organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Hy­dr­oxy-4-(prop-2-yn­yl­oxy)benz­alde­hyde

aChemistry Research Centre, National Engineering College, K.R. Nagar, Kovilpatti 628 503, India, and bCAS in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai-25, India
*Correspondence e-mail: drmaneelakantan@gmail.com

(Received 16 November 2012; accepted 3 December 2012; online 8 December 2012)

The asymmetric unit of the title compound, C10H8O3, contains two independent mol­ecules, both of which are almost planar (r.m.s deviations for all non-H atoms of 0.044 and 0.053 Å). The dihedral angles between the benzene ring and the prop-1-yne group are 3.47 (1) and 3.07 (1)° in the two mol­ecules, and the prop-1-yne groups adopt extended conformations. In each mol­ecule, an intra­molecular O—H⋯O hydrogen bond involving the OH and aldehyde substituents forms an S(6) ring. In the crystal, mol­ecules are linked into cyclic centrosymmetric dimers via C—H⋯O hydrogen bonds, generating R22(14) ring motifs. The crystal structure is further stabilized by aromatic ππ stacking inter­actions between the benzene rings [centroid–centroid distances = 3.813 (2) and 3.843 (2) Å]

Related literature

For the biological activity of benzaldehyde derivatives, see: Zhao et al. (2007[Zhao, X., Song, D. K., Radbil, A. B. & Radbil, B. A. (2007). Russ. J. Appl. Chem. 80, 1373-1375.]); Ley & Bertram (2001[Ley, J. P. & Bertram, H. J. (2001). Bioorg. Med. Chem. Lett. 9, 1879-1885.]); Delogu et al. (2010[Delogu, G., Podda, G., Corda, M., Fadda, M. B., Fais, A. & Era, B. (2010). Bioorg. Med. Chem. Lett. 20, 6138-6140.]). For a related structure see: Esakkiammal et al. (2012[Esakkiammal, M., Selvarani, V., Neelakantan, M. A., Silambarasan, V. & Velmurugan, D. (2012). Acta Cryst. E68, o2465.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]) and for hydrogen-bond motifs, see: Bernstein et al. (1995)[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.].

[Scheme 1]

Experimental

Crystal data
  • C10H8O3

  • Mr = 176.16

  • Triclinic, [P \overline 1]

  • a = 7.0835 (5) Å

  • b = 10.4059 (7) Å

  • c = 12.8461 (8) Å

  • α = 73.910 (3)°

  • β = 89.756 (4)°

  • γ = 73.436 (4)°

  • V = 869.16 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • 15699 measured reflections

  • 4347 independent reflections

  • 2880 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.132

  • S = 1.05

  • 4347 reflections

  • 243 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3 0.82 1.92 2.6387 (16) 146
O5—H5⋯O6 0.82 1.93 2.6441 (16) 146
C10—H10⋯O3i 0.86 (2) 2.51 (2) 3.369 (2) 171.4 (2)
C18—H18A⋯O5ii 0.97 2.45 3.281 (2) 144
C20—H20⋯O6i 0.91 (2) 2.37 (2) 3.280 (2) 178.8 (2)
Symmetry codes: (i) x, y, z+1; (ii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012)[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]; software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff bases derived from amines and substituted benzaldehydes exhibit antibacterial, anticancer and antitumour activities (Zhao et al., 2007). Several benzaldoximes, benzaldehyde-O-ethyloximes and acetophenone oximes were synthesized and evaluated as tyrosinase inhibitors (Ley & Bertram, 2001). Bis-salicylaldehydes exhibited greater inhibitory activity than salicylaldehyde (Delogu et al., 2010). In view of these potential applications and in continuation of our work on the crystal structures of benzaldehyde derivatives, the structure of the title compound has been carried out and the results are presented here.

X-ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The bond distances are normal (Allen et al., 1987) and are comparable with those found in related structures (Esakkiammal et al., 2012). The asymmetric unit contains two crystallographically independent molecules. In both molecules, the dihedral angles between the benzene rings and the prop-1-yne groups are 3.47 (1)° and 3.07 (1)°, respectively. Both molecules are almost planar, with r.m.s deviations of 0.044 and 0.053 Å from the best fit plane through all non-hydrogen atoms in the molecules. The prop-1-yne groups adopt extended conformations as can be seen from the torsion angles C15—O4—C18—C19 = -177.04 (12)° and C5—O1—C8—C9 = 179.39 (13)°. Atoms O2 and O5 deviate by 0.013 (1) and -0.004 (1) Å from the least squares plane of the benzene rings. Intramolecular O2–H2···O3 and O5–H5···O6 hydrogen bonds form S(6) rings in both molecules (Bernstein et al., 1995).

Molecules are linked into cyclic centrosymmetric dimers via C–H···O hydrogen bonds with R22(14) ring motifs (Bernstein et al., 1995). The crystal structure is further stabilized by an aromatic ππ stacking interaction between the benzene rings of adjacent molecules, with centroid to centroid distances Cg1···Cg2i = 3.813 (2) Å; Cg2···Cg1ii = 3.843 (2) Å [(i)1 - x, 1 - y,1 - z and (ii) 2 - x,1 - y,1 - z]. (Cg1 and Cg2 are the centroids of the C1—C6 and C11—C16 rings respectively).

Related literature top

For the biological activity of benzaldehyde derivatives, see: Zhao et al. (2007); Ley & Bertram (2001); Delogu et al. (2010). For a related structure see: Esakkiammal et al. (2012). For standard bond lengths, see: Allen et al. (1987) and for hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

Equimolar amounts of 3-bromopropyne (10 mmol), 2,4-dihydroxybenzaldehyde (10 mmol) and potassium carbonate (15 mmol) were suspended in acetonitrile (30 ml) and refluxed for 30 h in presence of KI (0.1 g) as a catalyst. The reaction mixture was filtered while hot to remove insoluble impurities, neutralized with dil.HCl (3 M), extracted with chloroform and dried with Na2SO4. The extracts were concentrated to obtain a brown solid which was then purified by column chromatography over SiO2 by eluting with a mixture of 4% ethyl acetate in n-hexane. Evaporation of the purified extract yielded 2-hydroxy-4-(prop-2-ynyloxy)benzaldehyde in the form of a pure white solid in 85% yield. Crystals suitable for X-ray analysis were obtined by the slow evaporation method.

Refinement top

The acetylenic H atoms H10 and H20 were located in a difference Fourier map and refined freely. Other H atoms were positioned geometrically (C–H = 0.93–0.97 Å; O–H = 0.82 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(O) for hydroxyl H atoms and 1.2Ueq(C) for all other H atoms.

Structure description top

Schiff bases derived from amines and substituted benzaldehydes exhibit antibacterial, anticancer and antitumour activities (Zhao et al., 2007). Several benzaldoximes, benzaldehyde-O-ethyloximes and acetophenone oximes were synthesized and evaluated as tyrosinase inhibitors (Ley & Bertram, 2001). Bis-salicylaldehydes exhibited greater inhibitory activity than salicylaldehyde (Delogu et al., 2010). In view of these potential applications and in continuation of our work on the crystal structures of benzaldehyde derivatives, the structure of the title compound has been carried out and the results are presented here.

X-ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The bond distances are normal (Allen et al., 1987) and are comparable with those found in related structures (Esakkiammal et al., 2012). The asymmetric unit contains two crystallographically independent molecules. In both molecules, the dihedral angles between the benzene rings and the prop-1-yne groups are 3.47 (1)° and 3.07 (1)°, respectively. Both molecules are almost planar, with r.m.s deviations of 0.044 and 0.053 Å from the best fit plane through all non-hydrogen atoms in the molecules. The prop-1-yne groups adopt extended conformations as can be seen from the torsion angles C15—O4—C18—C19 = -177.04 (12)° and C5—O1—C8—C9 = 179.39 (13)°. Atoms O2 and O5 deviate by 0.013 (1) and -0.004 (1) Å from the least squares plane of the benzene rings. Intramolecular O2–H2···O3 and O5–H5···O6 hydrogen bonds form S(6) rings in both molecules (Bernstein et al., 1995).

Molecules are linked into cyclic centrosymmetric dimers via C–H···O hydrogen bonds with R22(14) ring motifs (Bernstein et al., 1995). The crystal structure is further stabilized by an aromatic ππ stacking interaction between the benzene rings of adjacent molecules, with centroid to centroid distances Cg1···Cg2i = 3.813 (2) Å; Cg2···Cg1ii = 3.843 (2) Å [(i)1 - x, 1 - y,1 - z and (ii) 2 - x,1 - y,1 - z]. (Cg1 and Cg2 are the centroids of the C1—C6 and C11—C16 rings respectively).

For the biological activity of benzaldehyde derivatives, see: Zhao et al. (2007); Ley & Bertram (2001); Delogu et al. (2010). For a related structure see: Esakkiammal et al. (2012). For standard bond lengths, see: Allen et al. (1987) and for hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering and displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the molecules viewed down b axis. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
2-Hydroxy-4-(prop-2-ynyloxy)benzaldehyde top
Crystal data top
C10H8O3Z = 4
Mr = 176.16F(000) = 368
Triclinic, P1Dx = 1.346 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0835 (5) ÅCell parameters from 4347 reflections
b = 10.4059 (7) Åθ = 1.7–28.4°
c = 12.8461 (8) ŵ = 0.10 mm1
α = 73.910 (3)°T = 293 K
β = 89.756 (4)°Block, colourless
γ = 73.436 (4)°0.20 × 0.20 × 0.20 mm
V = 869.16 (10) Å3
Data collection top
Bruker SMART APEXII area-detector
diffractometer
2880 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
Graphite monochromatorθmax = 28.4°, θmin = 1.7°
ω and φ scansh = 99
15699 measured reflectionsk = 1313
4347 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0595P)2 + 0.0997P]
where P = (Fo2 + 2Fc2)/3
4347 reflections(Δ/σ)max < 0.001
243 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C10H8O3γ = 73.436 (4)°
Mr = 176.16V = 869.16 (10) Å3
Triclinic, P1Z = 4
a = 7.0835 (5) ÅMo Kα radiation
b = 10.4059 (7) ŵ = 0.10 mm1
c = 12.8461 (8) ÅT = 293 K
α = 73.910 (3)°0.20 × 0.20 × 0.20 mm
β = 89.756 (4)°
Data collection top
Bruker SMART APEXII area-detector
diffractometer
2880 reflections with I > 2σ(I)
15699 measured reflectionsRint = 0.029
4347 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.15 e Å3
4347 reflectionsΔρmin = 0.20 e Å3
243 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.23016 (15)0.81458 (9)0.55793 (7)0.0528 (3)
C140.2775 (2)0.69318 (13)0.41998 (10)0.0473 (3)
H140.31730.60580.47130.057*
O50.31664 (18)0.58412 (11)0.28152 (9)0.0699 (3)
H50.30650.60280.21510.105*
C160.1668 (2)0.94571 (13)0.37621 (11)0.0498 (3)
H160.13261.02640.39870.060*
C150.22699 (19)0.81361 (13)0.45238 (10)0.0423 (3)
C120.2087 (2)0.83519 (14)0.23261 (10)0.0473 (3)
O60.2396 (2)0.74928 (15)0.07950 (9)0.0831 (4)
C130.2683 (2)0.70387 (14)0.31045 (11)0.0467 (3)
C110.1590 (2)0.95453 (14)0.26846 (11)0.0511 (3)
H110.11961.04230.21750.061*
C180.2822 (3)0.68218 (15)0.63841 (11)0.0639 (4)
H18A0.41610.62900.63140.077*
H18B0.19400.62960.62840.077*
C190.2680 (2)0.70303 (15)0.74570 (12)0.0546 (4)
C170.1995 (2)0.84683 (19)0.11911 (12)0.0643 (4)
H170.15940.93670.07120.077*
C200.2593 (3)0.71369 (18)0.83353 (13)0.0652 (4)
O10.27472 (15)0.21006 (10)0.97384 (7)0.0556 (3)
C40.2102 (2)0.31928 (13)0.77968 (10)0.0480 (3)
H40.16430.40860.78810.058*
C60.3435 (2)0.06902 (13)0.85818 (11)0.0475 (3)
H60.38560.00810.91920.057*
C50.27430 (19)0.20366 (13)0.86926 (10)0.0426 (3)
C30.2154 (2)0.30031 (13)0.67725 (10)0.0458 (3)
C20.28516 (19)0.16624 (13)0.66383 (10)0.0442 (3)
C10.3487 (2)0.05198 (14)0.75674 (11)0.0480 (3)
H10.39560.03770.74910.058*
O20.15146 (18)0.41492 (10)0.59107 (7)0.0675 (3)
H20.16090.39140.53490.101*
O30.2389 (2)0.23901 (13)0.47217 (8)0.0756 (4)
C70.2915 (2)0.14587 (18)0.55809 (12)0.0594 (4)
H70.33960.05440.55420.071*
C90.2226 (2)0.32905 (16)1.10635 (12)0.0576 (4)
C80.2136 (3)0.34536 (16)0.99018 (12)0.0664 (4)
H8A0.07970.39460.95820.080*
H8B0.29960.39950.95560.080*
C100.2270 (3)0.3192 (2)1.19909 (14)0.0684 (5)
H100.230 (3)0.3082 (19)1.2682 (16)0.088 (6)*
H200.253 (2)0.7250 (17)0.9014 (15)0.078 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0719 (7)0.0437 (5)0.0408 (5)0.0109 (4)0.0031 (4)0.0153 (4)
C140.0586 (8)0.0379 (6)0.0406 (7)0.0080 (6)0.0023 (6)0.0100 (5)
O50.0999 (9)0.0533 (6)0.0531 (6)0.0056 (6)0.0018 (6)0.0275 (5)
C160.0560 (8)0.0390 (7)0.0518 (8)0.0098 (6)0.0033 (6)0.0134 (6)
C150.0445 (7)0.0427 (7)0.0397 (6)0.0110 (5)0.0038 (5)0.0137 (5)
C120.0456 (7)0.0545 (8)0.0400 (7)0.0149 (6)0.0048 (6)0.0106 (6)
O60.1047 (10)0.1030 (10)0.0461 (6)0.0269 (8)0.0113 (6)0.0326 (7)
C130.0496 (8)0.0453 (7)0.0448 (7)0.0095 (6)0.0041 (6)0.0170 (6)
C110.0547 (8)0.0428 (7)0.0473 (7)0.0116 (6)0.0008 (6)0.0025 (6)
C180.0978 (12)0.0474 (8)0.0417 (7)0.0147 (8)0.0004 (7)0.0118 (6)
C190.0653 (9)0.0533 (8)0.0459 (8)0.0192 (7)0.0014 (7)0.0134 (6)
C170.0681 (10)0.0793 (11)0.0416 (8)0.0221 (8)0.0062 (7)0.0110 (8)
C200.0841 (12)0.0716 (10)0.0446 (8)0.0277 (9)0.0068 (8)0.0195 (8)
O10.0775 (7)0.0464 (5)0.0335 (5)0.0063 (5)0.0011 (4)0.0091 (4)
C40.0655 (9)0.0367 (6)0.0382 (7)0.0110 (6)0.0009 (6)0.0093 (5)
C60.0544 (8)0.0390 (6)0.0422 (7)0.0094 (6)0.0008 (6)0.0051 (5)
C50.0475 (7)0.0426 (7)0.0342 (6)0.0106 (5)0.0010 (5)0.0083 (5)
C30.0587 (8)0.0418 (7)0.0359 (6)0.0192 (6)0.0013 (6)0.0051 (5)
C20.0495 (7)0.0477 (7)0.0412 (7)0.0213 (6)0.0059 (6)0.0150 (5)
C10.0528 (8)0.0392 (7)0.0524 (8)0.0121 (6)0.0050 (6)0.0154 (6)
O20.1155 (10)0.0468 (6)0.0338 (5)0.0239 (6)0.0080 (5)0.0015 (4)
O30.1107 (10)0.0851 (8)0.0383 (6)0.0384 (7)0.0061 (6)0.0197 (6)
C70.0737 (10)0.0662 (9)0.0500 (8)0.0290 (8)0.0105 (7)0.0264 (7)
C90.0645 (10)0.0590 (9)0.0495 (8)0.0133 (7)0.0022 (7)0.0212 (7)
C80.0962 (12)0.0514 (8)0.0438 (8)0.0067 (8)0.0006 (8)0.0167 (6)
C100.0784 (12)0.0844 (12)0.0474 (9)0.0227 (9)0.0045 (8)0.0286 (8)
Geometric parameters (Å, º) top
O4—C151.3591 (14)O1—C51.3634 (14)
O4—C181.4237 (16)O1—C81.4245 (16)
C14—C151.3798 (17)C4—C51.3797 (17)
C14—C131.3806 (18)C4—C31.3825 (18)
C14—H140.9300C4—H40.9300
O5—C131.3493 (15)C6—C11.3619 (18)
O5—H50.8200C6—C51.3935 (17)
C16—C111.3619 (18)C6—H60.9300
C16—C151.3974 (17)C3—O21.3481 (15)
C16—H160.9300C3—C21.3999 (18)
C12—C111.3944 (19)C2—C11.3977 (18)
C12—C131.4010 (19)C2—C71.4304 (18)
C12—C171.4295 (19)C1—H10.9300
O6—C171.221 (2)O2—H20.8200
C11—H110.9300O3—C71.2251 (19)
C18—C191.4522 (19)C7—H70.9300
C18—H18A0.9700C9—C101.167 (2)
C18—H18B0.9700C9—C81.454 (2)
C19—C201.164 (2)C8—H8A0.9700
C17—H170.9300C8—H8B0.9700
C20—H200.911 (18)C10—H100.862 (19)
C15—O4—C18116.91 (10)C5—O1—C8117.38 (10)
C15—C14—C13119.27 (12)C5—C4—C3119.00 (12)
C15—C14—H14120.4C5—C4—H4120.5
C13—C14—H14120.4C3—C4—H4120.5
C13—O5—H5109.5C1—C6—C5119.09 (11)
C11—C16—C15118.97 (12)C1—C6—H6120.5
C11—C16—H16120.5C5—C6—H6120.5
C15—C16—H16120.5O1—C5—C4123.96 (11)
O4—C15—C14123.91 (11)O1—C5—C6114.78 (10)
O4—C15—C16115.03 (11)C4—C5—C6121.26 (12)
C14—C15—C16121.06 (12)O2—C3—C4117.85 (12)
C11—C12—C13118.41 (12)O2—C3—C2121.27 (11)
C11—C12—C17120.70 (13)C4—C3—C2120.88 (12)
C13—C12—C17120.89 (13)C1—C2—C3118.26 (11)
O5—C13—C14117.79 (12)C1—C2—C7120.55 (12)
O5—C13—C12121.53 (12)C3—C2—C7121.19 (12)
C14—C13—C12120.67 (12)C6—C1—C2121.50 (12)
C16—C11—C12121.62 (12)C6—C1—H1119.2
C16—C11—H11119.2C2—C1—H1119.2
C12—C11—H11119.2C3—O2—H2109.5
O4—C18—C19109.46 (11)O3—C7—C2125.35 (14)
O4—C18—H18A109.8O3—C7—H7117.3
C19—C18—H18A109.8C2—C7—H7117.3
O4—C18—H18B109.8C10—C9—C8178.40 (17)
C19—C18—H18B109.8O1—C8—C9108.67 (12)
H18A—C18—H18B108.2O1—C8—H8A110.0
C20—C19—C18177.13 (16)C9—C8—H8A110.0
O6—C17—C12125.79 (15)O1—C8—H8B110.0
O6—C17—H17117.1C9—C8—H8B110.0
C12—C17—H17117.1H8A—C8—H8B108.3
C19—C20—H20178.1 (11)C9—C10—H10177.5 (13)
C18—O4—C15—C142.4 (2)C8—O1—C5—C43.0 (2)
C18—O4—C15—C16177.32 (13)C8—O1—C5—C6177.38 (12)
C13—C14—C15—O4179.71 (12)C3—C4—C5—O1179.63 (12)
C13—C14—C15—C160.0 (2)C3—C4—C5—C60.0 (2)
C11—C16—C15—O4179.91 (12)C1—C6—C5—O1180.00 (12)
C11—C16—C15—C140.2 (2)C1—C6—C5—C40.4 (2)
C15—C14—C13—O5179.31 (12)C5—C4—C3—O2179.81 (13)
C15—C14—C13—C120.0 (2)C5—C4—C3—C20.3 (2)
C11—C12—C13—O5179.36 (13)O2—C3—C2—C1179.83 (13)
C17—C12—C13—O50.9 (2)C4—C3—C2—C10.3 (2)
C11—C12—C13—C140.0 (2)O2—C3—C2—C70.1 (2)
C17—C12—C13—C14179.81 (13)C4—C3—C2—C7179.79 (13)
C15—C16—C11—C120.3 (2)C5—C6—C1—C20.4 (2)
C13—C12—C11—C160.2 (2)C3—C2—C1—C60.1 (2)
C17—C12—C11—C16179.99 (13)C7—C2—C1—C6179.87 (13)
C15—O4—C18—C19177.04 (12)C1—C2—C7—O3179.84 (15)
O4—C18—C19—C20179 (100)C3—C2—C7—O30.1 (2)
C11—C12—C17—O6179.95 (16)C5—O1—C8—C9179.39 (13)
C13—C12—C17—O60.3 (3)C10—C9—C8—O1162 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.821.922.6387 (16)146
O5—H5···O60.821.932.6441 (16)146
C10—H10···O3i0.86 (2)2.51 (2)3.369 (2)171.4 (2)
C18—H18A···O5ii0.972.453.281 (2)144
C20—H20···O6i0.91 (2)2.37 (2)3.280 (2)178.8 (2)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC10H8O3
Mr176.16
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.0835 (5), 10.4059 (7), 12.8461 (8)
α, β, γ (°)73.910 (3), 89.756 (4), 73.436 (4)
V3)869.16 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEXII area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
15699, 4347, 2880
Rint0.029
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.132, 1.05
No. of reflections4347
No. of parameters243
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.15, 0.20

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.821.922.6387 (16)146
O5—H5···O60.821.932.6441 (16)146
C10—H10···O3i0.86 (2)2.51 (2)3.369 (2)171.4 (2)
C18—H18A···O5ii0.972.453.281 (2)144
C20—H20···O6i0.91 (2)2.37 (2)3.280 (2)178.8 (2)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1.
 

Acknowledgements

VS and DV thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection and the UGC SAP for the facilities provided to the department.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDelogu, G., Podda, G., Corda, M., Fadda, M. B., Fais, A. & Era, B. (2010). Bioorg. Med. Chem. Lett. 20, 6138–6140.  Web of Science CrossRef CAS PubMed Google Scholar
First citationEsakkiammal, M., Selvarani, V., Neelakantan, M. A., Silambarasan, V. & Velmurugan, D. (2012). Acta Cryst. E68, o2465.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLey, J. P. & Bertram, H. J. (2001). Bioorg. Med. Chem. Lett. 9, 1879–1885.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, X., Song, D. K., Radbil, A. B. & Radbil, B. A. (2007). Russ. J. Appl. Chem. 80, 1373–1375.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds