organic compounds
(R,R)-1-Acetyl-1′-(2,4,6-trinitrophenyl)-2,2′-bipyrrolidine
aDepartment of Organic Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland, and bFaculty of Chemistry, Adam Mickiewicz University, 60-780 Poznań, Poland
*Correspondence e-mail: kateichs@student.pg.gda.pl
The structure of the title molecule, C16H19N5O7, is mainly determined by the of a bulky 2,4,6-trinitrophenyl group attached to the N atom of a pyrrolidine ring. Both pyrrolidine rings adopt an with one of the methylene C atoms as the flap in each case, and the N—C—C—N torsion angle along the bond connecting the two pyrrolidine rings is −174.9 (2)°. The benzene ring of the 2,3,5-trinitrophenyl substituent is deformed and the r.m.s. deviation of its six atoms from the best plane is 0.026 Å. The N atoms of the two nitro groups in the ortho positions deviate from the best plane of the benzene ring by −0.033 (5) and 0.385 (5) Å. These groups, as well as the pyrrolidine ring, are twisted relative to the aromatic ring in the same direction, their best planes forming dihedral angles of 30.2 (2), 64.8 (1) and 46.6 (2)°, respectively, with the ring. An intramolecular C—H⋯O hydrogen bond occurs. In the crystal, there is a short [O⋯C = 3.019 (4) Å] contact between a nitro O atom and a C atom of the benzene ring bearing the nitro group and a C—H⋯O interaction between a methyl H atom and another nitro O atom.
Related literature
For crystal structures of related 1-amino-2,4,6-trinitrobenzenes, see: Butcher et al. (1992); Baggio et al. (1997).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Agilent, 2012); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536812051161/rz5033sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536812051161/rz5033Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S1600536812051161/rz5033Isup3.cml
A mixture of (R,R)-2,2'-bipyrrolidine hydrochloride (280 mg, 1.31 mmol), 1-chloro-2,4,6-trinitrobenzene (650 mg, 2.63 mmol) and anhydrous sodium acetate (860 mg, 10.50 mmol) in anhydrous ethanol (10 ml) was heated under reflux for 30 min. The resulting suspension was cooled to room temperature and water (15 ml) was added into it. The aqueous layer was extracted with dichloromethane (2 x 15 ml). The combined organic extracts were dried over anhydrous magnesium sulfate. Filtration of the δ: 8.66 (s, 2H); 4.49 (q, J=6.8 Hz, 1H); 4.09 (q, J=6.0 Hz, 1H); 3.56 (m, 1H); 3.43 (m, 1H); 3.36 (m, 1H); 3.20 (t, J=8.3 Hz, 1H); 2.10 (m, 2H); 1.92 (s, 3H); 1,88 (m, 5H); 1.73 (m, 1H), [α]D20 = -1430 (c 0.2 e thyl acetate).
and removal the solvent in vacuo afforded the crude product, which was purified by means of on silica gel using ethyl acetate to yield 0.12 g (23%) of product as a yellow solid. Crystals suitable for X-ray were obtained by allowing a refluxed solution of the product in ethyl acetate to cool slowly at room temperature (without temperature control) and allowing the solvent to evaporate for 20 h, 1H NMR: (CDCl3, 500 MHz)All H atoms were located in electron-density difference maps, however for further
their positions were determined geometrically with C—H bond lengths of 0.93 - 0.97 Å. All H atoms were refined in the riding-model approximation, with Uiso(H)=1.5Ueq(Cmethyl) or Uiso(H)=1.2Ueq(C) for the remaining H atoms. In the absence of significant effects, 1319 Friedel pairs were merged.The title compound was synthesized as a part of a project aiming at the application of 2,4,6-trinitrophenyl chromophore for determination of
of secondary diamines. The molecular structure of the title compound is shown in Fig. 1. Both pyrrolidine rings adopt an with the methylene C4 and C9 atoms forming a flap in each of the five-membered rings, respectively. The N7—C6—C2—N1 torsion angle along the bond connecting two pyrrolidine rings is -174.9 (2)°.The benzene ring of the 2,3,5-trinitrophenyl substituent shows large deformation from planarity with r.m.s. deviation of 0.026 Å for the six fitted atoms and the maximum deviation from the best plane of 0.038 (2) Å for C11. Whereas N3 and N4 atoms of the nitro groups are vitrually in the mean plane of the benzene ring [their deviations from the plane being -0.050 (5), -0.033 (5) Å, respectively] the N1 atom from the pyrrolidine substituent and the N2 atom from one of the ortho nitro groups deviate strongly from this plane [deviations of -0.168 (4) and 0.385 (5) Å, respectively] reflecting steric effects within this overcrowded molecule. The nitro groups attached to C12 and C16 of the benzene ring are twisted in the same direction as the pyrrolidine ring attached to C11 forming the fragment of a propeller. The dihedral angles formed by these nitro groups and the planar C11, N1, C2, C5 fragment are 30.2 (2), 64.8 (1) 46.6 (2)°, respectively. The nitro group attached to C14 is only slightly twisted relative to the benzene ring with the dihedral angle of 4.9 (2)°. The conformation adopted by the molecule leads to two short intermolecular contacts between the pyrrolidine ring H atoms and O toms of the ortho nitro-groups (Table 1). Interestingly, the release of strain in the title molecule occurs differently than in 1-pyrrolidino-2,4,6-trinitrobenzene (Baggio et al., 1997) where the benzene ring adopted a sofa form with the flap formed by the C atom to which the pyrrolidine ring was attached. On the other hand, the release of strain is similar to that observed for N,N-dimethyl-2,4,6-trinitroaniline (Butcher et al., 1992), 1-piperidylo-2,4,6-trinitrobenzene and 1-morpholino-2,4,6-trinitrobenzene (Baggio et al., 1997)
Two short intermolecular contacts are observed in this
One, O1···.C16(1/2 + x, 3/2 - y, 2 - z) of 3.019 (4) Å, is formed between the nitro group O atom and the carbon atom of the benzene ring bearing the nitro group. The second one, H18C···.O2(2 - x, 1/2 + y, 3/2 - z) of 2.51 Å, is formed between the methyl group H atom and the nitro group O atom. The crystal packing in the studied crystal is shown in Fig. 2.For crystal structures of related 1-amino-2,4,6-trinitrobenzenes, see: Butcher et al. (1992); Baggio et al. (1997).
Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C16H19N5O7 | F(000) = 824 |
Mr = 393.36 | Dx = 1.461 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 1951 reflections |
a = 8.1989 (5) Å | θ = 2.9–28.7° |
b = 10.4442 (6) Å | µ = 0.12 mm−1 |
c = 20.8877 (13) Å | T = 293 K |
V = 1788.63 (19) Å3 | Tabloid, orange |
Z = 4 | 0.20 × 0.20 × 0.15 mm |
Oxford Diffraction Xcalibur Eos diffractometer | 1818 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 1477 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.040 |
Detector resolution: 16.1544 pixels mm-1 | θmax = 25.0°, θmin = 4.3° |
ω scan | h = −9→9 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | k = −12→12 |
Tmin = 0.990, Tmax = 1.000 | l = −24→24 |
7678 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.090 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0351P)2 + 0.2637P] where P = (Fo2 + 2Fc2)/3 |
1818 reflections | (Δ/σ)max = 0.001 |
254 parameters | Δρmax = 0.14 e Å−3 |
0 restraints | Δρmin = −0.16 e Å−3 |
C16H19N5O7 | V = 1788.63 (19) Å3 |
Mr = 393.36 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 8.1989 (5) Å | µ = 0.12 mm−1 |
b = 10.4442 (6) Å | T = 293 K |
c = 20.8877 (13) Å | 0.20 × 0.20 × 0.15 mm |
Oxford Diffraction Xcalibur Eos diffractometer | 1818 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | 1477 reflections with I > 2σ(I) |
Tmin = 0.990, Tmax = 1.000 | Rint = 0.040 |
7678 measured reflections |
R[F2 > 2σ(F2)] = 0.043 | 0 restraints |
wR(F2) = 0.090 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.14 e Å−3 |
1818 reflections | Δρmin = −0.16 e Å−3 |
254 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.6350 (3) | 0.9926 (2) | 0.95416 (11) | 0.0336 (6) | |
C2 | 0.7856 (4) | 1.0547 (3) | 0.93068 (14) | 0.0360 (8) | |
H2 | 0.8740 | 0.9915 | 0.9309 | 0.043* | |
C3 | 0.8200 (5) | 1.1543 (3) | 0.98208 (15) | 0.0496 (10) | |
H3A | 0.9361 | 1.1704 | 0.9860 | 0.060* | |
H3B | 0.7647 | 1.2343 | 0.9727 | 0.060* | |
C4 | 0.7528 (5) | 1.0932 (4) | 1.04212 (16) | 0.0520 (10) | |
H4A | 0.7335 | 1.1566 | 1.0752 | 0.062* | |
H4B | 0.8264 | 1.0283 | 1.0585 | 0.062* | |
C5 | 0.5943 (5) | 1.0343 (4) | 1.01938 (16) | 0.0498 (10) | |
H5A | 0.5628 | 0.9623 | 1.0460 | 0.060* | |
H5B | 0.5068 | 1.0968 | 1.0191 | 0.060* | |
C6 | 0.7620 (4) | 1.1031 (3) | 0.86178 (15) | 0.0378 (8) | |
H6 | 0.7269 | 1.0313 | 0.8349 | 0.045* | |
N7 | 0.9150 (4) | 1.1543 (3) | 0.83607 (13) | 0.0429 (7) | |
C8 | 0.9020 (6) | 1.2884 (4) | 0.81637 (19) | 0.0625 (12) | |
H8A | 0.8998 | 1.2957 | 0.7701 | 0.075* | |
H8B | 0.9928 | 1.3381 | 0.8328 | 0.075* | |
C9 | 0.7443 (6) | 1.3326 (4) | 0.8449 (2) | 0.0804 (15) | |
H9A | 0.6904 | 1.3929 | 0.8166 | 0.097* | |
H9B | 0.7632 | 1.3740 | 0.8859 | 0.097* | |
C10 | 0.6410 (5) | 1.2131 (4) | 0.85355 (18) | 0.0562 (10) | |
H10A | 0.5726 | 1.1991 | 0.8163 | 0.067* | |
H10B | 0.5719 | 1.2209 | 0.8910 | 0.067* | |
C11 | 0.5621 (4) | 0.8893 (3) | 0.92546 (13) | 0.0300 (7) | |
C12 | 0.6456 (4) | 0.7851 (3) | 0.89814 (14) | 0.0331 (7) | |
C13 | 0.5699 (4) | 0.6911 (3) | 0.86275 (15) | 0.0362 (8) | |
H13 | 0.6310 | 0.6270 | 0.8432 | 0.043* | |
C14 | 0.4047 (4) | 0.6931 (3) | 0.85668 (14) | 0.0330 (7) | |
C15 | 0.3111 (4) | 0.7849 (3) | 0.88681 (14) | 0.0350 (8) | |
H15 | 0.1978 | 0.7823 | 0.8849 | 0.042* | |
C16 | 0.3898 (4) | 0.8793 (3) | 0.91946 (14) | 0.0332 (8) | |
C17 | 1.0360 (5) | 1.0730 (5) | 0.81772 (16) | 0.0562 (11) | |
C18 | 1.1766 (6) | 1.1325 (5) | 0.78229 (19) | 0.0863 (16) | |
H18A | 1.2647 | 1.0721 | 0.7796 | 0.129* | |
H18B | 1.2127 | 1.2076 | 0.8047 | 0.129* | |
H18C | 1.1423 | 1.1557 | 0.7399 | 0.129* | |
O1 | 0.8695 (3) | 0.7949 (2) | 0.96552 (12) | 0.0539 (7) | |
O2 | 0.8947 (3) | 0.6887 (3) | 0.87822 (14) | 0.0715 (9) | |
O3 | 0.4126 (4) | 0.5153 (3) | 0.79145 (14) | 0.0718 (9) | |
O4 | 0.1779 (3) | 0.5873 (3) | 0.81795 (14) | 0.0696 (9) | |
O5 | 0.3003 (4) | 1.0886 (2) | 0.92558 (14) | 0.0613 (8) | |
O6 | 0.1894 (3) | 0.9500 (3) | 0.98862 (14) | 0.0702 (9) | |
O7 | 1.0284 (4) | 0.9579 (3) | 0.82913 (13) | 0.0685 (8) | |
N2 | 0.8176 (4) | 0.7573 (3) | 0.91450 (16) | 0.0424 (7) | |
N3 | 0.3249 (4) | 0.5912 (3) | 0.81954 (13) | 0.0425 (7) | |
N4 | 0.2857 (4) | 0.9810 (3) | 0.94709 (15) | 0.0451 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0302 (16) | 0.0338 (14) | 0.0369 (14) | −0.0035 (12) | 0.0035 (13) | −0.0049 (13) |
C2 | 0.0333 (19) | 0.0329 (17) | 0.0416 (18) | −0.0042 (15) | −0.0008 (16) | 0.0035 (15) |
C3 | 0.056 (3) | 0.047 (2) | 0.0456 (19) | −0.0165 (19) | −0.0053 (19) | −0.0037 (18) |
C4 | 0.064 (3) | 0.051 (2) | 0.0407 (19) | −0.011 (2) | −0.0036 (19) | −0.0070 (18) |
C5 | 0.056 (2) | 0.049 (2) | 0.0438 (19) | −0.007 (2) | 0.0119 (19) | −0.0098 (17) |
C6 | 0.039 (2) | 0.0334 (16) | 0.0414 (17) | −0.0030 (16) | −0.0034 (16) | 0.0017 (16) |
N7 | 0.0406 (19) | 0.0458 (16) | 0.0425 (15) | 0.0007 (15) | 0.0052 (14) | 0.0095 (14) |
C8 | 0.076 (3) | 0.045 (2) | 0.066 (3) | −0.011 (2) | −0.005 (2) | 0.015 (2) |
C9 | 0.099 (4) | 0.046 (2) | 0.097 (3) | 0.011 (3) | 0.004 (3) | 0.021 (2) |
C10 | 0.051 (3) | 0.060 (2) | 0.058 (2) | 0.012 (2) | −0.006 (2) | 0.010 (2) |
C11 | 0.0288 (19) | 0.0297 (16) | 0.0316 (15) | 0.0013 (15) | 0.0019 (14) | 0.0035 (14) |
C12 | 0.0230 (18) | 0.0348 (17) | 0.0413 (17) | 0.0034 (15) | −0.0018 (15) | 0.0006 (16) |
C13 | 0.036 (2) | 0.0318 (17) | 0.0408 (17) | 0.0057 (16) | 0.0029 (16) | −0.0019 (16) |
C14 | 0.0320 (19) | 0.0310 (17) | 0.0358 (16) | 0.0000 (15) | −0.0035 (15) | −0.0045 (15) |
C15 | 0.0255 (18) | 0.0355 (17) | 0.0441 (17) | −0.0003 (16) | −0.0036 (15) | −0.0027 (16) |
C16 | 0.0283 (19) | 0.0307 (17) | 0.0407 (17) | 0.0052 (15) | 0.0022 (15) | −0.0035 (15) |
C17 | 0.047 (2) | 0.086 (3) | 0.036 (2) | 0.006 (2) | 0.0034 (19) | 0.005 (2) |
C18 | 0.055 (3) | 0.147 (5) | 0.056 (2) | 0.006 (3) | 0.017 (2) | 0.016 (3) |
O1 | 0.0466 (17) | 0.0480 (15) | 0.0671 (16) | 0.0003 (14) | −0.0241 (14) | 0.0041 (14) |
O2 | 0.0383 (16) | 0.080 (2) | 0.096 (2) | 0.0216 (16) | 0.0010 (16) | −0.0242 (18) |
O3 | 0.0569 (19) | 0.0639 (17) | 0.094 (2) | 0.0079 (16) | −0.0072 (16) | −0.0447 (17) |
O4 | 0.0368 (17) | 0.0778 (19) | 0.094 (2) | −0.0062 (16) | −0.0110 (16) | −0.0304 (17) |
O5 | 0.0602 (18) | 0.0344 (14) | 0.089 (2) | 0.0120 (13) | −0.0011 (16) | −0.0061 (14) |
O6 | 0.0522 (18) | 0.075 (2) | 0.0832 (19) | 0.0180 (16) | 0.0279 (17) | −0.0056 (16) |
O7 | 0.075 (2) | 0.0656 (19) | 0.0646 (16) | 0.0316 (17) | 0.0110 (16) | 0.0027 (15) |
N2 | 0.0293 (17) | 0.0349 (16) | 0.0631 (19) | 0.0033 (13) | −0.0052 (16) | −0.0001 (15) |
N3 | 0.0393 (19) | 0.0414 (16) | 0.0468 (17) | −0.0003 (16) | −0.0061 (15) | −0.0078 (15) |
N4 | 0.0324 (18) | 0.0457 (18) | 0.0572 (18) | 0.0083 (15) | −0.0044 (16) | −0.0130 (17) |
N1—C11 | 1.371 (4) | C10—H10A | 0.9700 |
N1—C5 | 1.469 (4) | C10—H10B | 0.9700 |
N1—C2 | 1.479 (4) | C11—C12 | 1.407 (4) |
C2—C3 | 1.522 (4) | C11—C16 | 1.422 (4) |
C2—C6 | 1.538 (4) | C12—C13 | 1.376 (5) |
C2—H2 | 0.9800 | C12—N2 | 1.479 (4) |
C3—C4 | 1.512 (5) | C13—C14 | 1.361 (4) |
C3—H3A | 0.9700 | C13—H13 | 0.9300 |
C3—H3B | 0.9700 | C14—C15 | 1.380 (4) |
C4—C5 | 1.514 (5) | C14—N3 | 1.471 (4) |
C4—H4A | 0.9700 | C15—C16 | 1.362 (4) |
C4—H4B | 0.9700 | C15—H15 | 0.9300 |
C5—H5A | 0.9700 | C16—N4 | 1.479 (4) |
C5—H5B | 0.9700 | C17—O7 | 1.227 (5) |
C6—N7 | 1.466 (4) | C17—C18 | 1.504 (6) |
C6—C10 | 1.527 (5) | C18—H18A | 0.9600 |
C6—H6 | 0.9800 | C18—H18B | 0.9600 |
N7—C17 | 1.361 (5) | C18—H18C | 0.9600 |
N7—C8 | 1.463 (4) | O1—N2 | 1.213 (4) |
C8—C9 | 1.497 (6) | O2—N2 | 1.220 (4) |
C8—H8A | 0.9700 | O3—N3 | 1.220 (4) |
C8—H8B | 0.9700 | O4—N3 | 1.206 (4) |
C9—C10 | 1.519 (6) | O5—N4 | 1.216 (4) |
C9—H9A | 0.9700 | O6—N4 | 1.217 (4) |
C9—H9B | 0.9700 | ||
C11—N1—C5 | 122.7 (3) | C8—C9—H9B | 110.5 |
C11—N1—C2 | 124.3 (2) | C10—C9—H9B | 110.5 |
C5—N1—C2 | 111.6 (2) | H9A—C9—H9B | 108.7 |
N1—C2—C3 | 102.8 (3) | C9—C10—C6 | 105.6 (3) |
N1—C2—C6 | 110.5 (3) | C9—C10—H10A | 110.6 |
C3—C2—C6 | 117.3 (3) | C6—C10—H10A | 110.6 |
N1—C2—H2 | 108.7 | C9—C10—H10B | 110.6 |
C3—C2—H2 | 108.7 | C6—C10—H10B | 110.6 |
C6—C2—H2 | 108.7 | H10A—C10—H10B | 108.7 |
C4—C3—C2 | 103.2 (3) | N1—C11—C12 | 125.0 (3) |
C4—C3—H3A | 111.1 | N1—C11—C16 | 122.0 (3) |
C2—C3—H3A | 111.1 | C12—C11—C16 | 113.0 (3) |
C4—C3—H3B | 111.1 | C13—C12—C11 | 123.4 (3) |
C2—C3—H3B | 111.1 | C13—C12—N2 | 114.5 (3) |
H3A—C3—H3B | 109.1 | C11—C12—N2 | 121.5 (3) |
C3—C4—C5 | 103.0 (3) | C14—C13—C12 | 119.2 (3) |
C3—C4—H4A | 111.2 | C14—C13—H13 | 120.4 |
C5—C4—H4A | 111.2 | C12—C13—H13 | 120.4 |
C3—C4—H4B | 111.2 | C13—C14—C15 | 121.4 (3) |
C5—C4—H4B | 111.2 | C13—C14—N3 | 118.8 (3) |
H4A—C4—H4B | 109.1 | C15—C14—N3 | 119.7 (3) |
N1—C5—C4 | 102.5 (3) | C16—C15—C14 | 117.9 (3) |
N1—C5—H5A | 111.3 | C16—C15—H15 | 121.0 |
C4—C5—H5A | 111.3 | C14—C15—H15 | 121.0 |
N1—C5—H5B | 111.3 | C15—C16—C11 | 124.6 (3) |
C4—C5—H5B | 111.3 | C15—C16—N4 | 116.2 (3) |
H5A—C5—H5B | 109.2 | C11—C16—N4 | 119.1 (3) |
N7—C6—C10 | 103.9 (3) | O7—C17—N7 | 121.3 (4) |
N7—C6—C2 | 110.8 (3) | O7—C17—C18 | 122.6 (4) |
C10—C6—C2 | 115.8 (3) | N7—C17—C18 | 116.1 (4) |
N7—C6—H6 | 108.7 | C17—C18—H18A | 109.5 |
C10—C6—H6 | 108.7 | C17—C18—H18B | 109.5 |
C2—C6—H6 | 108.7 | H18A—C18—H18B | 109.5 |
C17—N7—C8 | 124.8 (3) | C17—C18—H18C | 109.5 |
C17—N7—C6 | 119.9 (3) | H18A—C18—H18C | 109.5 |
C8—N7—C6 | 113.0 (3) | H18B—C18—H18C | 109.5 |
N7—C8—C9 | 104.2 (3) | O1—N2—O2 | 123.6 (3) |
N7—C8—H8A | 110.9 | O1—N2—C12 | 118.3 (3) |
C9—C8—H8A | 110.9 | O2—N2—C12 | 117.8 (3) |
N7—C8—H8B | 110.9 | O4—N3—O3 | 123.6 (3) |
C9—C8—H8B | 110.9 | O4—N3—C14 | 118.9 (3) |
H8A—C8—H8B | 108.9 | O3—N3—C14 | 117.5 (3) |
C8—C9—C10 | 106.0 (3) | O5—N4—O6 | 124.9 (3) |
C8—C9—H9A | 110.5 | O5—N4—C16 | 117.5 (3) |
C10—C9—H9A | 110.5 | O6—N4—C16 | 117.5 (3) |
C11—N1—C2—C3 | −175.5 (3) | N1—C11—C12—N2 | 18.7 (5) |
C5—N1—C2—C3 | −8.9 (3) | C16—C11—C12—N2 | −162.5 (3) |
C11—N1—C2—C6 | 58.6 (4) | C11—C12—C13—C14 | −4.3 (5) |
C5—N1—C2—C6 | −134.7 (3) | N2—C12—C13—C14 | 166.1 (3) |
N1—C2—C3—C4 | 30.8 (3) | C12—C13—C14—C15 | −2.0 (5) |
C6—C2—C3—C4 | 152.1 (3) | C12—C13—C14—N3 | −179.1 (3) |
C2—C3—C4—C5 | −41.6 (4) | C13—C14—C15—C16 | 4.4 (5) |
C11—N1—C5—C4 | 150.3 (3) | N3—C14—C15—C16 | −178.5 (3) |
C2—N1—C5—C4 | −16.5 (4) | C14—C15—C16—C11 | −0.9 (5) |
C3—C4—C5—N1 | 35.4 (4) | C14—C15—C16—N4 | 175.7 (3) |
N1—C2—C6—N7 | −174.9 (2) | N1—C11—C16—C15 | 174.2 (3) |
C3—C2—C6—N7 | 67.9 (4) | C12—C11—C16—C15 | −4.6 (5) |
N1—C2—C6—C10 | 67.2 (4) | N1—C11—C16—N4 | −2.3 (5) |
C3—C2—C6—C10 | −50.0 (4) | C12—C11—C16—N4 | 178.9 (3) |
C10—C6—N7—C17 | −160.1 (3) | C8—N7—C17—O7 | −170.4 (4) |
C2—C6—N7—C17 | 74.9 (4) | C6—N7—C17—O7 | −8.8 (5) |
C10—C6—N7—C8 | 3.5 (4) | C8—N7—C17—C18 | 8.8 (5) |
C2—C6—N7—C8 | −121.4 (3) | C6—N7—C17—C18 | 170.5 (3) |
C17—N7—C8—C9 | 176.1 (3) | C13—C12—N2—O1 | −146.0 (3) |
C6—N7—C8—C9 | 13.3 (4) | C11—C12—N2—O1 | 24.5 (4) |
N7—C8—C9—C10 | −24.7 (4) | C13—C12—N2—O2 | 28.0 (4) |
C8—C9—C10—C6 | 27.4 (4) | C11—C12—N2—O2 | −161.5 (3) |
N7—C6—C10—C9 | −18.8 (4) | C13—C14—N3—O4 | 174.7 (3) |
C2—C6—C10—C9 | 102.9 (4) | C15—C14—N3—O4 | −2.5 (5) |
C5—N1—C11—C12 | −126.2 (3) | C13—C14—N3—O3 | −5.9 (5) |
C2—N1—C11—C12 | 39.0 (4) | C15—C14—N3—O3 | 176.9 (3) |
C5—N1—C11—C16 | 55.2 (4) | C15—C16—N4—O5 | −114.2 (3) |
C2—N1—C11—C16 | −139.6 (3) | C11—C16—N4—O5 | 62.5 (4) |
N1—C11—C12—C13 | −171.6 (3) | C15—C16—N4—O6 | 64.1 (4) |
C16—C11—C12—C13 | 7.2 (4) | C11—C16—N4—O6 | −119.1 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O1 | 0.98 | 2.18 | 2.891 (4) | 129 |
C5—H5B···O5 | 0.97 | 2.59 | 3.157 (5) | 118 |
C2—H2···O7 | 0.98 | 2.50 | 3.079 (4) | 118 |
C18—H18C···O2i | 0.96 | 2.51 | 3.454 (5) | 168 |
Symmetry code: (i) −x+2, y+1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | C16H19N5O7 |
Mr | 393.36 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 293 |
a, b, c (Å) | 8.1989 (5), 10.4442 (6), 20.8877 (13) |
V (Å3) | 1788.63 (19) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.12 |
Crystal size (mm) | 0.20 × 0.20 × 0.15 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Eos |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2012) |
Tmin, Tmax | 0.990, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7678, 1818, 1477 |
Rint | 0.040 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.043, 0.090, 1.06 |
No. of reflections | 1818 |
No. of parameters | 254 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.14, −0.16 |
Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006).
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···O1 | 0.98 | 2.18 | 2.891 (4) | 129 |
C18—H18C···O2i | 0.96 | 2.51 | 3.454 (5) | 168 |
Symmetry code: (i) −x+2, y+1/2, −z+3/2. |
References
Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Baggio, R., Remedi, M. V., Garland, M. T. & Bujan, E. I. (1997). J. Chem. Crystallogr. 27, 499–505. CrossRef CAS Google Scholar
Butcher, R. J., Gilardi, R., Flippen-Anderson, J. L. & George, C. (1992). New J. Chem. 16, 679–692. CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound was synthesized as a part of a project aiming at the application of 2,4,6-trinitrophenyl chromophore for determination of absolute configuration of secondary diamines. The molecular structure of the title compound is shown in Fig. 1. Both pyrrolidine rings adopt an envelope conformation with the methylene C4 and C9 atoms forming a flap in each of the five-membered rings, respectively. The N7—C6—C2—N1 torsion angle along the bond connecting two pyrrolidine rings is -174.9 (2)°.
The benzene ring of the 2,3,5-trinitrophenyl substituent shows large deformation from planarity with r.m.s. deviation of 0.026 Å for the six fitted atoms and the maximum deviation from the best plane of 0.038 (2) Å for C11. Whereas N3 and N4 atoms of the nitro groups are vitrually in the mean plane of the benzene ring [their deviations from the plane being -0.050 (5), -0.033 (5) Å, respectively] the N1 atom from the pyrrolidine substituent and the N2 atom from one of the ortho nitro groups deviate strongly from this plane [deviations of -0.168 (4) and 0.385 (5) Å, respectively] reflecting steric effects within this overcrowded molecule. The nitro groups attached to C12 and C16 of the benzene ring are twisted in the same direction as the pyrrolidine ring attached to C11 forming the fragment of a propeller. The dihedral angles formed by these nitro groups and the planar C11, N1, C2, C5 fragment are 30.2 (2), 64.8 (1) 46.6 (2)°, respectively. The nitro group attached to C14 is only slightly twisted relative to the benzene ring with the dihedral angle of 4.9 (2)°. The conformation adopted by the molecule leads to two short intermolecular contacts between the pyrrolidine ring H atoms and O toms of the ortho nitro-groups (Table 1). Interestingly, the release of strain in the title molecule occurs differently than in 1-pyrrolidino-2,4,6-trinitrobenzene (Baggio et al., 1997) where the benzene ring adopted a sofa form with the flap formed by the C atom to which the pyrrolidine ring was attached. On the other hand, the release of strain is similar to that observed for N,N-dimethyl-2,4,6-trinitroaniline (Butcher et al., 1992), 1-piperidylo-2,4,6-trinitrobenzene and 1-morpholino-2,4,6-trinitrobenzene (Baggio et al., 1997)
Two short intermolecular contacts are observed in this crystal structure. One, O1···.C16(1/2 + x, 3/2 - y, 2 - z) of 3.019 (4) Å, is formed between the nitro group O atom and the carbon atom of the benzene ring bearing the nitro group. The second one, H18C···.O2(2 - x, 1/2 + y, 3/2 - z) of 2.51 Å, is formed between the methyl group H atom and the nitro group O atom. The crystal packing in the studied crystal is shown in Fig. 2.