41250.13700.63480.127*
C120.3216 (3)0.4120 (3)0.76051 (10)0.0744 (9)
H12A0.25850.45100.77420.112*
H12B0.36590.47160.74600.112*
H12C0.37070.37220.78060.112*
C130.9157 (2)0.9440 (2)0.62120 (8)0.0490 (6)
C140.7390 (2)0.8696 (3)0.60022 (9)0.0546 (7)
C150.6851 (2)0.9530 (3)0.62522 (9)0.0582 (7)
H15A0.60460.95610.62670.070*
C160.7545 (2)1.0319 (2)0.64800 (8)0.0515 (7)
C170.6703 (3)0.7818 (3)0.57420 (11)0.0779 (10)
H17A0.72230.73140.55900.117*
H17B0.62080.82570.55530.117*
H17C0.62370.73190.59170.117*
C180.7026 (3)1.1255 (3)0.67570 (10)0.0759 (10)
H18A0.76351.17130.68900.114*
H18B0.65691.08600.69620.114*
H18C0.65401.17900.65960.114*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0420 (13)0.0787 (17)0.0825 (18)0.0024 (12)0.0011 (12)0.0227 (14)
N20.0469 (13)0.0528 (13)0.0547 (13)0.0021 (11)0.0025 (10)0.0097 (11)
N30.0450 (13)0.0505 (13)0.0538 (13)0.0006 (10)0.0035 (10)0.0100 (11)
N40.0462 (14)0.0892 (19)0.0751 (17)0.0057 (13)0.0016 (12)0.0298 (15)
N50.0496 (14)0.0496 (13)0.0548 (14)0.0051 (11)0.0059 (10)0.0054 (11)
N60.0499 (14)0.0566 (14)0.0518 (13)0.0050 (11)0.0025 (10)0.0091 (11)
N70.0424 (13)0.0830 (18)0.0862 (18)0.0016 (13)0.0053 (12)0.0293 (15)
N80.0469 (13)0.0525 (13)0.0573 (14)0.0002 (11)0.0033 (10)0.0094 (11)
N90.0424 (12)0.0534 (13)0.0562 (13)0.0001 (10)0.0025 (10)0.0093 (11)
C10.0442 (15)0.0495 (15)0.0504 (15)0.0010 (12)0.0005 (12)0.0031 (13)
C20.0503 (16)0.0511 (16)0.0586 (17)0.0019 (13)0.0052 (13)0.0093 (13)
C30.0406 (15)0.0619 (17)0.0690 (18)0.0018 (13)0.0024 (13)0.0153 (15)
C40.0465 (15)0.0505 (15)0.0575 (16)0.0027 (13)0.0001 (12)0.0095 (13)
C50.066 (2)0.077 (2)0.087 (2)0.0056 (17)0.0113 (17)0.0316 (19)
C60.0566 (19)0.074 (2)0.092 (2)0.0037 (16)0.0060 (16)0.0336 (19)
C70.0457 (15)0.0527 (16)0.0479 (15)0.0060 (13)0.0017 (12)0.0012 (13)
C80.0515 (16)0.0489 (16)0.0639 (18)0.0029 (13)0.0077 (13)0.0053 (14)
C90.0430 (15)0.0604 (18)0.076 (2)0.0040 (14)0.0040 (14)0.0075 (16)
C100.0478 (16)0.0527 (16)0.0555 (16)0.0090 (13)0.0006 (12)0.0022 (13)
C110.061 (2)0.082 (2)0.111 (3)0.0008 (18)0.0156 (19)0.033 (2)
C120.068 (2)0.073 (2)0.081 (2)0.0123 (17)0.0058 (17)0.0222 (18)
C130.0434 (15)0.0514 (15)0.0522 (15)0.0018 (12)0.0034 (12)0.0037 (13)
C140.0506 (17)0.0541 (16)0.0591 (17)0.0033 (13)0.0001 (13)0.0081 (14)
C150.0413 (15)0.0625 (18)0.0709 (19)0.0003 (14)0.0044 (13)0.0128 (15)
C160.0449 (15)0.0538 (16)0.0559 (16)0.0023 (13)0.0027 (12)0.0085 (13)
C170.062 (2)0.077 (2)0.095 (2)0.0103 (17)0.0020 (17)0.032 (2)
C180.0580 (19)0.083 (2)0.087 (2)0.0058 (17)0.0102 (16)0.0310 (19)
Geometric parameters (Å, º) top
N1—C11.351 (3)C5—H5B0.9600
N1—H1A0.8600C5—H5C0.9600
N1—H1B0.8600C6—H6A0.9600
N2—C21.341 (3)C6—H6B0.9600
N2—C11.346 (3)C6—H6C0.9600
N3—C41.339 (3)C8—C91.383 (4)
N3—C11.349 (3)C8—C111.496 (4)
N4—C71.351 (3)C9—C101.373 (4)
N4—H4A0.8600C9—H9A0.9300
N4—H4B0.8600C10—C121.502 (4)
N5—C81.341 (3)C11—H11A0.9600
N5—C71.341 (3)C11—H11B0.9600
N6—C101.334 (3)C11—H11C0.9600
N6—C71.354 (3)C12—H12A0.9600
N7—C131.357 (3)C12—H12B0.9600
N7—H7A0.8600C12—H12C0.9600
N7—H7B0.8600C14—C151.380 (4)
N8—C141.345 (3)C14—C171.499 (4)
N8—C131.348 (3)C15—C161.384 (4)
N9—C161.340 (3)C15—H15A0.9300
N9—C131.344 (3)C16—C181.499 (4)
C2—C31.379 (4)C17—H17A0.9600
C2—C51.499 (4)C17—H17B0.9600
C3—C41.380 (4)C17—H17C0.9600
C3—H3A0.9300C18—H18A0.9600
C4—C61.500 (4)C18—H18B0.9600
C5—H5A0.9600C18—H18C0.9600
C1—N1—H1A120.0C9—C8—C11121.6 (3)
C1—N1—H1B120.0C10—C9—C8118.5 (3)
H1A—N1—H1B120.0C10—C9—H9A120.7
C2—N2—C1116.1 (2)C8—C9—H9A120.7
C4—N3—C1116.5 (2)N6—C10—C9121.3 (3)
C7—N4—H4A120.0N6—C10—C12116.4 (3)
C7—N4—H4B120.0C9—C10—C12122.4 (3)
H4A—N4—H4B120.0C8—C11—H11A109.5
C8—N5—C7115.7 (2)C8—C11—H11B109.5
C10—N6—C7116.5 (2)H11A—C11—H11B109.5
C13—N7—H7A120.0C8—C11—H11C109.5
C13—N7—H7B120.0H11A—C11—H11C109.5
H7A—N7—H7B120.0H11B—C11—H11C109.5
C14—N8—C13116.1 (2)C10—C12—H12A109.5
C16—N9—C13116.3 (2)C10—C12—H12B109.5
N2—C1—N3125.8 (2)H12A—C12—H12B109.5
N2—C1—N1116.9 (2)C10—C12—H12C109.5
N3—C1—N1117.2 (2)H12A—C12—H12C109.5
N2—C2—C3122.1 (2)H12B—C12—H12C109.5
N2—C2—C5116.7 (3)N9—C13—N8126.2 (2)
C3—C2—C5121.2 (3)N9—C13—N7116.5 (2)
C2—C3—C4117.8 (3)N8—C13—N7117.3 (2)
C2—C3—H3A121.1N8—C14—C15121.7 (3)
C4—C3—H3A121.1N8—C14—C17116.9 (3)
N3—C4—C3121.6 (2)C15—C14—C17121.4 (3)
N3—C4—C6116.8 (2)C14—C15—C16118.0 (3)
C3—C4—C6121.5 (3)C14—C15—H15A121.0
C2—C5—H5A109.5C16—C15—H15A121.0
C2—C5—H5B109.5N9—C16—C15121.7 (2)
H5A—C5—H5B109.5N9—C16—C18117.1 (2)
C2—C5—H5C109.5C15—C16—C18121.2 (2)
H5A—C5—H5C109.5C14—C17—H17A109.5
H5B—C5—H5C109.5C14—C17—H17B109.5
C4—C6—H6A109.5H17A—C17—H17B109.5
C4—C6—H6B109.5C14—C17—H17C109.5
H6A—C6—H6B109.5H17A—C17—H17C109.5
C4—C6—H6C109.5H17B—C17—H17C109.5
H6A—C6—H6C109.5C16—C18—H18A109.5
H6B—C6—H6C109.5C16—C18—H18B109.5
N5—C7—N4117.0 (2)H18A—C18—H18B109.5
N5—C7—N6126.3 (2)C16—C18—H18C109.5
N4—C7—N6116.6 (2)H18A—C18—H18C109.5
N5—C8—C9121.7 (3)H18B—C18—H18C109.5
N5—C8—C11116.7 (3)
C2—N2—C1—N30.3 (4)N5—C8—C9—C100.8 (4)
C2—N2—C1—N1179.5 (3)C11—C8—C9—C10178.7 (3)
C4—N3—C1—N20.2 (4)C7—N6—C10—C91.0 (4)
C4—N3—C1—N1179.7 (3)C7—N6—C10—C12178.1 (2)
C1—N2—C2—C30.3 (4)C8—C9—C10—N60.3 (4)
C1—N2—C2—C5179.9 (3)C8—C9—C10—C12179.3 (3)
N2—C2—C3—C40.2 (4)C16—N9—C13—N80.6 (4)
C5—C2—C3—C4179.9 (3)C16—N9—C13—N7179.2 (3)
C1—N3—C4—C30.0 (4)C14—N8—C13—N90.2 (4)
C1—N3—C4—C6179.7 (3)C14—N8—C13—N7179.5 (3)
C2—C3—C4—N30.0 (4)C13—N8—C14—C150.2 (4)
C2—C3—C4—C6179.7 (3)C13—N8—C14—C17179.5 (3)
C8—N5—C7—N4177.8 (3)N8—C14—C15—C160.3 (4)
C8—N5—C7—N61.5 (4)C17—C14—C15—C16179.4 (3)
C10—N6—C7—N52.0 (4)C13—N9—C16—C150.4 (4)
C10—N6—C7—N4177.3 (2)C13—N9—C16—C18179.9 (3)
C7—N5—C8—C90.0 (4)C14—C15—C16—N90.1 (4)
C7—N5—C8—C11179.6 (3)C14—C15—C16—C18179.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.862.453.304 (4)175
N1—H1B···N8ii0.862.523.376 (4)173
N4—H4A···N9iii0.862.213.050 (3)167
N4—H4B···N6iv0.862.453.243 (4)154
N7—H7A···N5v0.862.573.421 (4)173
N7—H7B···N3vi0.862.363.219 (3)176
Symmetry codes: (i) x+1, y, z+1; (ii) x1/2, y1/2, z; (iii) x1, y1, z; (iv) x, y, z+3/2; (v) x+1, y+1, z; (vi) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC6H9N3
Mr123.16
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)11.519 (7), 11.021 (6), 32.386 (18)
β (°) 91.112 (10)
V3)4111 (4)
Z24
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.26 × 0.18 × 0.17
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.980, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
11005, 4020, 2252
Rint0.032
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.175, 1.01
No. of reflections4020
No. of parameters245
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.08, 0.16

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2008), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.862.453.304 (4)175.0
N1—H1B···N8ii0.862.523.376 (4)173.3
N4—H4A···N9iii0.862.213.050 (3)166.6
N4—H4B···N6iv0.862.453.243 (4)153.5
N7—H7A···N5v0.862.573.421 (4)172.6
N7—H7B···N3vi0.862.363.219 (3)176.3
Symmetry codes: (i) x+1, y, z+1; (ii) x1/2, y1/2, z; (iii) x1, y1, z; (iv) x, y, z+3/2; (v) x+1, y+1, z; (vi) x+1/2, y+1/2, z.
 

Acknowledgements

Financial support by the Doctoral Startup Foundation of Hengyang Normal University (09B02) and the Foundation of Hengyang Bureau of Science and Technology (2011 K J21) are gratefully acknowledged.

References

First citationBrandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeng, J. B. (2003). World Pesticides 25, 24–29.  Google Scholar
First citationFan, Y. T., Lu, H. J., Hou, H. W., Zhou, Z. M., Zhao, Q. H., Zhang, L. P. & Cheng, F. H. (2000). J. Coord. Chem. 50, 65–72.  Web of Science CrossRef CAS Google Scholar
First citationLin, C. H., Guo, H. M. & Jian, F. F. (2008). Z. Kristallogr. New Cryst. Struct., 223, 511–512.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, D., Zhang, N., Huang, R. B. & Zheng, L. S. (2010). Cryst. Growth Des. 10, 3699–3709.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, H. (2009). Acta Cryst. E65, m1177.  CSD CrossRef IUCr Journals Google Scholar
First citationYao, Y. P. & Qu, H. X. (1997). Anhui Chem. Ind. 23, 23–24.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds