organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

14-Eth­­oxy-4,6-di­methyl-9-phenyl-8,12-dioxa-4,6-di­aza­tetra­cyclo­[8.8.0.02,7.013,18]octa­deca-2(7),13,15,17-tetra­ene-3,5,11-trione

aDepartment of Physics, Presidency College, Chennai 600 005, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: aravindhanpresidency@gmail.com

(Received 3 December 2012; accepted 7 December 2012; online 12 December 2012)

In the title compound, C23H20N2O6, the fused pyrone and pyran rings each adopt a sofa conformation. The dihedral angle between the mean planes of the pyran and phenyl rings is 61.9 (1)°. In the crystal, mol­ecules are linked by two pairs of C—H⋯O hydrogen bonds, forming dimers. These dimers are linked via a third C—H⋯O hydrogen bond, forming a two-dimensional network parallel to (10-2).

Related literature

For the biological activity of pyran­ocoumarin compounds, see: Kawaii et al. (2001[Kawaii, S., Tomono, Y., Ogawa, K., Sugiura, M., Yano, M., Yoshizawa, Y., Ito, C. & Furukawa, H. (2001). Anticancer Res. 21, 1905-1911.]); Hossain et al. (1996[Hossain, C. F., Okuyama, E. & Yamazaki, M. (1996). Chem. Pharm. Bull. (Tokyo), 44, 1535-1539.]); Goel et al. (1997[Goel, R. K., Maiti, R. N., Manickam, M. & Ray, A. B. (1997). Indian J. Exp. Biol. 35, 1080-1083.]); Su et al. (2009[Su, C. R., Yeh, S. F., Liu, C. M., Damu, A. G., Kuo, T. H., Chiang, P. C., Bastow, K. F., Lee, K. H. & Wu, T. S. (2009). Bioorg. Med. Chem. 17, 6137-6143.]); Xu et al. (2006[Xu, Z. Q., Pupek, K., Suling, W. J., Enache, L. & Flavin, M. T. (2006). Bioorg. Med. Chem. 14, 4610-4626.]). For anti-filarial activity studies, see: Casley-Smith et al. (1993[Casley-Smith, J. R., Wang, C. T., Casley-Smith, J. R. & Zi-hai, C. (1993). Br. Med. J. 307, 1037-1041.]). For their enzyme inhibitory activity, see: Pavao et al. (2002[Pavao, F., Castilho, M. S., Pupo, M. T., Dias, R. L. A., Correa, A. G., Fernandes, J. B., Da Silva, M. F. G. F., Mafezoli, J., Vieir, P. C. & Oliva, G. (2002). FEBS Lett. 520, 13-17.]). For asymmetry parameters, see: Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C23H20N2O6

  • Mr = 420.41

  • Monoclinic, P 21 /c

  • a = 16.8362 (9) Å

  • b = 8.1692 (4) Å

  • c = 14.4400 (8) Å

  • β = 98.000 (3)°

  • V = 1966.72 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.983

  • 19858 measured reflections

  • 4247 independent reflections

  • 2943 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.130

  • S = 1.04

  • 4247 reflections

  • 281 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1i 0.93 2.59 3.514 (3) 172
C5—H5⋯O3i 0.93 2.45 3.361 (3) 165
C18—H18⋯O6ii 0.93 2.56 3.215 (3) 128
Symmetry codes: (i) -x, -y+1, -z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Coumarin derivatives show strong activity against cancer cell lines (Kawaii et al., 2001) and exhibit monoamine oxidase inhibitory activity (Hossain et al., 1996). Antiulcer activity of some naturally occurring pyranocoumarins has been reported (Goel et al., 1997). They also show anti-hepatitis B virus, anti-filarial (Casley-Smith et al., 1993) and cytotoxic activities (Su et al., 2009) and anti-TB activity (Xu et al., 2006). One natural source coumarin derivative, Chalepin, inhibits the glyceraldehyde-3-phosphate dehydrogenase of parasites (Protein Data Bank ID code 1 K3T) (Pavao et al., 2002). Herein, we report on the crystal structure of the title coumarin derivative.

In the title molecule (Fig. 1) the six-membered pyrone ring of the coumarin ring system [DS (C9) = 0.163 (1) Å and D2 (C9—C8) = 0.029 (1) Å] and the pyran ring [DS (C8) = 0.065 (1) Å and D2 (C8—C7) = 0.075 (1) Å] both adopt a sofa conformation defined by the above asymmetry parameters (Nardelli, 1983). The mean plane of the pyran ring and the phenyl ring are tilted with respect to one another with a dihedral angle of 61.9 (1) °. The torsion angles H9—C9—C8—H8 = 51 (2)° and H8—C8—C7—H7 = 175.12 (2)°, define the ring fusions involving the in the fused pyrone and pyran ring system of the coumarin moiety.

In the crystal, molecules are linked by two pairs of C-H···O hydrogen bonds to form dimers. These dimers are linked via a third C-H···O hydrogen bond forming a two-dimensional network parallel to (10-2) [Table 1 and Fig. 2].

Related literature top

For the biological activity of pyranocoumarin compounds, see: Kawaii et al. (2001); Hossain et al. (1996); Goel et al. (1997); Su et al. (2009); Xu et al. (2006). For anti-filarial activity studies, see: Casley-Smith et al. (1993). For their enzyme inhibitory activity, see: Pavao et al. (2002). For asymmetry parameters, see: Nardelli (1983).

Experimental top

A mixture of 2-ethoxy-6-formylphenyl (2E)-3-phenylprop-2-enoate (0.296 g, 1 mmol) and N,N-dimethylbarbituric acid (0.156 g, 1 mmol) was placed in a round bottom flask and melted at 453 K for 1 h. After completion of the reaction, as indicated by TLC, the crude product was washed with 5 ml of an ethylacetate and hexane mixture (1:49 ratio) which successfully provided the pure product in 92% yield as a colourless solid. Diffraction quality crystals were obtained by slow evaporation of a solution in ethyl acetate.

Refinement top

All the H atoms were positioned geometrically and constrained to ride on their parent atom: C–H = 0.93, 0.98 and 0.96 Å for aromatic, methine and methyl H atoms, respectively, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.

Structure description top

Coumarin derivatives show strong activity against cancer cell lines (Kawaii et al., 2001) and exhibit monoamine oxidase inhibitory activity (Hossain et al., 1996). Antiulcer activity of some naturally occurring pyranocoumarins has been reported (Goel et al., 1997). They also show anti-hepatitis B virus, anti-filarial (Casley-Smith et al., 1993) and cytotoxic activities (Su et al., 2009) and anti-TB activity (Xu et al., 2006). One natural source coumarin derivative, Chalepin, inhibits the glyceraldehyde-3-phosphate dehydrogenase of parasites (Protein Data Bank ID code 1 K3T) (Pavao et al., 2002). Herein, we report on the crystal structure of the title coumarin derivative.

In the title molecule (Fig. 1) the six-membered pyrone ring of the coumarin ring system [DS (C9) = 0.163 (1) Å and D2 (C9—C8) = 0.029 (1) Å] and the pyran ring [DS (C8) = 0.065 (1) Å and D2 (C8—C7) = 0.075 (1) Å] both adopt a sofa conformation defined by the above asymmetry parameters (Nardelli, 1983). The mean plane of the pyran ring and the phenyl ring are tilted with respect to one another with a dihedral angle of 61.9 (1) °. The torsion angles H9—C9—C8—H8 = 51 (2)° and H8—C8—C7—H7 = 175.12 (2)°, define the ring fusions involving the in the fused pyrone and pyran ring system of the coumarin moiety.

In the crystal, molecules are linked by two pairs of C-H···O hydrogen bonds to form dimers. These dimers are linked via a third C-H···O hydrogen bond forming a two-dimensional network parallel to (10-2) [Table 1 and Fig. 2].

For the biological activity of pyranocoumarin compounds, see: Kawaii et al. (2001); Hossain et al. (1996); Goel et al. (1997); Su et al. (2009); Xu et al. (2006). For anti-filarial activity studies, see: Casley-Smith et al. (1993). For their enzyme inhibitory activity, see: Pavao et al. (2002). For asymmetry parameters, see: Nardelli (1983).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom lables. Displacement ellipsoids are drawn at the 30% probability level (H atoms have been omitted for clarity).
[Figure 2] Fig. 2. A view along the c axis of the crystal packing of the title compound. The C-H···O hydrogen bonds are shown as dashed lines. For the sake of clarity, H atoms not involved in these interactions have been omitted.
14-Ethoxy-4,6-dimethyl-9-phenyl-8,12-dioxa-4,6- diazatetracyclo[8.8.0.02,7.013,18]octadeca-2(7),13,15,17-tetraene- 3,5,11-trione top
Crystal data top
C23H20N2O6F(000) = 880
Mr = 420.41Dx = 1.420 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8834 reflections
a = 16.8362 (9) Åθ = 2.1–31.2°
b = 8.1692 (4) ŵ = 0.10 mm1
c = 14.4400 (8) ÅT = 293 K
β = 98.000 (3)°Block, colourless
V = 1966.72 (18) Å30.25 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4247 independent reflections
Radiation source: fine-focus sealed tube2943 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω and φ scanθmax = 26.9°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Bruker 2004)
h = 2121
Tmin = 0.979, Tmax = 0.983k = 1010
19858 measured reflectionsl = 1816
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0545P)2 + 0.6922P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4247 reflectionsΔρmax = 0.28 e Å3
281 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0027 (7)
Crystal data top
C23H20N2O6V = 1966.72 (18) Å3
Mr = 420.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.8362 (9) ŵ = 0.10 mm1
b = 8.1692 (4) ÅT = 293 K
c = 14.4400 (8) Å0.25 × 0.20 × 0.20 mm
β = 98.000 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4247 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker 2004)
2943 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.983Rint = 0.039
19858 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.04Δρmax = 0.28 e Å3
4247 reflectionsΔρmin = 0.19 e Å3
281 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.16385 (8)0.54434 (17)0.34721 (9)0.0456 (4)
O20.22837 (7)0.36035 (17)0.07300 (9)0.0438 (3)
O30.12638 (8)0.20829 (18)0.09730 (10)0.0513 (4)
O60.41821 (8)0.2943 (2)0.41399 (10)0.0548 (4)
O50.29499 (10)0.5286 (2)0.64093 (10)0.0632 (4)
N10.23397 (10)0.5455 (2)0.49074 (11)0.0433 (4)
O10.29820 (9)0.5214 (2)0.04780 (10)0.0547 (4)
N20.35919 (9)0.4205 (2)0.52645 (11)0.0450 (4)
C130.36037 (11)0.3696 (2)0.43419 (13)0.0412 (4)
C110.23195 (11)0.4981 (2)0.39956 (13)0.0379 (4)
C140.32631 (10)0.4522 (2)0.20279 (13)0.0369 (4)
C100.29172 (10)0.4137 (2)0.36840 (13)0.0367 (4)
C160.33429 (11)0.5327 (2)0.04229 (14)0.0427 (5)
C200.17880 (10)0.2965 (2)0.13077 (13)0.0387 (4)
C150.29621 (10)0.4502 (2)0.10910 (13)0.0378 (4)
C90.28330 (10)0.3522 (2)0.26942 (12)0.0365 (4)
H90.30450.24040.27070.044*
C80.19371 (10)0.3446 (2)0.23246 (13)0.0378 (4)
H80.16910.26180.26850.045*
C70.15484 (11)0.5103 (2)0.24763 (13)0.0386 (4)
H70.18210.59590.21640.046*
C10.06624 (11)0.5170 (2)0.21317 (14)0.0401 (4)
C120.29624 (12)0.4995 (3)0.55866 (14)0.0460 (5)
C220.16917 (14)0.6433 (3)0.52058 (15)0.0566 (6)
H22A0.18080.66470.58640.085*
H22C0.11960.58420.50790.085*
H22B0.16470.74500.48700.085*
C170.40429 (12)0.6166 (3)0.07246 (15)0.0515 (5)
H170.43130.67050.02940.062*
C190.39570 (11)0.5407 (3)0.23118 (15)0.0478 (5)
H190.41630.54590.29430.057*
C180.43425 (12)0.6208 (3)0.16645 (16)0.0555 (6)
H180.48110.67850.18630.067*
C60.04019 (13)0.5835 (3)0.12795 (15)0.0547 (6)
H60.07730.62740.09280.066*
C210.33837 (15)0.5946 (3)0.11801 (15)0.0631 (6)
H21A0.30710.57910.17820.095*
H21B0.39000.54450.11740.095*
H21C0.34510.70960.10560.095*
C230.42923 (13)0.3828 (3)0.59566 (16)0.0614 (6)
H23A0.46900.32780.56540.092*
H23B0.41320.31330.64340.092*
H23C0.45130.48250.62340.092*
C20.01032 (13)0.4541 (3)0.26413 (19)0.0633 (7)
H20.02670.40960.32300.076*
C40.09540 (13)0.5224 (3)0.14226 (19)0.0647 (7)
H40.14960.52290.11810.078*
C50.04080 (15)0.5868 (3)0.09263 (18)0.0679 (7)
H50.05750.63370.03450.082*
C30.07031 (14)0.4565 (3)0.2283 (2)0.0738 (8)
H30.10770.41290.26310.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0445 (7)0.0561 (8)0.0357 (7)0.0139 (6)0.0034 (6)0.0044 (6)
O20.0415 (7)0.0573 (8)0.0326 (7)0.0085 (6)0.0054 (6)0.0022 (6)
O30.0488 (8)0.0552 (8)0.0481 (9)0.0117 (7)0.0006 (7)0.0065 (7)
O60.0386 (7)0.0730 (10)0.0522 (9)0.0106 (7)0.0048 (6)0.0051 (8)
O50.0691 (10)0.0884 (12)0.0320 (8)0.0072 (9)0.0067 (7)0.0053 (8)
N10.0472 (9)0.0523 (10)0.0315 (9)0.0016 (7)0.0097 (7)0.0019 (7)
O10.0533 (8)0.0768 (10)0.0347 (8)0.0044 (7)0.0084 (6)0.0080 (7)
N20.0401 (9)0.0587 (10)0.0347 (9)0.0063 (8)0.0003 (7)0.0046 (8)
C130.0382 (10)0.0483 (11)0.0371 (11)0.0051 (9)0.0049 (8)0.0061 (9)
C110.0390 (9)0.0414 (10)0.0330 (10)0.0023 (8)0.0034 (8)0.0026 (8)
C140.0316 (9)0.0449 (10)0.0352 (10)0.0033 (8)0.0079 (7)0.0010 (8)
C100.0362 (9)0.0423 (10)0.0318 (10)0.0009 (8)0.0056 (7)0.0034 (8)
C160.0411 (10)0.0526 (11)0.0354 (11)0.0044 (9)0.0088 (8)0.0028 (9)
C200.0347 (9)0.0411 (10)0.0400 (11)0.0022 (8)0.0042 (8)0.0019 (8)
C150.0325 (9)0.0444 (10)0.0371 (11)0.0014 (8)0.0071 (8)0.0011 (8)
C90.0326 (9)0.0421 (10)0.0350 (10)0.0026 (7)0.0054 (7)0.0005 (8)
C80.0351 (9)0.0427 (10)0.0363 (10)0.0020 (8)0.0068 (7)0.0015 (8)
C70.0383 (9)0.0443 (10)0.0331 (10)0.0024 (8)0.0050 (8)0.0021 (8)
C10.0372 (10)0.0419 (10)0.0414 (11)0.0068 (8)0.0059 (8)0.0018 (8)
C120.0503 (11)0.0537 (12)0.0335 (11)0.0109 (9)0.0044 (9)0.0027 (9)
C220.0682 (14)0.0626 (14)0.0412 (12)0.0153 (11)0.0158 (10)0.0050 (10)
C170.0449 (11)0.0635 (14)0.0485 (13)0.0078 (10)0.0150 (9)0.0090 (10)
C190.0376 (10)0.0648 (13)0.0407 (11)0.0063 (9)0.0049 (8)0.0020 (10)
C180.0406 (11)0.0730 (15)0.0534 (14)0.0165 (10)0.0087 (9)0.0006 (11)
C60.0477 (11)0.0738 (15)0.0412 (12)0.0026 (11)0.0020 (9)0.0061 (11)
C210.0835 (17)0.0693 (15)0.0397 (13)0.0016 (13)0.0199 (12)0.0094 (11)
C230.0477 (12)0.0874 (17)0.0450 (13)0.0090 (12)0.0078 (10)0.0099 (12)
C20.0467 (12)0.0761 (16)0.0682 (16)0.0043 (11)0.0122 (11)0.0215 (13)
C40.0387 (11)0.0757 (16)0.0765 (18)0.0069 (11)0.0033 (12)0.0295 (14)
C50.0590 (14)0.0907 (19)0.0489 (14)0.0113 (13)0.0111 (11)0.0079 (13)
C30.0445 (12)0.0807 (18)0.099 (2)0.0016 (12)0.0204 (14)0.0022 (16)
Geometric parameters (Å, º) top
O4—C111.337 (2)C7—C11.506 (2)
O4—C71.452 (2)C7—H70.9800
O2—C201.363 (2)C1—C61.361 (3)
O2—C151.396 (2)C1—C21.373 (3)
O3—C201.189 (2)C22—H22A0.9600
O6—C131.221 (2)C22—H22C0.9600
O5—C121.215 (2)C22—H22B0.9600
N1—C111.368 (2)C17—C181.381 (3)
N1—C121.384 (3)C17—H170.9300
N1—C221.465 (3)C19—C181.376 (3)
O1—C161.360 (2)C19—H190.9300
O1—C211.426 (2)C18—H180.9300
N2—C121.376 (3)C6—C51.388 (3)
N2—C131.398 (3)C6—H60.9300
N2—C231.468 (2)C21—H21A0.9600
C13—C101.436 (2)C21—H21B0.9600
C11—C101.348 (3)C21—H21C0.9600
C14—C151.377 (3)C23—H23A0.9600
C14—C191.386 (3)C23—H23B0.9600
C14—C91.520 (2)C23—H23C0.9600
C10—C91.503 (3)C2—C31.384 (3)
C16—C171.381 (3)C2—H20.9300
C16—C151.403 (3)C4—C51.349 (4)
C20—C81.507 (3)C4—C31.366 (4)
C9—C81.530 (2)C4—H40.9300
C9—H90.9800C5—H50.9300
C8—C71.533 (3)C3—H30.9300
C8—H80.9800
C11—O4—C7117.97 (14)C6—C1—C2118.38 (19)
C20—O2—C15120.75 (14)C6—C1—C7119.54 (18)
C11—N1—C12121.34 (17)C2—C1—C7122.06 (18)
C11—N1—C22121.18 (16)O5—C12—N2122.78 (19)
C12—N1—C22117.46 (17)O5—C12—N1121.7 (2)
C16—O1—C21117.29 (17)N2—C12—N1115.52 (17)
C12—N2—C13125.11 (16)N1—C22—H22A109.5
C12—N2—C23116.86 (17)N1—C22—H22C109.5
C13—N2—C23118.00 (17)H22A—C22—H22C109.5
O6—C13—N2119.66 (17)N1—C22—H22B109.5
O6—C13—C10124.30 (18)H22A—C22—H22B109.5
N2—C13—C10116.04 (17)H22C—C22—H22B109.5
O4—C11—C10125.25 (17)C18—C17—C16120.08 (19)
O4—C11—N1111.64 (16)C18—C17—H17120.0
C10—C11—N1123.11 (17)C16—C17—H17120.0
C15—C14—C19118.45 (18)C18—C19—C14120.33 (19)
C15—C14—C9118.22 (16)C18—C19—H19119.8
C19—C14—C9123.30 (17)C14—C19—H19119.8
C11—C10—C13118.49 (17)C19—C18—C17120.93 (19)
C11—C10—C9120.83 (16)C19—C18—H18119.5
C13—C10—C9120.39 (16)C17—C18—H18119.5
O1—C16—C17125.70 (18)C1—C6—C5121.1 (2)
O1—C16—C15116.05 (17)C1—C6—H6119.4
C17—C16—C15118.25 (18)C5—C6—H6119.4
O3—C20—O2117.79 (17)O1—C21—H21A109.5
O3—C20—C8124.59 (18)O1—C21—H21B109.5
O2—C20—C8117.62 (15)H21A—C21—H21B109.5
C14—C15—O2122.90 (16)O1—C21—H21C109.5
C14—C15—C16121.94 (17)H21A—C21—H21C109.5
O2—C15—C16115.09 (16)H21B—C21—H21C109.5
C10—C9—C14115.59 (15)N2—C23—H23A109.5
C10—C9—C8107.66 (14)N2—C23—H23B109.5
C14—C9—C8109.55 (14)H23A—C23—H23B109.5
C10—C9—H9107.9N2—C23—H23C109.5
C14—C9—H9107.9H23A—C23—H23C109.5
C8—C9—H9107.9H23B—C23—H23C109.5
C20—C8—C9111.91 (15)C1—C2—C3120.3 (2)
C20—C8—C7110.65 (15)C1—C2—H2119.8
C9—C8—C7109.51 (15)C3—C2—H2119.8
C20—C8—H8108.2C5—C4—C3119.3 (2)
C9—C8—H8108.2C5—C4—H4120.3
C7—C8—H8108.2C3—C4—H4120.3
O4—C7—C1106.40 (15)C4—C5—C6120.3 (2)
O4—C7—C8108.85 (14)C4—C5—H5119.9
C1—C7—C8114.07 (15)C6—C5—H5119.9
O4—C7—H7109.1C4—C3—C2120.6 (2)
C1—C7—H7109.1C4—C3—H3119.7
C8—C7—H7109.1C2—C3—H3119.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.932.593.514 (3)172
C5—H5···O3i0.932.453.361 (3)165
C18—H18···O6ii0.932.563.215 (3)128
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC23H20N2O6
Mr420.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)16.8362 (9), 8.1692 (4), 14.4400 (8)
β (°) 98.000 (3)
V3)1966.72 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker 2004)
Tmin, Tmax0.979, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
19858, 4247, 2943
Rint0.039
(sin θ/λ)max1)0.637
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.130, 1.04
No. of reflections4247
No. of parameters281
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.19

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.932.593.514 (3)172
C5—H5···O3i0.932.453.361 (3)165
C18—H18···O6ii0.932.563.215 (3)128
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

SA thanks the UGC, India, for financial support

References

First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCasley-Smith, J. R., Wang, C. T., Casley-Smith, J. R. & Zi-hai, C. (1993). Br. Med. J. 307, 1037–1041.  CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGoel, R. K., Maiti, R. N., Manickam, M. & Ray, A. B. (1997). Indian J. Exp. Biol. 35, 1080–1083.  CAS PubMed Google Scholar
First citationHossain, C. F., Okuyama, E. & Yamazaki, M. (1996). Chem. Pharm. Bull. (Tokyo), 44, 1535–1539.  CrossRef CAS PubMed Google Scholar
First citationKawaii, S., Tomono, Y., Ogawa, K., Sugiura, M., Yano, M., Yoshizawa, Y., Ito, C. & Furukawa, H. (2001). Anticancer Res. 21, 1905–1911.  Web of Science PubMed CAS Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPavao, F., Castilho, M. S., Pupo, M. T., Dias, R. L. A., Correa, A. G., Fernandes, J. B., Da Silva, M. F. G. F., Mafezoli, J., Vieir, P. C. & Oliva, G. (2002). FEBS Lett. 520, 13–17.  Web of Science PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, C. R., Yeh, S. F., Liu, C. M., Damu, A. G., Kuo, T. H., Chiang, P. C., Bastow, K. F., Lee, K. H. & Wu, T. S. (2009). Bioorg. Med. Chem. 17, 6137–6143.  Web of Science CrossRef PubMed CAS Google Scholar
First citationXu, Z. Q., Pupek, K., Suling, W. J., Enache, L. & Flavin, M. T. (2006). Bioorg. Med. Chem. 14, 4610–4626.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds