organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(8-Benzoyl-2,7-dieth­­oxy­naphthalen-1-yl)(phen­yl)methanone

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, 2-24-16 Naka-machi, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp

(Received 5 December 2012; accepted 6 December 2012; online 12 December 2012)

In the title compound, C28H24O4, the benzoyl groups at the 1- and 8-positions of the naphthalene ring system are aligned almost anti­parallel, and the benzene rings make a dihedral angle of 20.03 (7)°. The dihedral angles between the benzene rings and the naphthalene ring system are 68.42 (5) and 71.69 (5)°. In the crystal, adjacent mol­ecules are linked via C—H⋯O hydrogen bonds, forming chains propagating along [100].

Related literature

For electrophilic aroylation of naphthalene derivatives, see: Okamoto & Yonezawa (2009[Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915.]); Okamoto et al. (2011[Okamoto, A., Mitsui, R. & Yonezawa, N. (2011). Chem. Lett. 40, 1283-1284.]). For the structures of closely related compounds, see: Nakaema et al. (2008[Nakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807.]); Nishijima et al. (2010[Nishijima, T., Kataoka, K., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2904-o2905.]); Sasagawa et al. (2011[Sasagawa, K., Muto, T., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o3354.]); Tsumuki et al. (2011[Tsumuki, T., Hijikata, D., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o2095.]); Muto et al. (2012[Muto, T., Sasagawa, K., Okamoto, A., Oike, H. & Yonezawa, N. (2012). Acta Cryst. E68, o1200.]).

[Scheme 1]

Experimental

Crystal data
  • C28H24O4

  • Mr = 424.47

  • Monoclinic, P 21 /n

  • a = 7.92185 (14) Å

  • b = 20.6794 (4) Å

  • c = 14.2130 (3) Å

  • β = 106.043 (1)°

  • V = 2237.68 (7) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.67 mm−1

  • T = 193 K

  • 0.60 × 0.50 × 0.10 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.689, Tmax = 0.936

  • 39782 measured reflections

  • 4076 independent reflections

  • 3736 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.091

  • S = 1.05

  • 4076 reflections

  • 292 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O3i 0.95 2.37 3.2404 (16) 153
C21—H21⋯O4ii 0.95 2.39 3.3326 (16) 171
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: IL MILIONE (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & &Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the course of our study on selective electrophilic aromatic aroylation of naphthalene ring core, 1,8-diaroylnaphthalene compounds have proved to be formed regioselectively by the aid of a suitable acidic mediator (Okamoto & Yonezawa, 2009, Okamoto et al., 2011). Recently, we have reported the X-ray crystal structure of 1,8-diaroyled 2,7-dimethoxynaphthalene derivatives such as 1,8-bis(4-aminobenzoyl)-2,7-dimethoxynaphthalene (Nishijima et al., 2010), [8-(4-butoxybenzoyl)-2,7-dimethoxynaphthalen-1-yl](4-butoxyphenyl)methanone [1,8-bis(4-butoxybenzoyl)-2,7-dimethoxynaphthalene] (Sasagawa et al., 2011), [2,7-dimethoxy-8-(2-naphthoyl)naphthalene-1-yl](naphthalene-2-yl)methanone [2,7-dimethoxy-1,8-bis(2-naphthoyl)naphthalene] (Tsumuki et al., 2011), and (3,5-dimethylphenyl)[8-(3,5-dimethylbenzoyl)-2,7-dimethoxynaphthalen-1-yl]methanone (Muto et al., 2012). The simplest molecule in these analogues, 1,8-dibenzoyl-2,7-dimethoxynaphthalene (Nakaema et al., 2008), lies across a crystallographic 2-fold axis and the molecular packing is stabilized by C—H···O interactions between carbonyl groups and benzene ring and π···π interactions between benzene rings. As a part of our ongoing studies on the molecular structures of these kinds of homologous molecules, the X-ray crystal structure of the title compound, is reported on herein.

The molecule structure of the title molecule is illustrated in Fig. 1. The two benzoyl groups are situated in an (anti)-orientation and twisted away from the attached naphthalene ring. The dihedral angle between the planes of the two benzene rings (C12-C17 & C19-C24) is 20.03 (7)°. The dihedral angles between these benzene rings and the naphthalene (C1-C10) ring are 68.42 (5)° and 71.69 (5)°. These dihedral angles are similar to that reported for 1,8-dibenzoyl-2,7-dimethoxynaphthalene [80.25 (6)°; Nakaema et al., 2008]. The torsion angles between the carbonyl groups and the naphthalene ring are -63.28 (14)° [C9—C1—C11—O3] and -66.19 (14)° [C9—C8—C18—O4]. The CO groups lie almost in the plane of the attached benzene ring with torsion angles equal to 1.58 (17)° [O3—C11—C12—C17] and 1.44 (17)° [O4—C18—C19—C24].

In the crystal, the molecular packing of the title compound is mainly stabilized by two types of C—H···O interactions involving adjacent molecules and leading to the formation of chains along the a axis (Table 1 and Fig. 2).

Related literature top

For electrophilic aroylation of naphthalene derivatives, see: Okamoto & Yonezawa (2009); Okamoto et al. (2011). For the structures of closely related compounds, see: Nakaema et al. (2008); Nishijima et al. (2010); Sasagawa et al. (2011); Tsumuki et al. (2011); Muto et al. (2012).

Experimental top

To a 100 ml flask, benzoyl chloride (422 mg, 3.0 mmol), titanium chloride (1.71 g, 9.0 mmol) and methylene chloride (1.5 ml) were stirred at 298 K under nitrogen atmosphere. To reaction mixture thus obtained, 2,7-diethoxynaphtharene (216 mg, 1.0 mmol) and methylene chloride (1.0 ml) were added. After the reaction mixture was stirred at r.t. for 24 h, it was poured into ice-cold water (20 ml). The aqueous layer was extracted with CHCl3 (10 ml × 3). The combined extracts were washed with 2 M aqueous NaOH followed by washing with brine. The organic layers thus obtained were dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give cake. The crude product was purified by recrystallization from CHCl3/methanol (1: 2 v/v) solution (81% yield). Colorless platelet single crystals suitable for X-ray diffraction were obtained by repeated crystallization from a CHCl3/ methanol (1:2 v/v) solution (52% yield). Anal. Calcd for C28H24O4: C 79.22, H5.70. Found: C 79.32, H 5.84.; M.p. = 467–468 K. Spectroscopic data for the title compound are available in the archived CIF.

Refinement top

All the H atoms were located in a difference Fourier map and were subsequently refined as riding atoms: C—H = 0.95 (aromatic), 0.98 (methyl) and 0.99 (methylene) Å, with Uiso(H) = 1.2 Ueq(C).

Structure description top

In the course of our study on selective electrophilic aromatic aroylation of naphthalene ring core, 1,8-diaroylnaphthalene compounds have proved to be formed regioselectively by the aid of a suitable acidic mediator (Okamoto & Yonezawa, 2009, Okamoto et al., 2011). Recently, we have reported the X-ray crystal structure of 1,8-diaroyled 2,7-dimethoxynaphthalene derivatives such as 1,8-bis(4-aminobenzoyl)-2,7-dimethoxynaphthalene (Nishijima et al., 2010), [8-(4-butoxybenzoyl)-2,7-dimethoxynaphthalen-1-yl](4-butoxyphenyl)methanone [1,8-bis(4-butoxybenzoyl)-2,7-dimethoxynaphthalene] (Sasagawa et al., 2011), [2,7-dimethoxy-8-(2-naphthoyl)naphthalene-1-yl](naphthalene-2-yl)methanone [2,7-dimethoxy-1,8-bis(2-naphthoyl)naphthalene] (Tsumuki et al., 2011), and (3,5-dimethylphenyl)[8-(3,5-dimethylbenzoyl)-2,7-dimethoxynaphthalen-1-yl]methanone (Muto et al., 2012). The simplest molecule in these analogues, 1,8-dibenzoyl-2,7-dimethoxynaphthalene (Nakaema et al., 2008), lies across a crystallographic 2-fold axis and the molecular packing is stabilized by C—H···O interactions between carbonyl groups and benzene ring and π···π interactions between benzene rings. As a part of our ongoing studies on the molecular structures of these kinds of homologous molecules, the X-ray crystal structure of the title compound, is reported on herein.

The molecule structure of the title molecule is illustrated in Fig. 1. The two benzoyl groups are situated in an (anti)-orientation and twisted away from the attached naphthalene ring. The dihedral angle between the planes of the two benzene rings (C12-C17 & C19-C24) is 20.03 (7)°. The dihedral angles between these benzene rings and the naphthalene (C1-C10) ring are 68.42 (5)° and 71.69 (5)°. These dihedral angles are similar to that reported for 1,8-dibenzoyl-2,7-dimethoxynaphthalene [80.25 (6)°; Nakaema et al., 2008]. The torsion angles between the carbonyl groups and the naphthalene ring are -63.28 (14)° [C9—C1—C11—O3] and -66.19 (14)° [C9—C8—C18—O4]. The CO groups lie almost in the plane of the attached benzene ring with torsion angles equal to 1.58 (17)° [O3—C11—C12—C17] and 1.44 (17)° [O4—C18—C19—C24].

In the crystal, the molecular packing of the title compound is mainly stabilized by two types of C—H···O interactions involving adjacent molecules and leading to the formation of chains along the a axis (Table 1 and Fig. 2).

For electrophilic aroylation of naphthalene derivatives, see: Okamoto & Yonezawa (2009); Okamoto et al. (2011). For the structures of closely related compounds, see: Nakaema et al. (2008); Nishijima et al. (2010); Sasagawa et al. (2011); Tsumuki et al. (2011); Muto et al. (2012).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: IL MILIONE (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title molecule, with atom numbering. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial view of the crystal packing of the title compound, showing the intermolecular C-H···O hydrogen bonds (see Table 1 for details; symmetry codes: (i) x+1, y, z; (ii) x-1, y, z).
(8-Benzoyl-2,7-diethoxynaphthalen-1-yl)(phenyl)methanone top
Crystal data top
C28H24O4F(000) = 896
Mr = 424.47Dx = 1.260 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54187 Å
Hall symbol: -P 2ynCell parameters from 37233 reflections
a = 7.92185 (14) Åθ = 3.2–68.3°
b = 20.6794 (4) ŵ = 0.67 mm1
c = 14.2130 (3) ÅT = 193 K
β = 106.043 (1)°Needle, colourless
V = 2237.68 (7) Å30.60 × 0.50 × 0.10 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4076 independent reflections
Radiation source: fine-focus sealed tube3736 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 10.000 pixels mm-1θmax = 68.2°, θmin = 3.9°
ω scansh = 99
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 2424
Tmin = 0.689, Tmax = 0.936l = 1717
39782 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0439P)2 + 0.5163P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4076 reflectionsΔρmax = 0.23 e Å3
292 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0075 (3)
Crystal data top
C28H24O4V = 2237.68 (7) Å3
Mr = 424.47Z = 4
Monoclinic, P21/nCu Kα radiation
a = 7.92185 (14) ŵ = 0.67 mm1
b = 20.6794 (4) ÅT = 193 K
c = 14.2130 (3) Å0.60 × 0.50 × 0.10 mm
β = 106.043 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4076 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
3736 reflections with I > 2σ(I)
Tmin = 0.689, Tmax = 0.936Rint = 0.041
39782 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.05Δρmax = 0.23 e Å3
4076 reflectionsΔρmin = 0.16 e Å3
292 parameters
Special details top

Experimental. Spectroscopic data for the title compound: 1H NMR δ (300 MHz, CDCl3); 0.91 (6H, t, J = 6.9 Hz), 3.95 (4H, q, J = 6.9 Hz), 7.16 (2H, d, J = 9.0 Hz), 7.35 (4H, t, J = 7.2 Hz), 7.49(2H, t, J = 7.2 Hz), 7.73 (4H, d, J = 7.2 Hz), 7.91 (2H, d, J = 9.0 Hz) p.p.m.; 13C NMR δ (75 MHz, CDCl3); 13.92, 64.42, 111.89, 121.27, 125.05, 127.43, 128.54, 129.80, 131.79, 131.95, 138.93, 155.52, 197.04 p.p.m.; IR (KBr, cm-1): 1665 (C O), 1612, 1510, 1452 (Ar), 1266 (C—O—C).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.29349 (11)0.08669 (4)1.04839 (6)0.0381 (2)
O20.21634 (12)0.01858 (4)0.55669 (6)0.0458 (2)
O30.02728 (10)0.16304 (4)0.86895 (6)0.0383 (2)
O40.08625 (10)0.12983 (4)0.66958 (6)0.0414 (2)
C10.12835 (13)0.06508 (5)0.88895 (8)0.0299 (2)
C20.21642 (14)0.04134 (5)0.98017 (8)0.0325 (3)
C30.21668 (15)0.02515 (6)1.00229 (9)0.0367 (3)
H30.27810.04061.06540.044*
C40.12768 (15)0.06697 (6)0.93199 (9)0.0375 (3)
H40.12680.11170.94710.045*
C50.05370 (16)0.08988 (6)0.76527 (10)0.0398 (3)
H50.05360.13440.78170.048*
C60.14091 (16)0.07056 (6)0.67303 (9)0.0410 (3)
H60.20120.10120.62580.049*
C70.14038 (15)0.00448 (6)0.64861 (9)0.0361 (3)
C80.05794 (14)0.04132 (5)0.71690 (8)0.0314 (2)
C90.03474 (13)0.02192 (5)0.81381 (8)0.0302 (2)
C100.03651 (14)0.04555 (5)0.83711 (9)0.0341 (3)
C110.11515 (14)0.13756 (5)0.87770 (8)0.0299 (2)
C120.27340 (14)0.17695 (5)0.87977 (8)0.0320 (2)
C130.43562 (15)0.14857 (6)0.88777 (9)0.0390 (3)
H130.44680.10280.89100.047*
C140.58108 (16)0.18650 (7)0.89110 (10)0.0477 (3)
H140.69180.16680.89660.057*
C150.56497 (18)0.25260 (7)0.88645 (11)0.0542 (4)
H150.66500.27870.88930.065*
C160.4039 (2)0.28145 (7)0.87758 (13)0.0586 (4)
H160.39330.32720.87390.070*
C170.25816 (17)0.24361 (6)0.87402 (11)0.0455 (3)
H170.14740.26340.86760.055*
C180.05219 (14)0.10942 (5)0.67903 (8)0.0310 (2)
C190.21431 (14)0.14952 (5)0.65338 (8)0.0310 (2)
C200.37066 (15)0.12789 (6)0.66818 (9)0.0390 (3)
H200.37620.08600.69470.047*
C210.51890 (16)0.16678 (7)0.64465 (10)0.0459 (3)
H210.62570.15160.65470.055*
C220.51078 (18)0.22760 (7)0.60655 (10)0.0483 (3)
H220.61260.25410.58980.058*
C230.35529 (19)0.25015 (7)0.59266 (11)0.0531 (4)
H230.34980.29240.56730.064*
C240.20769 (17)0.21117 (6)0.61576 (10)0.0435 (3)
H240.10100.22670.60580.052*
C250.42914 (16)0.06661 (6)1.13328 (9)0.0420 (3)
H25A0.51390.03791.11400.050*
H25B0.37770.04291.17920.050*
C260.5191 (2)0.12683 (7)1.18056 (11)0.0571 (4)
H26A0.43570.15341.20320.068*
H26B0.56240.15131.13290.068*
H26C0.61810.11511.23650.068*
C270.26626 (18)0.02602 (7)0.47696 (9)0.0469 (3)
H27A0.36610.05300.48300.056*
H27B0.16670.05490.47660.056*
C280.31808 (19)0.01303 (7)0.38490 (10)0.0515 (3)
H28A0.22050.04130.38170.062*
H28B0.42110.03940.38440.062*
H28C0.34650.01600.32820.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0391 (4)0.0380 (4)0.0334 (4)0.0027 (3)0.0035 (3)0.0007 (3)
O20.0568 (6)0.0368 (5)0.0362 (5)0.0032 (4)0.0001 (4)0.0053 (4)
O30.0266 (4)0.0375 (4)0.0499 (5)0.0040 (3)0.0094 (4)0.0037 (4)
O40.0306 (4)0.0456 (5)0.0502 (5)0.0024 (3)0.0149 (4)0.0054 (4)
C10.0243 (5)0.0317 (6)0.0356 (6)0.0007 (4)0.0114 (4)0.0011 (4)
C20.0275 (5)0.0355 (6)0.0355 (6)0.0016 (4)0.0105 (5)0.0005 (5)
C30.0343 (6)0.0389 (6)0.0372 (6)0.0056 (5)0.0103 (5)0.0077 (5)
C40.0375 (6)0.0304 (6)0.0463 (7)0.0036 (5)0.0146 (5)0.0069 (5)
C50.0424 (7)0.0278 (6)0.0502 (7)0.0005 (5)0.0146 (6)0.0009 (5)
C60.0421 (7)0.0326 (6)0.0463 (7)0.0014 (5)0.0090 (6)0.0082 (5)
C70.0335 (6)0.0362 (6)0.0376 (6)0.0029 (5)0.0081 (5)0.0026 (5)
C80.0271 (5)0.0310 (6)0.0371 (6)0.0027 (4)0.0104 (5)0.0006 (5)
C90.0252 (5)0.0309 (5)0.0366 (6)0.0017 (4)0.0120 (4)0.0006 (4)
C100.0314 (6)0.0305 (6)0.0423 (7)0.0022 (4)0.0136 (5)0.0014 (5)
C110.0263 (5)0.0336 (6)0.0288 (5)0.0019 (4)0.0059 (4)0.0014 (4)
C120.0286 (6)0.0341 (6)0.0316 (6)0.0007 (4)0.0054 (4)0.0023 (4)
C130.0304 (6)0.0393 (6)0.0472 (7)0.0021 (5)0.0104 (5)0.0066 (5)
C140.0273 (6)0.0594 (8)0.0551 (8)0.0003 (5)0.0090 (6)0.0139 (7)
C150.0394 (7)0.0570 (9)0.0628 (9)0.0168 (6)0.0085 (6)0.0119 (7)
C160.0539 (8)0.0367 (7)0.0840 (11)0.0087 (6)0.0171 (8)0.0089 (7)
C170.0377 (7)0.0362 (7)0.0616 (8)0.0017 (5)0.0119 (6)0.0057 (6)
C180.0291 (5)0.0345 (6)0.0291 (6)0.0020 (4)0.0077 (4)0.0019 (4)
C190.0307 (6)0.0317 (6)0.0295 (6)0.0002 (4)0.0065 (4)0.0018 (4)
C200.0327 (6)0.0339 (6)0.0501 (7)0.0020 (5)0.0110 (5)0.0004 (5)
C210.0296 (6)0.0488 (7)0.0579 (8)0.0000 (5)0.0097 (6)0.0075 (6)
C220.0419 (7)0.0497 (8)0.0476 (8)0.0163 (6)0.0030 (6)0.0005 (6)
C230.0581 (8)0.0433 (7)0.0585 (9)0.0130 (6)0.0173 (7)0.0170 (6)
C240.0419 (7)0.0410 (7)0.0498 (8)0.0018 (5)0.0162 (6)0.0098 (6)
C250.0373 (6)0.0481 (7)0.0360 (6)0.0040 (5)0.0026 (5)0.0033 (5)
C260.0538 (8)0.0551 (9)0.0504 (8)0.0017 (7)0.0055 (7)0.0013 (7)
C270.0516 (8)0.0469 (7)0.0394 (7)0.0044 (6)0.0082 (6)0.0101 (6)
C280.0513 (8)0.0602 (9)0.0406 (7)0.0046 (6)0.0091 (6)0.0049 (6)
Geometric parameters (Å, º) top
O1—C21.3657 (14)C15—C161.382 (2)
O1—C251.4374 (14)C15—H150.9500
O2—C71.3645 (15)C16—C171.3841 (18)
O2—C271.4297 (15)C16—H160.9500
O3—C111.2201 (13)C17—H170.9500
O4—C181.2167 (13)C18—C191.4870 (15)
C1—C21.3815 (16)C19—C201.3865 (16)
C1—C91.4315 (15)C19—C241.3890 (17)
C1—C111.5079 (15)C20—C211.3858 (17)
C2—C31.4104 (16)C20—H200.9500
C3—C41.3616 (17)C21—C221.378 (2)
C3—H30.9500C21—H210.9500
C4—C101.4135 (17)C22—C231.381 (2)
C4—H40.9500C22—H220.9500
C5—C61.3620 (18)C23—C241.3830 (18)
C5—C101.4108 (17)C23—H230.9500
C5—H50.9500C24—H240.9500
C6—C71.4101 (17)C25—C261.4985 (19)
C6—H60.9500C25—H25A0.9900
C7—C81.3839 (16)C25—H25B0.9900
C8—C91.4277 (16)C26—H26A0.9800
C8—C181.5129 (15)C26—H26B0.9800
C9—C101.4331 (15)C26—H26C0.9800
C11—C121.4886 (15)C27—C281.4952 (19)
C12—C171.3842 (17)C27—H27A0.9900
C12—C131.3886 (15)C27—H27B0.9900
C13—C141.3839 (17)C28—H28A0.9800
C13—H130.9500C28—H28B0.9800
C14—C151.373 (2)C28—H28C0.9800
C14—H140.9500
C2—O1—C25118.78 (9)C17—C16—H16120.0
C7—O2—C27119.05 (10)C16—C17—C12120.17 (12)
C2—C1—C9120.12 (10)C16—C17—H17119.9
C2—C1—C11117.05 (10)C12—C17—H17119.9
C9—C1—C11122.29 (10)O4—C18—C19121.56 (10)
O1—C2—C1115.67 (10)O4—C18—C8118.61 (10)
O1—C2—C3122.57 (10)C19—C18—C8119.83 (9)
C1—C2—C3121.66 (11)C20—C19—C24119.00 (11)
C4—C3—C2119.15 (11)C20—C19—C18122.01 (10)
C4—C3—H3120.4C24—C19—C18118.96 (10)
C2—C3—H3120.4C21—C20—C19120.60 (11)
C3—C4—C10121.70 (11)C21—C20—H20119.7
C3—C4—H4119.1C19—C20—H20119.7
C10—C4—H4119.1C22—C21—C20119.74 (12)
C6—C5—C10121.79 (11)C22—C21—H21120.1
C6—C5—H5119.1C20—C21—H21120.1
C10—C5—H5119.1C21—C22—C23120.31 (12)
C5—C6—C7119.08 (11)C21—C22—H22119.8
C5—C6—H6120.5C23—C22—H22119.8
C7—C6—H6120.5C22—C23—C24119.87 (12)
O2—C7—C8115.47 (10)C22—C23—H23120.1
O2—C7—C6122.95 (11)C24—C23—H23120.1
C8—C7—C6121.56 (11)C23—C24—C19120.46 (12)
C7—C8—C9120.10 (10)C23—C24—H24119.8
C7—C8—C18116.25 (10)C19—C24—H24119.8
C9—C8—C18123.15 (10)O1—C25—C26106.80 (10)
C8—C9—C1124.53 (10)O1—C25—H25A110.4
C8—C9—C10117.78 (10)C26—C25—H25A110.4
C1—C9—C10117.69 (10)O1—C25—H25B110.4
C5—C10—C4120.66 (11)C26—C25—H25B110.4
C5—C10—C9119.65 (11)H25A—C25—H25B108.6
C4—C10—C9119.69 (11)C25—C26—H26A109.5
O3—C11—C12121.04 (10)C25—C26—H26B109.5
O3—C11—C1118.37 (9)H26A—C26—H26B109.5
C12—C11—C1120.57 (9)C25—C26—H26C109.5
C17—C12—C13119.30 (11)H26A—C26—H26C109.5
C17—C12—C11118.99 (10)H26B—C26—H26C109.5
C13—C12—C11121.71 (10)O2—C27—C28107.10 (11)
C14—C13—C12120.42 (12)O2—C27—H27A110.3
C14—C13—H13119.8C28—C27—H27A110.3
C12—C13—H13119.8O2—C27—H27B110.3
C15—C14—C13119.82 (12)C28—C27—H27B110.3
C15—C14—H14120.1H27A—C27—H27B108.5
C13—C14—H14120.1C27—C28—H28A109.5
C14—C15—C16120.36 (12)C27—C28—H28B109.5
C14—C15—H15119.8H28A—C28—H28B109.5
C16—C15—H15119.8C27—C28—H28C109.5
C15—C16—C17119.93 (13)H28A—C28—H28C109.5
C15—C16—H16120.0H28B—C28—H28C109.5
C25—O1—C2—C1161.30 (10)C2—C1—C11—O3108.29 (12)
C25—O1—C2—C322.47 (15)C9—C1—C11—O363.28 (14)
C9—C1—C2—O1176.52 (9)C2—C1—C11—C1270.21 (13)
C11—C1—C2—O14.75 (14)C9—C1—C11—C12118.21 (11)
C9—C1—C2—C30.25 (16)O3—C11—C12—C171.58 (17)
C11—C1—C2—C3171.51 (10)C1—C11—C12—C17176.88 (11)
O1—C2—C3—C4175.92 (10)O3—C11—C12—C13178.72 (11)
C1—C2—C3—C40.08 (16)C1—C11—C12—C132.81 (16)
C2—C3—C4—C100.64 (17)C17—C12—C13—C140.74 (19)
C10—C5—C6—C70.25 (18)C11—C12—C13—C14178.95 (11)
C27—O2—C7—C8164.97 (11)C12—C13—C14—C150.0 (2)
C27—O2—C7—C613.53 (17)C13—C14—C15—C160.6 (2)
C5—C6—C7—O2176.45 (11)C14—C15—C16—C170.4 (2)
C5—C6—C7—C81.97 (18)C15—C16—C17—C120.3 (2)
O2—C7—C8—C9176.28 (9)C13—C12—C17—C160.9 (2)
C6—C7—C8—C92.25 (17)C11—C12—C17—C16178.82 (13)
O2—C7—C8—C184.12 (14)C7—C8—C18—O4105.71 (12)
C6—C7—C8—C18174.41 (10)C9—C8—C18—O466.19 (14)
C7—C8—C9—C1178.17 (10)C7—C8—C18—C1973.69 (13)
C18—C8—C9—C16.58 (16)C9—C8—C18—C19114.42 (12)
C7—C8—C9—C100.83 (15)O4—C18—C19—C20176.90 (11)
C18—C8—C9—C10172.42 (9)C8—C18—C19—C203.72 (16)
C2—C1—C9—C8178.97 (10)O4—C18—C19—C241.44 (17)
C11—C1—C9—C89.71 (16)C8—C18—C19—C24177.94 (11)
C2—C1—C9—C100.03 (14)C24—C19—C20—C210.84 (18)
C11—C1—C9—C10171.29 (9)C18—C19—C20—C21179.18 (11)
C6—C5—C10—C4179.28 (11)C19—C20—C21—C220.3 (2)
C6—C5—C10—C91.12 (17)C20—C21—C22—C230.6 (2)
C3—C4—C10—C5179.54 (11)C21—C22—C23—C240.9 (2)
C3—C4—C10—C90.86 (17)C22—C23—C24—C190.3 (2)
C8—C9—C10—C50.82 (15)C20—C19—C24—C230.53 (19)
C1—C9—C10—C5179.89 (10)C18—C19—C24—C23178.92 (12)
C8—C9—C10—C4179.57 (10)C2—O1—C25—C26165.89 (11)
C1—C9—C10—C40.50 (15)C7—O2—C27—C28171.15 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O3i0.952.373.2404 (16)153
C21—H21···O4ii0.952.393.3326 (16)171
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC28H24O4
Mr424.47
Crystal system, space groupMonoclinic, P21/n
Temperature (K)193
a, b, c (Å)7.92185 (14), 20.6794 (4), 14.2130 (3)
β (°) 106.043 (1)
V3)2237.68 (7)
Z4
Radiation typeCu Kα
µ (mm1)0.67
Crystal size (mm)0.60 × 0.50 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.689, 0.936
No. of measured, independent and
observed [I > 2σ(I)] reflections
39782, 4076, 3736
Rint0.041
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.091, 1.05
No. of reflections4076
No. of parameters292
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.16

Computer programs: PROCESS-AUTO (Rigaku, 1998), IL MILIONE (Burla et al., 2007), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O3i0.952.373.2404 (16)153
C21—H21···O4ii0.952.393.3326 (16)171
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
 

Acknowledgements

The authors express their gratitude to Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture & Technology, for technical advice. This work was partially supported by the Ogasawara Foundation for the Promotion of Science & Engineering, Tokyo, Japan.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & &Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.  Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMuto, T., Sasagawa, K., Okamoto, A., Oike, H. & Yonezawa, N. (2012). Acta Cryst. E68, o1200.  CSD CrossRef IUCr Journals Google Scholar
First citationNakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNishijima, T., Kataoka, K., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2904–o2905.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkamoto, A., Mitsui, R. & Yonezawa, N. (2011). Chem. Lett. 40, 1283–1284.  Web of Science CrossRef CAS Google Scholar
First citationOkamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSasagawa, K., Muto, T., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o3354.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTsumuki, T., Hijikata, D., Okamoto, A., Oike, H. & Yonezawa, N. (2011). Acta Cryst. E67, o2095.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds