organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N-Di­ethyl­anilinium 5-(2,4-di­nitro­phen­yl)-2,6-dioxo-1,2,3,6-tetra­hydro­pyrimidin-4-olate

aPG and Research Department of Chemistry, Seethalakshmi Ramaswami College, Tiruchirappalli 620 002, Tamil Nadu, India
*Correspondence e-mail: kalaivbalaj@yahoo.co.in

(Received 25 November 2012; accepted 27 November 2012; online 5 December 2012)

The asymmetric unit of the title mol­ecular salt, C10H16N+·C10H5N4O7 (trivial name: N,N-diethyl­anilinium 2,4-dinitro­phenyl­barbiturate), comprises two anion–cation units. In the anions, the dinitro­phenyl ring and the mean plane of the barbiturate ring [planar to within 0.011 (2) and 0.023 (2) Å in the two anions] are inclined to one another by 41.47 (9) and 45.12 (9)°. In the crystal, the anions are linked via strong N—H⋯O hydrogen bonds, forming chains propagating along [10-1]. Within the chains, adjacent inversion-related anionic barbiturate entities are joined through R22(8) ring motifs. The cations are linked to the chains via N—H⋯O hydrogen bonds. The chains are linked via a number of C—H⋯O inter­actions, forming a three-dimensional structure.

Related literature

For the crystal structures of related barbiturates, see: Kalaivani & Malarvizhi (2009[Kalaivani, D. & Malarvizhi, R. (2009). Acta Cryst. E65, o2548.]); Buvaneswari & Kalaivani (2011a[Buvaneswari, M. & Kalaivani, D. (2011a). Acta Cryst. E67, o1433-o1434.],b[Buvaneswari, M. & Kalaivani, D. (2011b). Acta Cryst. E67, o3452.]); Kalaivani et al. (2012[Kalaivani, D., Buvaneswari, M. & Rajeswari, S. (2012). Acta Cryst. E68, o29-o30.]); Babykala & Kalaivani (2012[Babykala, R. & Kalaivani, D. (2012). Acta Cryst. E68, o541.]). For the biological activity of barbiturates, see: Hueso et al. (2003[Hueso, F., Illan, N. A., Mareno, M. N., Martinex, J. & Ramirez, M. J. (2003). J. Inorg. Biochem. 94,326-334.]); Kalaivani et al. (2008[Kalaivani, D., Malarvizhi, R. & Subbalakshmi, R. (2008). Med. Chem. Res. 17, 369-373.]); Tripathi (2009[Tripathi, K. D. (2009). In Essentials of Medical Pharmacology, 6th ed. Chennai: Jaypee Brothers.]); Kalaivani & Buvaneswari (2010[Kalaivani, D. & Buvaneswari, M. (2010). In Recent Advances in Clinical Medicine, pp. 225-260. UK: WSEAS Publications.]).

[Scheme 1]

Experimental

Crystal data
  • C10H16N+·C10H5N4O7

  • Mr = 443.42

  • Triclinic, [P \overline 1]

  • a = 8.7260 (2) Å

  • b = 14.2930 (3) Å

  • c = 18.1080 (5) Å

  • α = 106.712 (1)°

  • β = 96.490 (1)°

  • γ = 97.667 (1)°

  • V = 2116.27 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.30 × 0.30 × 0.25 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.944, Tmax = 0.996

  • 36083 measured reflections

  • 7482 independent reflections

  • 5563 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.122

  • S = 1.02

  • 7482 reflections

  • 601 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O7i 0.89 (2) 2.00 (2) 2.878 (2) 172 (2)
N4—H4A⋯O14ii 0.87 (2) 1.93 (2) 2.802 (2) 172 (2)
N7—H7A⋯O13iii 0.88 (2) 2.06 (2) 2.931 (2) 175 (2)
N8—H8A⋯O6iv 0.89 (2) 1.98 (2) 2.852 (2) 164 (2)
N9—H9A⋯O12 0.90 (2) 1.83 (2) 2.726 (2) 176 (1)
N10—H10A⋯O5v 0.92 (2) 1.69 (2) 2.598 (3) 166 (2)
C12—H12⋯O4vi 0.93 2.52 3.451 (3) 174
C26—H26⋯O12 0.93 2.59 3.272 (3) 131
C26—H26⋯O13iii 0.93 2.56 3.281 (3) 135
C29—H29B⋯O11 0.97 2.57 3.215 (3) 124
C38—H38A⋯O7i 0.96 2.52 3.484 (3) 177
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x+1, y, z; (iii) -x+1, -y+1, -z; (iv) x-1, y, z; (v) -x+1, -y+1, -z+1; (vi) x, y-1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The methylene group of barbituric acid [a pyrimidine derivative] is flanked on both sides by the electron-withdrawing carbonyl groups which makes the hydrogen atoms highly acidic. These acidic H atoms have been targeted by our group in the preparation of a number of extraordinarily stable barbiturates (Kalaivani & Malarvizhi, 2009; Buvaneswari & Kalaivani, 2011a; Kalaivani et al., 2012; Babykala & Kalaivani, 2012). We have reported on the crystal structure of a barbiturate related to the title molecular salt but derived from 1-chloro-2,4,6-trinitrobenzene (TNCB) and barbituric acid in the presence of N,N-diethylaniline (I) (Buvaneswari & Kalaivani, 2011b). Herein we report on the crystal structure of the new title molecular salt obtained from 1-chloro-2,4-dinitrobenzene (DNCB) and barbituric acid in the presence of N,N-diethylaniline, (II).

Unlike the asymmetric unit of the related reported barbiturate (I), which comprises of only one anion and cation moieties, the asymmetric unit of the barbiturate of the title compound (II) is composed of two cations and two anions (Fig. 1). Contrary to the barbiturate of TNCB (I), which crystallized in the monoclinic space group P21/c, the title compound (II) crystallized in the triclinic space group P1.

In the crystal of (II), the anions are linked via N—H···O hydrogen bonds (Table 1 and Fig. 2), forming chains along direction [1 0 -1]. This linkage and the R22(8) ring motifs formed between inversion-related barbiturate residues contributes considerably to the extraordinary stability of the title molecular salt. The cations are linked to the chains via N-H···O hydrogen bonds (Table 1 and Fig. 2). There are C-H···O interactions present (Table 1) but no π-π stacking interactions between the N,N-diethylaniline and 2,4-dinitrophenyl ring moieties.

As barbiturates are employed in the treatment of neurological disorders (Hueso et al., 2003; Kalaivani et al., 2008; Tripathi, 2009; Kalaivani & Buvaneswari, 2010), the non-bonding interactions of the present investigation may help to understand the mechanistic aspects of the physiological action of barbiturates.

Related literature top

For the crystal structures of related barbiturates, see: Kalaivani & Malarvizhi (2009); Buvaneswari & Kalaivani (2011a,b); Kalaivani et al. (2012); Babykala & Kalaivani (2012). For the biological activity of barbiturates, see: Hueso et al. (2003); Kalaivani et al. (2008); Tripathi (2009); Kalaivani & Buvaneswari (2010).

Experimental top

Analytical grade 1-chloro-2,4-dinitrobenzene (2.02 g, 0.01 mol) was dissolved in 20 ml of absolute alcohol. Barbituric acid (1.28 g, 0.01 mol) was also dissolved in 30 ml of absolute alcohol separately. These two solutions were then mixed well. To this mixture, ca. 4 ml of N,N-diethylaniine (0.03 mol) was added and shaken well for 5–6 hrs. The slightly turbid solution obtained was filtered and kept as such at room temperature. After a period of four weeks, dark shiny maroon red coloured crystals of the title salt crystallized out from this solution. The crystals were filtered and washed well with 30 ml of dry ether. The crystals were then powdered and washed with 5 ml of absolute alcohol to remove the unreacted reactants and finally with 25 ml of dry ether. The pure powder was then recrystallized from hot ethanol (M.p: 481 K; yield: 80%). Good quality single crystals, suitable for X-ray diffraction studies, were obtained by slow evaporation of a solution in ethanol at room temperature. The crystals obtained were non-hygroscopic and extraordinarily stable at room temperature.

Refinement top

The N-bound H atoms were located in a difference electron density map and refind with a N-H distance restraint of 0.90 (2) Å. The C-bound hydrogen atoms were placed in calculated positions and refined as riding atoms: C—H = 0.93, 0.97 and 0.96 Å for CH, CH2 and CH3 H atoms, respectively, with Uiso(H) = k × Ueq(C), where k = 1.5 for methyl H atoms and = 1.2 for other H atoms.

Structure description top

The methylene group of barbituric acid [a pyrimidine derivative] is flanked on both sides by the electron-withdrawing carbonyl groups which makes the hydrogen atoms highly acidic. These acidic H atoms have been targeted by our group in the preparation of a number of extraordinarily stable barbiturates (Kalaivani & Malarvizhi, 2009; Buvaneswari & Kalaivani, 2011a; Kalaivani et al., 2012; Babykala & Kalaivani, 2012). We have reported on the crystal structure of a barbiturate related to the title molecular salt but derived from 1-chloro-2,4,6-trinitrobenzene (TNCB) and barbituric acid in the presence of N,N-diethylaniline (I) (Buvaneswari & Kalaivani, 2011b). Herein we report on the crystal structure of the new title molecular salt obtained from 1-chloro-2,4-dinitrobenzene (DNCB) and barbituric acid in the presence of N,N-diethylaniline, (II).

Unlike the asymmetric unit of the related reported barbiturate (I), which comprises of only one anion and cation moieties, the asymmetric unit of the barbiturate of the title compound (II) is composed of two cations and two anions (Fig. 1). Contrary to the barbiturate of TNCB (I), which crystallized in the monoclinic space group P21/c, the title compound (II) crystallized in the triclinic space group P1.

In the crystal of (II), the anions are linked via N—H···O hydrogen bonds (Table 1 and Fig. 2), forming chains along direction [1 0 -1]. This linkage and the R22(8) ring motifs formed between inversion-related barbiturate residues contributes considerably to the extraordinary stability of the title molecular salt. The cations are linked to the chains via N-H···O hydrogen bonds (Table 1 and Fig. 2). There are C-H···O interactions present (Table 1) but no π-π stacking interactions between the N,N-diethylaniline and 2,4-dinitrophenyl ring moieties.

As barbiturates are employed in the treatment of neurological disorders (Hueso et al., 2003; Kalaivani et al., 2008; Tripathi, 2009; Kalaivani & Buvaneswari, 2010), the non-bonding interactions of the present investigation may help to understand the mechanistic aspects of the physiological action of barbiturates.

For the crystal structures of related barbiturates, see: Kalaivani & Malarvizhi (2009); Buvaneswari & Kalaivani (2011a,b); Kalaivani et al. (2012); Babykala & Kalaivani (2012). For the biological activity of barbiturates, see: Hueso et al. (2003); Kalaivani et al. (2008); Tripathi (2009); Kalaivani & Buvaneswari (2010).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, with the numbering scheme. Displacement ellipsoids are drawn at the 30% probability.
[Figure 2] Fig. 2. A partial view of the crystal packing of the title compound with the N-H···O hydrogen bonds shown as dashed lines (see Table 1 for details).
N,N-Diethylanilinium 5-(2,4-dinitrophenyl)-2,6-dioxo-1,2,3,6-tetrahydropyrimidin-4-olate top
Crystal data top
C10H16N+·C10H5N4O7Z = 4
Mr = 443.42F(000) = 928
Triclinic, P1Dx = 1.392 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7260 (2) ÅCell parameters from 5648 reflections
b = 14.2930 (3) Åθ = 2.4–24.5°
c = 18.1080 (5) ŵ = 0.11 mm1
α = 106.712 (1)°T = 293 K
β = 96.490 (1)°Block, red
γ = 97.667 (1)°0.30 × 0.30 × 0.25 mm
V = 2116.27 (9) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
7482 independent reflections
Radiation source: fine-focus sealed tube5563 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω and φ scanθmax = 25.1°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1010
Tmin = 0.944, Tmax = 0.996k = 1716
36083 measured reflectionsl = 2021
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0554P)2 + 0.687P]
where P = (Fo2 + 2Fc2)/3
7482 reflections(Δ/σ)max < 0.001
601 parametersΔρmax = 0.39 e Å3
6 restraintsΔρmin = 0.21 e Å3
Crystal data top
C10H16N+·C10H5N4O7γ = 97.667 (1)°
Mr = 443.42V = 2116.27 (9) Å3
Triclinic, P1Z = 4
a = 8.7260 (2) ÅMo Kα radiation
b = 14.2930 (3) ŵ = 0.11 mm1
c = 18.1080 (5) ÅT = 293 K
α = 106.712 (1)°0.30 × 0.30 × 0.25 mm
β = 96.490 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
7482 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
5563 reflections with I > 2σ(I)
Tmin = 0.944, Tmax = 0.996Rint = 0.029
36083 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0426 restraints
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.39 e Å3
7482 reflectionsΔρmin = 0.21 e Å3
601 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.2543 (2)0.83264 (13)0.37167 (12)0.0880 (8)
O21.2930 (2)0.83537 (15)0.25658 (14)0.0970 (9)
O30.8629 (3)0.96777 (15)0.15034 (12)0.0945 (8)
O40.6274 (2)0.91507 (15)0.16287 (13)0.1024 (9)
O50.80556 (18)0.67237 (12)0.42022 (9)0.0670 (6)
O61.19736 (17)0.62862 (11)0.26121 (8)0.0571 (5)
O71.14127 (16)0.46411 (10)0.43867 (8)0.0542 (5)
N11.2085 (2)0.82324 (14)0.30347 (14)0.0665 (8)
N20.7678 (3)0.91628 (15)0.17346 (12)0.0725 (8)
N30.97818 (18)0.57160 (12)0.42827 (9)0.0438 (5)
N41.16646 (19)0.54767 (11)0.35010 (9)0.0419 (5)
C11.0386 (2)0.80155 (14)0.27732 (11)0.0463 (6)
C20.9841 (3)0.86114 (15)0.23618 (12)0.0535 (7)
C30.8257 (3)0.85337 (15)0.21745 (12)0.0532 (7)
C40.7220 (3)0.78816 (16)0.23815 (12)0.0573 (8)
C50.7796 (2)0.72705 (16)0.27701 (12)0.0523 (7)
C60.9407 (2)0.73108 (14)0.29834 (10)0.0422 (6)
C70.9959 (2)0.66156 (13)0.33636 (10)0.0412 (6)
C80.9205 (2)0.63875 (14)0.39476 (11)0.0442 (6)
C91.0979 (2)0.52410 (13)0.40734 (10)0.0399 (6)
C101.1233 (2)0.61515 (13)0.31275 (10)0.0413 (6)
O80.8547 (2)0.19291 (16)0.43667 (11)0.0935 (8)
O90.8049 (3)0.06694 (16)0.33392 (12)0.1072 (9)
O100.37682 (18)0.18846 (12)0.11714 (9)0.0671 (6)
O110.5594 (2)0.10258 (12)0.08857 (9)0.0751 (6)
O120.64772 (16)0.31204 (10)0.07995 (8)0.0498 (5)
O130.41243 (16)0.57389 (10)0.07773 (8)0.0517 (5)
O140.43352 (18)0.48055 (12)0.29694 (8)0.0619 (6)
N50.8058 (2)0.15384 (18)0.36769 (12)0.0688 (8)
N60.5070 (2)0.16896 (13)0.13139 (10)0.0517 (6)
N70.53330 (17)0.44455 (11)0.08224 (9)0.0391 (5)
N80.42292 (18)0.52477 (12)0.18645 (9)0.0436 (5)
C110.7437 (2)0.21443 (16)0.32261 (12)0.0510 (7)
C120.6703 (2)0.16833 (15)0.24722 (12)0.0487 (7)
C130.6020 (2)0.22549 (14)0.20738 (10)0.0416 (6)
C140.6105 (2)0.32753 (14)0.23874 (10)0.0401 (6)
C150.6879 (2)0.36932 (16)0.31568 (11)0.0514 (7)
C160.7528 (2)0.31432 (17)0.35756 (12)0.0558 (8)
C170.5522 (2)0.39040 (13)0.19505 (10)0.0393 (6)
C180.58097 (19)0.37731 (13)0.11825 (10)0.0376 (6)
C190.4529 (2)0.51796 (13)0.11341 (10)0.0389 (6)
C200.4700 (2)0.46523 (14)0.23091 (10)0.0425 (6)
N90.90805 (19)0.23135 (12)0.04844 (9)0.0474 (5)
C210.9873 (2)0.28472 (14)0.00108 (11)0.0453 (6)
C221.1413 (2)0.27955 (18)0.00719 (12)0.0605 (8)
C231.2100 (3)0.3305 (2)0.05289 (14)0.0753 (9)
C241.1257 (3)0.38406 (19)0.08902 (14)0.0756 (10)
C250.9732 (3)0.38696 (18)0.08093 (14)0.0700 (9)
C260.9028 (3)0.33770 (16)0.03520 (12)0.0557 (7)
C270.9959 (3)0.2525 (2)0.12914 (14)0.0719 (9)
C281.0290 (4)0.3602 (2)0.17372 (16)0.0997 (13)
C290.8655 (3)0.12146 (17)0.00675 (17)0.0765 (10)
C300.7452 (4)0.0983 (2)0.06477 (17)0.1068 (14)
N100.3631 (2)0.20996 (15)0.50188 (11)0.0603 (7)
C310.3160 (3)0.17238 (16)0.41624 (13)0.0587 (8)
C320.3835 (4)0.10006 (19)0.37113 (17)0.0839 (11)
C330.3349 (4)0.0697 (2)0.28871 (18)0.0924 (13)
C340.2279 (5)0.1152 (3)0.2591 (2)0.1064 (16)
C350.1642 (4)0.1859 (3)0.30427 (19)0.1081 (14)
C360.2082 (3)0.2158 (2)0.38384 (15)0.0749 (10)
C370.5166 (3)0.2857 (2)0.52637 (16)0.0776 (10)
C380.5019 (3)0.3733 (2)0.49872 (17)0.0838 (10)
C390.3632 (4)0.1319 (2)0.54130 (18)0.0955 (14)
C400.2051 (5)0.0682 (2)0.5247 (2)0.1146 (18)
H21.053200.905400.221600.0640*
H3A0.932 (2)0.5593 (14)0.4664 (10)0.051 (5)*
H40.614600.785200.226200.0690*
H4A1.2469 (19)0.5216 (14)0.3346 (11)0.045 (5)*
H50.709100.681400.289600.0630*
H7A0.550 (2)0.4353 (14)0.0340 (9)0.045 (5)*
H8A0.361 (2)0.5667 (13)0.2072 (11)0.052 (6)*
H120.666600.100900.223600.0580*
H150.695600.437100.339400.0620*
H160.802300.344200.408900.0670*
H9A0.8194 (19)0.2558 (14)0.0571 (11)0.051 (6)*
H221.197500.242900.017300.0730*
H231.313900.328300.059200.0900*
H241.173200.418600.119200.0910*
H250.916300.422400.106400.0840*
H260.799000.340400.029000.0670*
H27A0.935300.216900.157400.0860*
H27B1.094200.228100.125500.0860*
H28A1.085700.369900.224700.1490*
H28B0.932000.384500.178700.1490*
H28C1.090500.395800.146500.1490*
H29A0.959000.096100.008000.0920*
H29B0.825300.088100.042100.0920*
H30A0.722100.027900.089700.1600*
H30B0.784900.130500.100200.1600*
H30C0.651400.121600.050200.1600*
H10A0.290 (2)0.2464 (16)0.5230 (13)0.074 (7)*
H320.458700.071600.393500.1000*
H330.375800.019600.255900.1110*
H340.197600.096400.205300.1280*
H350.090000.214900.281900.1300*
H360.164700.265600.415500.0900*
H37A0.543800.307600.582800.0930*
H37B0.600400.254200.504800.0930*
H38A0.599500.419000.514400.1260*
H38B0.420800.405600.521100.1260*
H38C0.475900.351800.442800.1260*
H39A0.393000.163000.597200.1140*
H39B0.439900.091000.523200.1140*
H40A0.208200.018300.550500.1720*
H40B0.176000.037000.469400.1720*
H40C0.129500.108500.543600.1720*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0757 (12)0.0802 (12)0.1037 (15)0.0067 (9)0.0243 (11)0.0390 (11)
O20.0658 (11)0.1039 (14)0.160 (2)0.0252 (10)0.0406 (12)0.0874 (15)
O30.1146 (16)0.0906 (13)0.1059 (15)0.0314 (12)0.0118 (12)0.0690 (12)
O40.0853 (14)0.0965 (14)0.1368 (18)0.0291 (11)0.0221 (12)0.0629 (13)
O50.0707 (10)0.0887 (11)0.0727 (10)0.0480 (9)0.0408 (8)0.0465 (9)
O60.0749 (10)0.0678 (9)0.0581 (8)0.0416 (8)0.0374 (7)0.0418 (8)
O70.0630 (9)0.0613 (9)0.0612 (9)0.0280 (7)0.0245 (7)0.0411 (7)
N10.0558 (12)0.0570 (11)0.0991 (16)0.0148 (9)0.0068 (12)0.0431 (11)
N20.0906 (16)0.0606 (12)0.0742 (13)0.0284 (12)0.0027 (12)0.0323 (11)
N30.0509 (9)0.0515 (9)0.0431 (9)0.0198 (8)0.0200 (7)0.0266 (8)
N40.0511 (9)0.0454 (9)0.0423 (9)0.0228 (8)0.0193 (7)0.0231 (7)
C10.0506 (11)0.0448 (11)0.0501 (11)0.0180 (9)0.0094 (9)0.0200 (9)
C20.0681 (14)0.0447 (11)0.0563 (12)0.0163 (10)0.0120 (10)0.0252 (10)
C30.0683 (14)0.0487 (12)0.0497 (12)0.0265 (10)0.0037 (10)0.0212 (10)
C40.0547 (12)0.0650 (14)0.0583 (13)0.0243 (11)0.0047 (10)0.0239 (11)
C50.0523 (12)0.0597 (13)0.0541 (12)0.0178 (10)0.0119 (9)0.0267 (10)
C60.0520 (11)0.0443 (10)0.0372 (10)0.0209 (9)0.0127 (8)0.0156 (8)
C70.0484 (11)0.0434 (10)0.0395 (10)0.0183 (8)0.0125 (8)0.0182 (8)
C80.0491 (11)0.0473 (11)0.0441 (10)0.0180 (9)0.0141 (9)0.0195 (9)
C90.0467 (10)0.0402 (10)0.0368 (10)0.0103 (8)0.0089 (8)0.0159 (8)
C100.0527 (11)0.0420 (10)0.0384 (10)0.0186 (9)0.0148 (8)0.0190 (8)
O80.1209 (16)0.1173 (15)0.0613 (11)0.0487 (13)0.0022 (10)0.0489 (11)
O90.171 (2)0.0839 (14)0.0872 (14)0.0622 (14)0.0039 (13)0.0465 (12)
O100.0541 (9)0.0755 (10)0.0751 (11)0.0078 (8)0.0039 (8)0.0355 (9)
O110.1078 (14)0.0542 (9)0.0626 (10)0.0280 (9)0.0105 (9)0.0120 (8)
O120.0605 (8)0.0525 (8)0.0537 (8)0.0308 (7)0.0282 (7)0.0264 (7)
O130.0647 (9)0.0573 (8)0.0543 (8)0.0329 (7)0.0253 (7)0.0340 (7)
O140.0797 (10)0.0858 (11)0.0436 (8)0.0502 (9)0.0286 (7)0.0332 (8)
N50.0785 (14)0.0865 (16)0.0638 (13)0.0372 (11)0.0154 (10)0.0462 (12)
N60.0591 (11)0.0497 (10)0.0548 (10)0.0108 (8)0.0089 (9)0.0287 (9)
N70.0459 (9)0.0447 (9)0.0385 (8)0.0187 (7)0.0171 (7)0.0221 (7)
N80.0511 (9)0.0484 (9)0.0445 (9)0.0269 (8)0.0202 (7)0.0217 (7)
C110.0501 (11)0.0688 (14)0.0513 (12)0.0250 (10)0.0127 (9)0.0370 (11)
C120.0533 (12)0.0507 (11)0.0572 (12)0.0214 (9)0.0187 (10)0.0306 (10)
C130.0418 (10)0.0513 (11)0.0414 (10)0.0145 (8)0.0114 (8)0.0245 (9)
C140.0368 (10)0.0491 (11)0.0453 (10)0.0162 (8)0.0156 (8)0.0243 (9)
C150.0572 (12)0.0542 (12)0.0485 (12)0.0193 (10)0.0077 (9)0.0204 (10)
C160.0584 (13)0.0711 (15)0.0444 (11)0.0213 (11)0.0060 (9)0.0243 (11)
C170.0411 (10)0.0439 (10)0.0425 (10)0.0155 (8)0.0140 (8)0.0216 (8)
C180.0347 (9)0.0400 (10)0.0467 (10)0.0132 (8)0.0125 (8)0.0213 (8)
C190.0392 (10)0.0427 (10)0.0433 (10)0.0132 (8)0.0141 (8)0.0209 (8)
C200.0453 (10)0.0509 (11)0.0414 (10)0.0191 (9)0.0134 (8)0.0228 (9)
N90.0442 (9)0.0537 (10)0.0499 (9)0.0174 (8)0.0119 (7)0.0191 (8)
C210.0449 (11)0.0485 (11)0.0404 (10)0.0077 (9)0.0091 (8)0.0097 (9)
C220.0441 (12)0.0820 (16)0.0523 (12)0.0099 (11)0.0069 (10)0.0165 (11)
C230.0504 (13)0.102 (2)0.0544 (14)0.0132 (13)0.0140 (11)0.0044 (14)
C240.091 (2)0.0739 (17)0.0516 (14)0.0166 (14)0.0174 (13)0.0151 (12)
C250.0928 (19)0.0659 (15)0.0575 (14)0.0139 (13)0.0183 (13)0.0261 (12)
C260.0603 (13)0.0615 (13)0.0520 (12)0.0188 (11)0.0152 (10)0.0220 (11)
C270.0580 (14)0.112 (2)0.0587 (14)0.0186 (14)0.0075 (11)0.0452 (15)
C280.091 (2)0.127 (3)0.0545 (16)0.0118 (18)0.0031 (14)0.0060 (17)
C290.0864 (18)0.0517 (14)0.101 (2)0.0179 (13)0.0414 (16)0.0259 (14)
C300.132 (3)0.084 (2)0.0719 (19)0.0339 (19)0.0237 (19)0.0054 (16)
N100.0578 (11)0.0746 (13)0.0574 (11)0.0316 (10)0.0166 (9)0.0225 (10)
C310.0650 (14)0.0558 (13)0.0570 (13)0.0094 (11)0.0233 (11)0.0153 (11)
C320.105 (2)0.0655 (16)0.089 (2)0.0196 (15)0.0458 (17)0.0224 (15)
C330.122 (3)0.0617 (17)0.081 (2)0.0132 (17)0.0552 (19)0.0007 (15)
C340.110 (3)0.124 (3)0.072 (2)0.017 (2)0.0238 (19)0.023 (2)
C350.103 (2)0.158 (3)0.0690 (19)0.021 (2)0.0096 (17)0.046 (2)
C360.0685 (16)0.0980 (19)0.0624 (15)0.0187 (14)0.0091 (12)0.0300 (14)
C370.0473 (13)0.105 (2)0.0712 (16)0.0150 (13)0.0035 (11)0.0143 (15)
C380.0696 (16)0.0881 (19)0.0866 (19)0.0036 (14)0.0176 (14)0.0216 (16)
C390.122 (3)0.106 (2)0.092 (2)0.059 (2)0.0330 (18)0.0587 (18)
C400.175 (4)0.082 (2)0.110 (3)0.019 (2)0.051 (2)0.0563 (19)
Geometric parameters (Å, º) top
O1—N11.217 (3)C14—C151.398 (3)
O2—N11.219 (3)C14—C171.460 (3)
O3—N21.224 (3)C15—C161.371 (3)
O4—N21.216 (3)C17—C201.411 (3)
O5—C81.247 (2)C17—C181.405 (2)
O6—C101.238 (2)C12—H120.9300
O7—C91.232 (2)C15—H150.9300
O8—N51.212 (3)C16—H160.9300
O9—N51.215 (3)C21—C221.378 (3)
O10—N61.222 (2)C21—C261.369 (3)
O11—N61.218 (2)C22—C231.385 (4)
O12—C181.247 (2)C23—C241.373 (4)
O13—C191.226 (2)C24—C251.360 (4)
O14—C201.238 (2)C25—C261.376 (3)
N1—C11.467 (3)C27—C281.490 (4)
N2—C31.463 (3)C29—C301.497 (4)
N3—C81.392 (3)C22—H220.9300
N3—C91.352 (2)C23—H230.9300
N4—C91.354 (2)C24—H240.9300
N4—C101.394 (2)C25—H250.9300
N3—H3A0.885 (18)C26—H260.9300
N4—H4A0.874 (18)C27—H27B0.9700
N5—C111.464 (3)C27—H27A0.9700
N6—C131.469 (2)C28—H28A0.9600
N7—C181.388 (2)C28—H28B0.9600
N7—C191.363 (2)C28—H28C0.9600
N8—C191.356 (2)C29—H29A0.9700
N8—C201.398 (3)C29—H29B0.9700
N7—H7A0.877 (16)C30—H30B0.9600
N8—H8A0.892 (19)C30—H30C0.9600
N9—C271.498 (3)C30—H30A0.9600
N9—C291.508 (3)C31—C321.367 (4)
N9—C211.471 (3)C31—C361.362 (4)
N9—H9A0.902 (18)C32—C331.425 (4)
N10—C391.487 (4)C33—C341.353 (5)
N10—C311.477 (3)C34—C351.333 (6)
N10—C371.538 (3)C35—C361.372 (4)
N10—H10A0.92 (2)C37—C381.491 (4)
C1—C61.398 (3)C39—C401.495 (5)
C1—C21.378 (3)C32—H320.9300
C2—C31.367 (4)C33—H330.9300
C3—C41.371 (3)C34—H340.9300
C4—C51.379 (3)C35—H350.9300
C5—C61.404 (3)C36—H360.9300
C6—C71.463 (3)C37—H37A0.9700
C7—C101.414 (3)C37—H37B0.9700
C7—C81.399 (3)C38—H38A0.9600
C2—H20.9300C38—H38B0.9600
C4—H40.9300C38—H38C0.9600
C5—H50.9300C39—H39A0.9700
C11—C121.371 (3)C39—H39B0.9700
C11—C161.373 (3)C40—H40A0.9600
C12—C131.384 (3)C40—H40B0.9600
C13—C141.393 (3)C40—H40C0.9600
O1—N1—O2124.8 (2)C13—C12—H12121.00
O1—N1—C1117.30 (19)C11—C12—H12121.00
O2—N1—C1117.8 (2)C16—C15—H15119.00
O3—N2—O4123.8 (2)C14—C15—H15119.00
O3—N2—C3118.5 (2)C15—C16—H16121.00
O4—N2—C3117.7 (2)C11—C16—H16120.00
C8—N3—C9125.43 (16)C22—C21—C26121.5 (2)
C9—N4—C10125.46 (16)N9—C21—C26118.04 (18)
C9—N3—H3A117.8 (13)N9—C21—C22120.46 (18)
C8—N3—H3A116.8 (13)C21—C22—C23118.2 (2)
C9—N4—H4A120.5 (13)C22—C23—C24120.4 (2)
C10—N4—H4A114.0 (13)C23—C24—C25120.4 (2)
O9—N5—C11118.1 (2)C24—C25—C26120.2 (2)
O8—N5—O9123.6 (2)C21—C26—C25119.3 (2)
O8—N5—C11118.3 (2)N9—C27—C28112.7 (2)
O10—N6—C13117.51 (17)N9—C29—C30112.1 (2)
O11—N6—C13118.07 (17)C21—C22—H22121.00
O10—N6—O11124.30 (18)C23—C22—H22121.00
C18—N7—C19125.40 (15)C22—C23—H23120.00
C19—N8—C20125.59 (16)C24—C23—H23120.00
C19—N7—H7A118.0 (13)C23—C24—H24120.00
C18—N7—H7A116.4 (13)C25—C24—H24120.00
C20—N8—H8A115.6 (12)C24—C25—H25120.00
C19—N8—H8A118.6 (12)C26—C25—H25120.00
C21—N9—C29111.79 (17)C25—C26—H26120.00
C27—N9—C29111.68 (19)C21—C26—H26120.00
C21—N9—C27113.65 (17)C28—C27—H27B109.00
C27—N9—H9A103.2 (12)N9—C27—H27A109.00
C21—N9—H9A107.2 (13)N9—C27—H27B109.00
C29—N9—H9A108.8 (13)C28—C27—H27A109.00
C31—N10—C37112.19 (19)H27A—C27—H27B108.00
C31—N10—C39114.9 (2)C27—C28—H28A110.00
C37—N10—C39112.6 (2)C27—C28—H28C110.00
C31—N10—H10A108.4 (13)H28B—C28—H28C109.00
C37—N10—H10A103.6 (14)H28A—C28—H28C109.00
C39—N10—H10A104.2 (14)H28A—C28—H28B109.00
C2—C1—C6123.47 (18)C27—C28—H28B109.00
N1—C1—C6121.74 (18)N9—C29—H29B109.00
N1—C1—C2114.60 (19)C30—C29—H29B109.00
C1—C2—C3118.2 (2)H29A—C29—H29B108.00
C2—C3—C4121.8 (2)N9—C29—H29A109.00
N2—C3—C4120.0 (2)C30—C29—H29A109.00
N2—C3—C2118.2 (2)C29—C30—H30C109.00
C3—C4—C5118.9 (2)H30A—C30—H30B109.00
C4—C5—C6122.5 (2)C29—C30—H30B109.00
C5—C6—C7120.33 (18)H30A—C30—H30C109.00
C1—C6—C7124.46 (16)H30B—C30—H30C110.00
C1—C6—C5115.15 (18)C29—C30—H30A109.00
C6—C7—C8120.21 (16)N10—C31—C32121.1 (2)
C8—C7—C10119.71 (17)N10—C31—C36117.4 (2)
C6—C7—C10120.06 (16)C32—C31—C36121.5 (2)
O5—C8—N3116.00 (17)C31—C32—C33117.8 (3)
N3—C8—C7117.37 (16)C32—C33—C34118.7 (3)
O5—C8—C7126.63 (19)C33—C34—C35122.4 (3)
O7—C9—N3122.01 (17)C34—C35—C36119.9 (3)
N3—C9—N4115.19 (17)C31—C36—C35119.7 (3)
O7—C9—N4122.80 (17)N10—C37—C38111.4 (2)
O6—C10—C7125.34 (18)N10—C39—C40111.0 (3)
N4—C10—C7116.81 (16)C31—C32—H32121.00
O6—C10—N4117.84 (17)C33—C32—H32121.00
C1—C2—H2121.00C32—C33—H33121.00
C3—C2—H2121.00C34—C33—H33121.00
C5—C4—H4121.00C33—C34—H34119.00
C3—C4—H4121.00C35—C34—H34119.00
C4—C5—H5119.00C34—C35—H35120.00
C6—C5—H5119.00C36—C35—H35120.00
C12—C11—C16121.7 (2)C31—C36—H36120.00
N5—C11—C12118.6 (2)C35—C36—H36120.00
N5—C11—C16119.67 (19)N10—C37—H37A109.00
C11—C12—C13117.8 (2)N10—C37—H37B109.00
N6—C13—C14121.80 (17)C38—C37—H37A109.00
C12—C13—C14123.33 (17)C38—C37—H37B109.00
N6—C13—C12114.66 (18)H37A—C37—H37B108.00
C13—C14—C17124.02 (16)C37—C38—H38A110.00
C13—C14—C15115.49 (18)C37—C38—H38B110.00
C15—C14—C17120.40 (18)C37—C38—H38C109.00
C14—C15—C16122.6 (2)H38A—C38—H38B109.00
C11—C16—C15119.02 (19)H38A—C38—H38C109.00
C18—C17—C20120.48 (17)H38B—C38—H38C109.00
C14—C17—C18119.84 (16)N10—C39—H39A109.00
C14—C17—C20119.66 (16)N10—C39—H39B109.00
O12—C18—N7117.00 (16)C40—C39—H39A110.00
N7—C18—C17116.90 (16)C40—C39—H39B109.00
O12—C18—C17126.09 (17)H39A—C39—H39B108.00
N7—C19—N8115.13 (16)C39—C40—H40A109.00
O13—C19—N8122.97 (17)C39—C40—H40B109.00
O13—C19—N7121.90 (16)C39—C40—H40C109.00
N8—C20—C17116.36 (15)H40A—C40—H40B110.00
O14—C20—C17125.60 (19)H40A—C40—H40C109.00
O14—C20—N8118.01 (17)H40B—C40—H40C109.00
O1—N1—C1—C2130.8 (2)C2—C3—C4—C51.8 (3)
O2—N1—C1—C245.6 (3)C3—C4—C5—C62.0 (3)
O1—N1—C1—C644.4 (3)C4—C5—C6—C7177.22 (19)
O2—N1—C1—C6139.1 (2)C4—C5—C6—C10.0 (3)
O3—N2—C3—C4174.1 (2)C1—C6—C7—C8141.06 (19)
O3—N2—C3—C25.3 (3)C5—C6—C7—C842.0 (3)
O4—N2—C3—C2173.9 (2)C1—C6—C7—C1040.6 (3)
O4—N2—C3—C46.8 (3)C5—C6—C7—C10136.35 (19)
C8—N3—C9—O7178.71 (18)C10—C7—C8—N31.3 (3)
C8—N3—C9—N41.6 (3)C10—C7—C8—O5178.59 (19)
C9—N3—C8—C72.3 (3)C8—C7—C10—O6179.07 (18)
C9—N3—C8—O5177.59 (18)C8—C7—C10—N40.1 (3)
C9—N4—C10—C70.8 (3)C6—C7—C8—N3179.61 (17)
C10—N4—C9—O7179.67 (17)C6—C7—C8—O50.2 (3)
C10—N4—C9—N30.0 (3)C6—C7—C10—N4178.22 (16)
C9—N4—C10—O6179.84 (18)C6—C7—C10—O60.7 (3)
O8—N5—C11—C12171.88 (19)N5—C11—C12—C13175.26 (17)
O9—N5—C11—C127.8 (3)N5—C11—C16—C15177.10 (17)
O9—N5—C11—C16175.5 (2)C16—C11—C12—C131.3 (3)
O8—N5—C11—C164.8 (3)C12—C11—C16—C150.6 (3)
O10—N6—C13—C12132.40 (19)C11—C12—C13—C143.0 (3)
O10—N6—C13—C1442.5 (3)C11—C12—C13—N6171.77 (17)
O11—N6—C13—C14141.2 (2)C12—C13—C14—C17173.92 (18)
O11—N6—C13—C1243.9 (3)C12—C13—C14—C152.7 (3)
C19—N7—C18—C174.2 (3)N6—C13—C14—C15171.77 (17)
C19—N7—C18—O12176.98 (17)N6—C13—C14—C1711.6 (3)
C18—N7—C19—N81.7 (3)C13—C14—C15—C160.7 (3)
C18—N7—C19—O13178.88 (17)C15—C14—C17—C18133.29 (19)
C20—N8—C19—O13177.98 (18)C13—C14—C17—C20138.12 (19)
C19—N8—C20—C171.7 (3)C17—C14—C15—C16176.07 (17)
C19—N8—C20—O14180.00 (17)C13—C14—C17—C1843.1 (3)
C20—N8—C19—N71.4 (3)C15—C14—C17—C2045.5 (3)
C21—N9—C27—C2856.7 (3)C14—C15—C16—C110.9 (3)
C29—N9—C27—C28175.7 (2)C14—C17—C20—O144.1 (3)
C27—N9—C21—C2252.3 (3)C18—C17—C20—O14177.14 (19)
C27—N9—C29—C30165.7 (2)C20—C17—C18—O12177.63 (18)
C29—N9—C21—C2275.2 (2)C18—C17—C20—N81.0 (3)
C27—N9—C21—C26128.8 (2)C14—C17—C20—N8177.70 (16)
C29—N9—C21—C26103.7 (2)C14—C17—C18—O123.7 (3)
C21—N9—C29—C3065.7 (3)C20—C17—C18—N73.7 (3)
C37—N10—C31—C3697.4 (3)C14—C17—C18—N7175.01 (16)
C39—N10—C37—C38168.8 (2)C26—C21—C22—C230.6 (3)
C31—N10—C39—C4057.8 (3)N9—C21—C26—C25178.91 (19)
C31—N10—C37—C3859.8 (3)C22—C21—C26—C250.0 (3)
C37—N10—C31—C3279.7 (3)N9—C21—C22—C23179.5 (2)
C39—N10—C31—C36132.4 (3)C21—C22—C23—C240.3 (4)
C39—N10—C31—C3250.6 (3)C22—C23—C24—C250.6 (4)
C37—N10—C39—C40172.2 (2)C23—C24—C25—C261.2 (4)
N1—C1—C6—C5172.57 (19)C24—C25—C26—C210.9 (4)
C2—C1—C6—C52.3 (3)N10—C31—C32—C33178.3 (3)
N1—C1—C6—C710.4 (3)C36—C31—C32—C331.3 (4)
C6—C1—C2—C32.5 (3)N10—C31—C36—C35177.9 (3)
C2—C1—C6—C7174.82 (19)C32—C31—C36—C350.8 (4)
N1—C1—C2—C3172.69 (19)C31—C32—C33—C341.6 (5)
C1—C2—C3—N2179.72 (19)C32—C33—C34—C351.3 (6)
C1—C2—C3—C40.3 (3)C33—C34—C35—C360.8 (6)
N2—C3—C4—C5177.6 (2)C34—C35—C36—C310.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O7i0.89 (2)2.00 (2)2.878 (2)172 (2)
N4—H4A···O14ii0.87 (2)1.93 (2)2.802 (2)172 (2)
N7—H7A···O13iii0.88 (2)2.06 (2)2.931 (2)175 (2)
N8—H8A···O6iv0.89 (2)1.98 (2)2.852 (2)164 (2)
N9—H9A···O120.90 (2)1.83 (2)2.726 (2)176 (1)
N10—H10A···O5v0.92 (2)1.69 (2)2.598 (3)166 (2)
C12—H12···O4vi0.932.523.451 (3)174
C26—H26···O120.932.593.272 (3)131
C26—H26···O13iii0.932.563.281 (3)135
C29—H29B···O110.972.573.215 (3)124
C38—H38A···O7i0.962.523.484 (3)177
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z; (iii) x+1, y+1, z; (iv) x1, y, z; (v) x+1, y+1, z+1; (vi) x, y1, z.

Experimental details

Crystal data
Chemical formulaC10H16N+·C10H5N4O7
Mr443.42
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.7260 (2), 14.2930 (3), 18.1080 (5)
α, β, γ (°)106.712 (1), 96.490 (1), 97.667 (1)
V3)2116.27 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.30 × 0.25
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.944, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
36083, 7482, 5563
Rint0.029
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.122, 1.02
No. of reflections7482
No. of parameters601
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.21

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O7i0.885 (18)2.000 (18)2.878 (2)171.8 (16)
N4—H4A···O14ii0.874 (18)1.933 (17)2.802 (2)172 (2)
N7—H7A···O13iii0.877 (16)2.056 (16)2.931 (2)175.1 (19)
N8—H8A···O6iv0.892 (19)1.983 (18)2.852 (2)164.4 (18)
N9—H9A···O120.902 (18)1.825 (18)2.726 (2)176.2 (14)
N10—H10A···O5v0.92 (2)1.69 (2)2.598 (3)165.6 (19)
C12—H12···O4vi0.932.523.451 (3)174
C26—H26···O120.932.593.272 (3)131
C26—H26···O13iii0.932.563.281 (3)135
C29—H29B···O110.972.573.215 (3)124
C38—H38A···O7i0.962.523.484 (3)177
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z; (iii) x+1, y+1, z; (iv) x1, y, z; (v) x+1, y+1, z+1; (vi) x, y1, z.
 

Acknowledgements

The authors are thankful to the SAIF, IIT Madras, for the data collection.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBabykala, R. & Kalaivani, D. (2012). Acta Cryst. E68, o541.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBuvaneswari, M. & Kalaivani, D. (2011a). Acta Cryst. E67, o1433–o1434.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBuvaneswari, M. & Kalaivani, D. (2011b). Acta Cryst. E67, o3452.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHueso, F., Illan, N. A., Mareno, M. N., Martinex, J. & Ramirez, M. J. (2003). J. Inorg. Biochem. 94,326-334.  Web of Science PubMed Google Scholar
First citationKalaivani, D. & Buvaneswari, M. (2010). In Recent Advances in Clinical Medicine, pp. 225-260. UK: WSEAS Publications.  Google Scholar
First citationKalaivani, D., Buvaneswari, M. & Rajeswari, S. (2012). Acta Cryst. E68, o29–o30.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKalaivani, D. & Malarvizhi, R. (2009). Acta Cryst. E65, o2548.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKalaivani, D., Malarvizhi, R. & Subbalakshmi, R. (2008). Med. Chem. Res. 17, 369–373.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTripathi, K. D. (2009). In Essentials of Medical Pharmacology, 6th ed. Chennai: Jaypee Brothers.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds