metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[(1RS,2RS)-4,4′-(1-aza­niumyl-2-hy­dr­oxy­ethane-1,2-di­yl)dipyridinium] tris­­[tetra­chloridopalladate(II)]

aFacultad de Ingenieria Mochis, Universidad Autonoma de Sinaloa, Fuente Poseidon y Prol. A. Flores S/N, CP 81223, C.U. Los Mochis, Sinaloa, Mexico, bCentro de Investigaciones Quimicas, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, CP 62210, Cuernavaca, Morelos, Mexico, and cCentro de Graduados del Instituto Tecnologico de Tijuana, Blvd. Industrial S/N, Col. Otay, CP 22500, Tijuana, B.C., Mexico
*Correspondence e-mail: gaxiolajose@yahoo.com.mx

(Received 10 December 2012; accepted 13 December 2012; online 22 December 2012)

The asymmetric unit of the title compound, (C12H16N3O)2[PdCl4]3, consists of a 4,4′-(1-aza­niumyl-2-hy­droxy­ethane-1,2-di­yl)dipyridinium dication and one and a half tetra­chloridopalladate(II) anions; the latter has inversion symmetry. In the cation, the pyridinium rings attached to the central 1-aza­niumyl-2-hy­droxy­ethane fragment show an anti conformation, as indicated by the central C—C—C—C torsion angle of −178.1 (4)°, and they are inclined to one another by 25.7 (2)°. In the crystal, the cations and anions are linked through N—H⋯Cl and O—H⋯Cl hydrogen bonds. There are also ππ contacts [centroid–centroid distance = 3.788 (3) Å] and a number of C—H⋯O and C—H⋯Cl inter­actions are present, consolidating the formation of a three-dimensional structure.

Related literature

For potential applications of organic–inorganic hybrid materials with magnetic, optical and electrical properties, see: Yao et al. (2010[Yao, H. B., Gao, M. R. & Yu, S. H. (2010). Nanoscale, 2, 323-334.]); Sanchez et al. (2011[Sanchez, C., Belleville, P., Popall, M. & Lionel, N. (2011). Chem. Soc. Rev. 40, 696-753.]); Pardo et al. (2011[Pardo, R., Zayat, M. & Levy, D. (2011). Chem. Soc. Rev. 40, 672-687.]). For related tetra­chloridopalladate(II) compounds, see: Kumar et al. (2006[Kumar, D. K., Das, A. & Dastidar, P. (2006). Cryst. Growth Des. 6, 216-223.]); Adams et al. (2005[Adams, C. J., Paul, C. C., Orpen, A. G., Podesta, T. J. & Salt, B. (2005). Chem. Commun. pp. 2457-2458.], 2006[Adams, C. J., Angeloni, A., Orpen, A. G., Podesta, T. J. & Shore, B. (2006). Cryst. Growth Des. 6, 411-422.]); Maris (2008[Maris, T. (2008). Acta Cryst. E64, m208.]). For the synthesis of the ligand, see: Campos-Gaxiola et al. (2012[Campos-Gaxiola, J. J., Höpfl, H., Aguirre, G. & Parra-Hake, M. (2012). Acta Cryst. E68, o1873.]).

[Scheme 1]

Experimental

Crystal data
  • (C12H16N3O)2[PdCl4]3

  • Mr = 1181.16

  • Triclinic, [P \overline 1]

  • a = 7.6970 (7) Å

  • b = 7.7339 (7) Å

  • c = 15.7254 (13) Å

  • α = 84.541 (2)°

  • β = 81.314 (2)°

  • γ = 78.717 (1)°

  • V = 905.40 (14) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.40 mm−1

  • T = 100 K

  • 0.29 × 0.22 × 0.17 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.543, Tmax = 0.686

  • 5043 measured reflections

  • 3143 independent reflections

  • 2927 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.077

  • S = 1.07

  • 3143 reflections

  • 232 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.23 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1′⋯Cl5 0.84 (4) 2.22 (4) 3.047 (3) 168 (4)
N1—H1A⋯Cl3i 0.86 (3) 2.62 (2) 3.355 (4) 145 (4)
N1—H1A⋯Cl4i 0.86 (3) 2.54 (4) 3.203 (4) 135 (4)
N1—H1B⋯Cl6ii 0.86 (4) 2.49 (5) 3.310 (4) 160 (4)
N1—H1C⋯Cl1ii 0.86 (2) 2.22 (2) 3.080 (3) 177 (6)
N2—H2′⋯Cl2iii 0.84 (4) 2.35 (4) 3.137 (4) 157 (4)
N3—H3′⋯Cl5iv 0.84 (4) 2.44 (4) 3.150 (4) 143 (4)
N3—H3′⋯Cl6iv 0.84 (4) 2.71 (5) 3.353 (4) 135 (3)
C4—H4⋯Cl5v 0.95 2.64 3.406 (5) 139
C6—H6⋯O1vi 0.95 2.54 3.454 (6) 161
C9—H9⋯Cl3ii 0.95 2.78 3.599 (5) 145
C10—H10⋯Cl2vii 0.95 2.75 3.649 (5) 159
C11—H11⋯Cl1 0.95 2.61 3.486 (5) 154
C11—H11⋯Cl1viii 0.95 2.80 3.422 (5) 124
Symmetry codes: (i) x-1, y+1, z; (ii) x-1, y, z; (iii) x, y-1, z; (iv) -x, -y+2, -z; (v) -x, -y+1, -z; (vi) x, y+1, z; (vii) -x, -y+1, -z+1; (viii) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Hydrogen bond based organic–inorganic hybrid materials are receiving continuous interest because of their structural, magnetic, optical and electrical properties (Yao et al., 2010; Sanchez et al., 2011; Pardo et al., 2011). An interesting approach for the preparation of such materials consists in the utilization of supramolecular synthons containing charge-assisted N+–H···Cl- hydrogen bonds, through which organic cations and anionic metal complexes are linked to form crystalline organic–inorganic hybrid solids (Kumar et al., 2006; Adams et al., 2005,2006; Maris, 2008). As a further contribution we report herein on the crystal structure of the title compound.

The asymmetric unit of the title compound consists of one threefold charged organic cation in a general position and two independent [PdCl4]2- dianions, one of which is located on a crystallographic inversion center (Fig. 1). In the cation, the pyridinium rings attached to the central 2-ammoniumethanol fragment show an anti conformation, as indicated by the C8—C1—C2—C3 torsion angle of -178.1 (4)°, and form a dihedral angle of 25.7 (2)°. The Pd atoms have square-planar coordination environments with Pd—Cl distances ranging from 2.2760 (10) to 2.3056 (11) Å.

In the crystal, the cations and anions are linked by N+—H···Cl- and O—H···Cl- hydrogen bonds (Table 1 and Fig. 2). There are ππ interactions present involving inversion related pyridinium rings [Cg···Cgi distance = 3.788 (3) Å; Cg centroid of the N3,C3-C7 ring; symmetry code (i) -x, -y+2, -z]. There are also a number of C-H···O and C-H···Cl interactions present, consolidating the formation of a three-dimensional structure (Table 1 and Fig. 2).

Related literature top

For potential applications of organic–inorganic hybrid materials with magnetic, optical and electrical properties, see: Yao et al. (2010); Sanchez et al. (2011); Pardo et al. (2011). For related tetrachloridopalladate(II) compounds, see: Kumar et al. (2006); Adams et al. (2005, 2006); Maris (2008). For the synthesis of the ligand, see: Campos-Gaxiola et al. (2012).

Experimental top

The organic entities in the title compound are the product of partial hydrolysis starting from 2,4,5-tris(pyridin-4-yl)-4,5-dihydro-1,3-oxazole, which was synthesized according to a previously reported procedure (Campos-Gaxiola et al., 2012). For the preparation of the palladium complex, a solution of 2,4,5-tris(pyridin-4-yl)-4,5-dihydro-1,3-oxazole (0.05 g, 0.16 mmol) in methanol and concentrated HCl (37%, 3 ml) was added dropwise to a stirring solution of potassium tetrachloridopalladate (0.05 g, 0.16 mmol) in water (5 ml). The resulting yellow solution was stirred for 30 min at 333 K, whereupon the solution was left to evaporate slowly at room temperature. After two weeks, red crystals were isolated [Yield: 30%]. Spectroscopic and TGA data for the title compound are available in the archived CIF.

Refinement top

C bound H atoms were positioned geometrically and constrained using the riding-model approximation [aryl C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C)]. The N—H and O—H hydrogen atoms were located in difference Fourier maps and were refined with distance restraints: N-H = 0.86 (1) for NH3+ H atoms and 0.84 (1) Å for O—H and pyN-H+ H atoms, with Uiso(H) = 1.2Ueq(O,N).

Structure description top

Hydrogen bond based organic–inorganic hybrid materials are receiving continuous interest because of their structural, magnetic, optical and electrical properties (Yao et al., 2010; Sanchez et al., 2011; Pardo et al., 2011). An interesting approach for the preparation of such materials consists in the utilization of supramolecular synthons containing charge-assisted N+–H···Cl- hydrogen bonds, through which organic cations and anionic metal complexes are linked to form crystalline organic–inorganic hybrid solids (Kumar et al., 2006; Adams et al., 2005,2006; Maris, 2008). As a further contribution we report herein on the crystal structure of the title compound.

The asymmetric unit of the title compound consists of one threefold charged organic cation in a general position and two independent [PdCl4]2- dianions, one of which is located on a crystallographic inversion center (Fig. 1). In the cation, the pyridinium rings attached to the central 2-ammoniumethanol fragment show an anti conformation, as indicated by the C8—C1—C2—C3 torsion angle of -178.1 (4)°, and form a dihedral angle of 25.7 (2)°. The Pd atoms have square-planar coordination environments with Pd—Cl distances ranging from 2.2760 (10) to 2.3056 (11) Å.

In the crystal, the cations and anions are linked by N+—H···Cl- and O—H···Cl- hydrogen bonds (Table 1 and Fig. 2). There are ππ interactions present involving inversion related pyridinium rings [Cg···Cgi distance = 3.788 (3) Å; Cg centroid of the N3,C3-C7 ring; symmetry code (i) -x, -y+2, -z]. There are also a number of C-H···O and C-H···Cl interactions present, consolidating the formation of a three-dimensional structure (Table 1 and Fig. 2).

For potential applications of organic–inorganic hybrid materials with magnetic, optical and electrical properties, see: Yao et al. (2010); Sanchez et al. (2011); Pardo et al. (2011). For related tetrachloridopalladate(II) compounds, see: Kumar et al. (2006); Adams et al. (2005, 2006); Maris (2008). For the synthesis of the ligand, see: Campos-Gaxiola et al. (2012).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the asymmetric unit of the title compound, with the atom-labelling. Displacement ellipsoids are drawn at the 50% probability level. [symmetry code: (i) -x + 1, -y + 2, -z + 1].
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title compound, with the hydrogen bonds shown as dashed lines (see Table 1 for details).
Bis[(1RS,2RS)-4,4'-(1-azaniumyl-2-hydroxyethane-1,2- diyl)dipyridinium] tris[tetrachloridopalladate(II)] top
Crystal data top
(C12H16N3O)2[PdCl4]3Z = 1
Mr = 1181.16F(000) = 576
Triclinic, P1Dx = 2.166 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6970 (7) ÅCell parameters from 3544 reflections
b = 7.7339 (7) Åθ = 2.7–28.2°
c = 15.7254 (13) ŵ = 2.40 mm1
α = 84.541 (2)°T = 100 K
β = 81.314 (2)°Rectangular prism, red
γ = 78.717 (1)°0.29 × 0.22 × 0.17 mm
V = 905.40 (14) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3143 independent reflections
Radiation source: fine-focus sealed tube2927 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
phi and ω scansθmax = 25.0°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 97
Tmin = 0.543, Tmax = 0.686k = 99
5043 measured reflectionsl = 1618
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0322P)2 + 2.1607P]
where P = (Fo2 + 2Fc2)/3
3143 reflections(Δ/σ)max < 0.001
232 parametersΔρmax = 1.23 e Å3
6 restraintsΔρmin = 0.48 e Å3
Crystal data top
(C12H16N3O)2[PdCl4]3γ = 78.717 (1)°
Mr = 1181.16V = 905.40 (14) Å3
Triclinic, P1Z = 1
a = 7.6970 (7) ÅMo Kα radiation
b = 7.7339 (7) ŵ = 2.40 mm1
c = 15.7254 (13) ÅT = 100 K
α = 84.541 (2)°0.29 × 0.22 × 0.17 mm
β = 81.314 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3143 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2927 reflections with I > 2σ(I)
Tmin = 0.543, Tmax = 0.686Rint = 0.019
5043 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0326 restraints
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 1.23 e Å3
3143 reflectionsΔρmin = 0.48 e Å3
232 parameters
Special details top

Experimental. Spectroscopic and TGA data for the title compound: IR(KBr, cm-1): 3440, 3211, 3064, 2937, 2888, 1669, 1630, 1509, 1421, 1358, 1294, 999, 832. TGA: Calcd. for HCl: 3.08. Found: 3.26% (303–448 K); Calcd. for PdCl2: 15.49. Found: 15.85% (448–523 K).

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0806 (4)0.6561 (4)0.14345 (19)0.0254 (10)
N10.3332 (5)0.8197 (5)0.2757 (2)0.0243 (12)
N20.1298 (5)0.3847 (5)0.4127 (2)0.0229 (11)
N30.2750 (5)1.2478 (5)0.0153 (2)0.0209 (11)
C10.1380 (6)0.8184 (6)0.2689 (3)0.0240 (12)
C20.0541 (6)0.8136 (6)0.1750 (3)0.0255 (12)
C30.1379 (6)0.9732 (6)0.1205 (3)0.0221 (12)
C40.2352 (6)0.9472 (6)0.0571 (3)0.0269 (14)
C50.3016 (6)1.0887 (6)0.0040 (3)0.0250 (12)
C60.1864 (6)1.2805 (6)0.0775 (3)0.0239 (12)
C70.1160 (6)1.1430 (6)0.1307 (3)0.0219 (12)
C80.0458 (6)0.6609 (6)0.3204 (3)0.0229 (12)
C90.1047 (6)0.5003 (6)0.3334 (3)0.0259 (12)
C100.0142 (6)0.3628 (6)0.3807 (3)0.0233 (12)
C110.1937 (6)0.5346 (6)0.4001 (3)0.0226 (12)
C120.1067 (6)0.6767 (6)0.3539 (3)0.0234 (12)
Pd10.500001.000000.500000.0165 (1)
Cl10.53138 (14)0.71363 (13)0.46422 (7)0.0220 (3)
Cl20.19678 (14)1.02190 (13)0.52122 (7)0.0250 (3)
Pd20.39126 (4)0.32273 (4)0.19078 (2)0.0158 (1)
Cl30.56147 (14)0.25575 (14)0.30002 (7)0.0247 (3)
Cl40.30607 (16)0.05224 (14)0.21810 (8)0.0300 (3)
Cl50.23446 (15)0.37787 (13)0.07476 (7)0.0241 (3)
Cl60.46316 (15)0.60016 (13)0.16265 (7)0.0261 (3)
H10.120400.928900.291900.0290*
H1'0.014 (4)0.584 (5)0.130 (3)0.0380*
H1A0.391 (6)0.924 (3)0.265 (3)0.0360*
H1B0.361 (7)0.742 (5)0.247 (3)0.0360*
H1C0.374 (7)0.788 (7)0.3275 (12)0.0360*
H20.077100.812000.171300.0300*
H2'0.175 (6)0.299 (4)0.444 (3)0.0350*
H3'0.309 (6)1.338 (4)0.016 (3)0.0310*
H40.256000.832500.050300.0320*
H50.366401.071900.040500.0300*
H60.172901.397600.084500.0290*
H70.052101.163900.174700.0260*
H90.207000.485700.309600.0310*
H100.054100.253000.390500.0280*
H110.298800.543300.423000.0280*
H120.150600.784500.345000.0280*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0310 (18)0.0191 (15)0.0257 (17)0.0019 (13)0.0048 (14)0.0037 (13)
N10.023 (2)0.025 (2)0.022 (2)0.0003 (16)0.0014 (16)0.0011 (16)
N20.022 (2)0.0226 (19)0.0203 (19)0.0029 (15)0.0056 (15)0.0074 (15)
N30.0170 (18)0.0227 (19)0.0197 (19)0.0009 (15)0.0016 (15)0.0078 (15)
C10.022 (2)0.026 (2)0.025 (2)0.0060 (18)0.0078 (18)0.0033 (19)
C20.022 (2)0.026 (2)0.028 (2)0.0038 (18)0.0023 (19)0.0030 (19)
C30.022 (2)0.025 (2)0.019 (2)0.0064 (18)0.0026 (18)0.0042 (18)
C40.036 (3)0.021 (2)0.025 (2)0.009 (2)0.005 (2)0.0004 (18)
C50.026 (2)0.032 (2)0.020 (2)0.011 (2)0.0088 (19)0.0037 (19)
C60.029 (2)0.022 (2)0.021 (2)0.0080 (19)0.0011 (19)0.0007 (18)
C70.022 (2)0.029 (2)0.018 (2)0.0110 (18)0.0060 (17)0.0006 (18)
C80.024 (2)0.023 (2)0.022 (2)0.0039 (18)0.0070 (18)0.0019 (18)
C90.029 (2)0.023 (2)0.028 (2)0.0077 (19)0.010 (2)0.0029 (19)
C100.025 (2)0.018 (2)0.026 (2)0.0040 (18)0.0014 (19)0.0009 (18)
C110.018 (2)0.030 (2)0.019 (2)0.0020 (18)0.0055 (18)0.0026 (18)
C120.022 (2)0.026 (2)0.023 (2)0.0082 (18)0.0049 (18)0.0052 (18)
Pd10.0180 (2)0.0144 (2)0.0185 (2)0.0050 (2)0.0073 (2)0.0038 (2)
Cl10.0290 (6)0.0162 (5)0.0224 (5)0.0075 (4)0.0071 (4)0.0026 (4)
Cl20.0193 (5)0.0206 (5)0.0357 (6)0.0063 (4)0.0081 (4)0.0079 (4)
Pd20.0177 (2)0.0147 (2)0.0151 (2)0.0023 (1)0.0044 (1)0.0000 (1)
Cl30.0261 (6)0.0283 (5)0.0216 (5)0.0071 (4)0.0102 (4)0.0034 (4)
Cl40.0375 (6)0.0182 (5)0.0389 (7)0.0095 (5)0.0204 (5)0.0085 (5)
Cl50.0303 (6)0.0203 (5)0.0245 (5)0.0067 (4)0.0132 (4)0.0031 (4)
Cl60.0338 (6)0.0204 (5)0.0286 (6)0.0114 (4)0.0137 (5)0.0039 (4)
Geometric parameters (Å, º) top
Pd1—Cl22.2821 (11)C1—C81.514 (7)
Pd1—Cl1i2.2950 (10)C2—C31.526 (7)
Pd1—Cl12.2950 (10)C3—C41.385 (7)
Pd1—Cl2i2.2821 (11)C3—C71.383 (6)
Pd2—Cl42.2960 (12)C4—C51.376 (7)
Pd2—Cl52.2985 (12)C6—C71.366 (7)
Pd2—Cl32.2760 (12)C8—C91.391 (7)
Pd2—Cl62.3056 (11)C8—C121.388 (7)
O1—C21.419 (6)C9—C101.373 (7)
O1—H1'0.84 (4)C11—C121.375 (7)
N1—C11.488 (6)C1—H11.0000
N2—C101.330 (6)C2—H21.0000
N2—C111.332 (6)C4—H40.9500
N3—C51.319 (6)C5—H50.9500
N3—C61.342 (6)C6—H60.9500
N1—H1C0.86 (2)C7—H70.9500
N1—H1A0.86 (3)C9—H90.9500
N1—H1B0.86 (4)C10—H100.9500
N2—H2'0.84 (4)C11—H110.9500
N3—H3'0.84 (4)C12—H120.9500
C1—C21.521 (7)
Cl1i—Pd1—Cl2i89.74 (4)C3—C4—C5119.5 (4)
Cl1—Pd1—Cl2i90.26 (4)N3—C5—C4119.6 (4)
Cl1—Pd1—Cl289.74 (4)N3—C6—C7119.1 (4)
Cl1—Pd1—Cl1i180.00C3—C7—C6120.0 (4)
Cl1i—Pd1—Cl290.26 (4)C1—C8—C9122.8 (4)
Cl2—Pd1—Cl2i180.00C9—C8—C12118.9 (4)
Cl4—Pd2—Cl589.59 (4)C1—C8—C12118.3 (4)
Cl3—Pd2—Cl692.45 (4)C8—C9—C10119.6 (4)
Cl3—Pd2—Cl489.51 (4)N2—C10—C9119.4 (4)
Cl4—Pd2—Cl6177.33 (4)N2—C11—C12119.7 (4)
Cl5—Pd2—Cl688.58 (4)C8—C12—C11119.3 (4)
Cl3—Pd2—Cl5176.06 (4)C8—C1—H1109.00
C2—O1—H1'114 (3)N1—C1—H1109.00
C10—N2—C11123.0 (4)C2—C1—H1109.00
C5—N3—C6123.1 (4)C3—C2—H2109.00
C1—N1—H1C110 (4)C1—C2—H2109.00
C1—N1—H1A111 (3)O1—C2—H2109.00
H1A—N1—H1B113 (4)C3—C4—H4120.00
C1—N1—H1B115 (4)C5—C4—H4120.00
H1B—N1—H1C102 (5)N3—C5—H5120.00
H1A—N1—H1C106 (5)C4—C5—H5120.00
C10—N2—H2'115 (3)C7—C6—H6120.00
C11—N2—H2'122 (3)N3—C6—H6121.00
C6—N3—H3'113 (3)C3—C7—H7120.00
C5—N3—H3'124 (3)C6—C7—H7120.00
N1—C1—C8111.3 (4)C8—C9—H9120.00
C2—C1—C8109.4 (4)C10—C9—H9120.00
N1—C1—C2110.0 (4)N2—C10—H10120.00
O1—C2—C3109.6 (4)C9—C10—H10120.00
O1—C2—C1107.9 (4)N2—C11—H11120.00
C1—C2—C3111.6 (4)C12—C11—H11120.00
C2—C3—C7122.2 (4)C11—C12—H12120.00
C4—C3—C7118.7 (4)C8—C12—H12120.00
C2—C3—C4119.1 (4)
C11—N2—C10—C91.0 (7)C1—C2—C3—C4114.2 (5)
C10—N2—C11—C121.7 (7)C1—C2—C3—C767.6 (6)
C6—N3—C5—C40.7 (7)C2—C3—C4—C5175.9 (4)
C5—N3—C6—C71.7 (7)C7—C3—C4—C52.4 (7)
N1—C1—C2—O161.0 (5)C2—C3—C7—C6176.8 (4)
N1—C1—C2—C359.5 (5)C4—C3—C7—C61.4 (7)
C8—C1—C2—O161.5 (5)C3—C4—C5—N31.4 (7)
C8—C1—C2—C3178.1 (4)N3—C6—C7—C30.6 (7)
N1—C1—C8—C930.7 (6)C1—C8—C9—C10179.9 (4)
N1—C1—C8—C12151.1 (4)C12—C8—C9—C101.7 (7)
C2—C1—C8—C991.0 (5)C1—C8—C12—C11179.3 (4)
C2—C1—C8—C1287.2 (5)C9—C8—C12—C111.0 (7)
O1—C2—C3—C45.3 (6)C8—C9—C10—N20.7 (7)
O1—C2—C3—C7172.9 (4)N2—C11—C12—C80.6 (7)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cl50.84 (4)2.22 (4)3.047 (3)168 (4)
N1—H1A···Cl3ii0.86 (3)2.62 (2)3.355 (4)145 (4)
N1—H1A···Cl4ii0.86 (3)2.54 (4)3.203 (4)135 (4)
N1—H1B···Cl6iii0.86 (4)2.49 (5)3.310 (4)160 (4)
N1—H1C···Cl1iii0.86 (2)2.22 (2)3.080 (3)177 (6)
N2—H2···Cl2iv0.84 (4)2.35 (4)3.137 (4)157 (4)
N3—H3···Cl5v0.84 (4)2.44 (4)3.150 (4)143 (4)
N3—H3···Cl6v0.84 (4)2.71 (5)3.353 (4)135 (3)
C4—H4···Cl5vi0.952.643.406 (5)139
C6—H6···O1vii0.952.543.454 (6)161
C9—H9···Cl3iii0.952.783.599 (5)145
C10—H10···Cl2viii0.952.753.649 (5)159
C11—H11···Cl10.952.613.486 (5)154
C11—H11···Cl1ix0.952.803.422 (5)124
Symmetry codes: (ii) x1, y+1, z; (iii) x1, y, z; (iv) x, y1, z; (v) x, y+2, z; (vi) x, y+1, z; (vii) x, y+1, z; (viii) x, y+1, z+1; (ix) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula(C12H16N3O)2[PdCl4]3
Mr1181.16
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.6970 (7), 7.7339 (7), 15.7254 (13)
α, β, γ (°)84.541 (2), 81.314 (2), 78.717 (1)
V3)905.40 (14)
Z1
Radiation typeMo Kα
µ (mm1)2.40
Crystal size (mm)0.29 × 0.22 × 0.17
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.543, 0.686
No. of measured, independent and
observed [I > 2σ(I)] reflections
5043, 3143, 2927
Rint0.019
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.077, 1.07
No. of reflections3143
No. of parameters232
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.23, 0.48

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2008), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1'···Cl50.84 (4)2.22 (4)3.047 (3)168 (4)
N1—H1A···Cl3i0.86 (3)2.62 (2)3.355 (4)145 (4)
N1—H1A···Cl4i0.86 (3)2.54 (4)3.203 (4)135 (4)
N1—H1B···Cl6ii0.86 (4)2.49 (5)3.310 (4)160 (4)
N1—H1C···Cl1ii0.86 (2)2.22 (2)3.080 (3)177 (6)
N2—H2'···Cl2iii0.84 (4)2.35 (4)3.137 (4)157 (4)
N3—H3'···Cl5iv0.84 (4)2.44 (4)3.150 (4)143 (4)
N3—H3'···Cl6iv0.84 (4)2.71 (5)3.353 (4)135 (3)
C4—H4···Cl5v0.952.643.406 (5)139
C6—H6···O1vi0.952.543.454 (6)161
C9—H9···Cl3ii0.952.783.599 (5)145
C10—H10···Cl2vii0.952.753.649 (5)159
C11—H11···Cl10.952.613.486 (5)154
C11—H11···Cl1viii0.952.803.422 (5)124
Symmetry codes: (i) x1, y+1, z; (ii) x1, y, z; (iii) x, y1, z; (iv) x, y+2, z; (v) x, y+1, z; (vi) x, y+1, z; (vii) x, y+1, z+1; (viii) x+1, y+1, z+1.
 

Acknowledgements

This work was financially supported by the Universidad Autónoma de Sinaloa (PROFAPI 2012/032).

References

First citationAdams, C. J., Angeloni, A., Orpen, A. G., Podesta, T. J. & Shore, B. (2006). Cryst. Growth Des. 6, 411–422.  Web of Science CSD CrossRef CAS Google Scholar
First citationAdams, C. J., Paul, C. C., Orpen, A. G., Podesta, T. J. & Salt, B. (2005). Chem. Commun. pp. 2457–2458.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2000). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCampos-Gaxiola, J. J., Höpfl, H., Aguirre, G. & Parra-Hake, M. (2012). Acta Cryst. E68, o1873.  CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKumar, D. K., Das, A. & Dastidar, P. (2006). Cryst. Growth Des. 6, 216–223.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMaris, T. (2008). Acta Cryst. E64, m208.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPardo, R., Zayat, M. & Levy, D. (2011). Chem. Soc. Rev. 40, 672–687.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSanchez, C., Belleville, P., Popall, M. & Lionel, N. (2011). Chem. Soc. Rev. 40, 696–753.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYao, H. B., Gao, M. R. & Yu, S. H. (2010). Nanoscale, 2, 323–334.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds